Executive summary

University Decision-Making and Data Analytics
Joseph E. Steinmetz, Executive Vice President and Provost,
Professor of Psychology and Neuroscience, The Ohio State University

The development of standard methods for data collecting and the formal analysis tools to
mine the data and make sense out of the information have historically lagged behind our
ability to collect and store data. However, administrators now have a variety of powerful
tools available to collect, mine, and analyze very large data sets in relatively quick, stand-
ard, and reliable ways.

I chaired a psychology department for nine years; measuring and evaluating the perfor-
mance of the faculty in the department was by far the toughest part of the job. While
many metrics were available, it was always difficult to assign relative weights for each
category. Further, how we evaluate scholarship in the arts and humanities is very differ-
ent from how we evaluate scholarship in the natural and mathematical or the social and
behavioral sciences.

The Ohio State University has begun using Academic Analytics in two areas related to the
research productivity of our faculty. First, we have been able to compare the overall
productivity of individual scholars with others inside and outside of The Ohio State Uni-
versity to identify areas of strengths and weaknesses in our faculty. Second, we have been
able to use the analytics during program reviews to compare the overall productivity of
departments and programs with identified peers and aspirational benchmarks, with an
eye toward finding areas of strength and weakness relative to these benchmarks.

No data analytic system is perfect, but in spite of some of the criticism and concerns about
the Academic Analytic data set, I believe it is among the best that are now available for
our use. I am very comfortable using this approach with the caveat I keep reminding all of
my colleagues here—these are only a few of many data points that are available to us for
conducting comprehensive evaluations of our faculty.

It is clear that our increased ability to collect, process and analyze large data sets has ena-
bled us to be much more data driven in making administrative decisions. Academic Ana-
lytics has proven to be useful for comparative reviews of the research productivity of in-
dividual faculty as well as departments and programs. We have also begun using data
analytic techniques to identify collaborators inside the institution as well as those at other
universities and in the private sector.

We have also used data analytic methods to examine how we teach and how our students
learn. We have mined large data sets to find out how prepared our students are and
where they may need some additional help. We are using data to design classes that inte-
grate traditional teaching methods with available technology. And we are taking ad-
vantage of the rich data sets available through MOOCs. MOOCs can be an effective way
to reach large numbers of students and provide high quality learning experiences, while
generating huge amounts of data that can be used to personalize learning and improve in-
struction.
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We constantly have to remind ourselves to look at all available data whenever possible.
Decisions that impact faculty scholarship and teaching should be informed by more than
one data point. Academic administrators need to be mindful of this approach.

Squaring the Circle: Using Analytics to Pursue Institutional Goals
Regina Werum, Associate Vice Chancellor for Research, University of Nebraska, and
Michael Zeleny, Assistant Vice Chancellor for Research, University of Nebraska

In recent years, several organizations and software solutions have emerged, designed to
provide business and intelligence data solutions for research universities. What do re-
search administration offices need to know in order to pursue institutional goals success-
fully? What can analytics software actually and potentially tell us? How can we address
challenges that remain outside of the scope of these software solutions?

University offices or research administrators have three needs. First, they need to be able
to identify and often quantify institutionally specific metrics of success. Second, administra-
tors need to be able to identify intellectual and organizational strengths and weaknesses.
Third, research administrators need to be able to track funding trends throughout the in-
stitution over time, by unit, and by funding source.

Academic analytics, in this context, refers to the analysis of research-related data to help
educational institutions monitor progress on key institutional goals. Various software
packages are available and offer products ranging from business intelligence at levels
ranging from the individual faculty member to department/college/university-wide. Each
of these providers claims to provide users with a clear and comparative understanding of
research performance and/or productivity. Still, it seems clear that a comprehensive, one-
stop research productivity software solution does not yet exist.

It is not clear how data analytics will take into account the dynamics that are currently
changing networks and research collaboration patterns across institutions and with non-
academic partners. In their current form, analytics are not well suited to help university
leadership address the impact of increasing lateral and vertical stratification within the
higher educational sector. Software solutions have been designed to help institutions look
inward, rather than foster the types of collaborations across institutions likely to mitigate
the ever more fierce competition over resources and its effect on the feasibility of long-
term institutional goals.

In its current form, analytics software is not yet designed to help higher education leader-
ship engage in the sort of simulation exercises necessary to determine the intended and
unintended consequences of prioritizing specific metrics of success, typically gauged in
terms of faculty productivity. Ideally, analytics software of the future could enable the
types of simulation exercises needed to help predict the intended and unintended conse-
quences of reaching specific institutional goals for a five, ten or even fifty year trajectory.
If so, they should take into account the possibility of fundamental shifts regarding federal,
industry, and other research funding opportunities, as those constrain the ability if institu-
tions (and offices of research) to engage in strategic planning.
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Transparency in the Age of Scholarly Analytics
Mardy T. Eimers, Vice Provost for Institutional Research & Quality Improvement,

University of Missouri

There is a call for public higher education to be more transparent with the information
they share externally, as well as internally. Constituencies want to know how their tax-
generated state appropriations are spent and whether they are getting their “money’s
worth.” At the same time, transparency is important within the academy. Faculty and staff
want access to the same information used by the key decision-makers, and they desire to
understand the rationale behind the key decisions that will affect them directly.

Much of the ability to be truly transparent depends on the audience’s ability to under-
stand and interpret the data provided. Organizational leaders can also be transparent by
sharing actions, processes, and/or decisions. Sharing the rationale behind the decision or ac-
tions can be equally if not more important.

Tremendous progress has been made in assembling quality scholarly data and building
web interfaces to capture and use this data in planning and decision-making. Because de-
tailed scholarly productivity information is now available, there are some critical ques-
tions: what data do you share? With whom do you share the data? When do you share the
data? In what format, and with how much flexibility?

The questions of “what to share” and “whom to share it with” looms large. Being fully
transparent, or knowing the level of transparency that might be most appropriate, is not
that simple. It requires sound judgment within the context of your internal and external
environment.

If an institution is choosing to be more transparent, it is not likely to be as simple as
“switching a light on.” If institutions could develop a set of principles to guide their ac-
tions, it would help considerably. By all indications, practicing “measured or tempered
transparency” has a tremendous number of benefits to the institution and its constituen-
cies.

By measured or tempered, I mean that we intentionally and consciously consider the impli-
cations of what may be shared, and then adjust what is delivered accordingly. We need to
find better ways to decide how to share data and information for the common good of the
institution. I believe that if we can outline universal principles that can serve as a founda-
tion on our campus, tailor them accordingly given the context, it will go a long way to
serving our needs and building trust through tempered, transparent actions and exchang-
es.

“Let’s Play Moneyball!”: Analytics, Accountability, and the Future of Research Universities
Steven Warren, Vice Chancellor for Research and Graduate Studies, University of

Kansas

Research universities make massive investments in research. Many of these investments
are obvious and easily accounted for. Arguably the largest relatively undocumented uni-
versity investment is the “release time” from teaching provided to most tenure line facul-
ty members. This investment is an excellent one in the majority of cases in which faculty
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use this “research time” to actively engage in important and measurable scholarship. But
what about faculty members who are “inactive scholars”?

There are at least two reasons that research universities should be concerned about tenure
line faculty members who are inactive scholars. First, there may be an ethical issue if these
individuals maintain graduate faculty status that allows them to chair or serve on PhD
level doctoral student committees. We want our PhD students to be supervised by com-
mittees consisting of active scholars. Second, if you receive release time, you are expected
to use it as intended unless given explicit permission to do otherwise. If not, this behavior
(or lack of it) is in violation of the implicit and explicit employment agreement that exists
between a full time tenure line faculty member and their employer.

In the past, the problems of “inactive” scholars at research universities was most evident
to their colleagues. However, in the world of electronic publication we live in, the evi-
dence of this problem is more transparent. Inactive scholarship can now be identified by
outside groups that harvest information on the productivity and faculty among other
things, and then sell these analyses back to universities. These aggregators can also sell
the same data to other groups such as state legislators and boards of regents.

What is the best course of action to mitigate risk for the university? Get the data on your
university and your competitors and develop an in depth knowledge of it. Start using the
data to make decisions about hiring, retention, reorganization, etc. Work closely with
deans, chairs, and faculty to create a broad understanding of the serious downside of ig-
noring this type of data. Put in place policies aimed at eliminating problems like unpro-
ductive tenured scholars. Use analytics data to make budgeting decisions.

Caveat: Having a huge amount of data is a separate issue from using data wisely. Having
a high publication rate and having high impact and value can be remarkably unrelated
states. Nevertheless, the right data, wisely used and qualified can help us identify scholars
who are no longer active. It is necessary that we evaluate scholarly productivity within
the fields/disciplines it resides in, and against the standards of that field. Publication pat-
terns differ greatly across various disciplines. Finally, the visual and performing arts pre-
sent significant challenges in terms of evaluating the impact of creative activities in a valid
way. We need to take great care and tread lightly in these areas.

Analytics and big data are already having a significant impact on higher education in all
sorts of ways. We need to embrace analytics and big data or we will run over by others
that do embrace them. But this is not just about playing defense in an age of rapid change.
These new tools present great opportunities for improving the performance and impact of
higher education in general and research in specific.

Deans, Decisions, Data
Danny Anderson, Dean, College of Arts and Science, University of Kansas

Here are some suggestions to guide in the use of data for decision-making in the context
of a distributed authority model, which is characteristic of a large public research univer-
sity. While these practices and lessons learned have emerged from work with Academic
Analytics, the recommendations can guide in the collective use of a variety of datasets for
the purpose of shared decision-making.



First, engage department chairs. By drawing upon the strengths and insights of the de-
partment chairs, decisions can be more effective, generate buy-in at all levels, and avoid
some pitfalls. Second, contextualize the datasets with a variety of institutional research
information. Sometimes the unusual detail in one dataset or the anomaly in another is
linked to historical changes, policy changes, or personnel practices and the juxtaposition
of multiple, related datasets can help draw out these connections.

Third, make conversations with department chairs and faculty central in the task of un-
derstanding complex data and building a shared vision for the future. Chair engagement
and contextual information both emerge through collaborative examination of the data.
This strategy is essential for owning the process of change. Having conversations with
department chairs reminds us that change is “human-driven.”

Fourth, take a deep breath and be prepared to state repeatedly: data informs the decisions
we make; data will not make the decisions for us. Fifth, as we emphasize engagement,
context, conversation, and human traits, we can begin to see that data are narratives wait-
ing to be told. If we have to go deep into the numbers when telling the story, besides the
human faces we portray, we also need to make use of data visualization strategies that
promote deep understanding as our audiences rapidly interpret complex statistical infor-
mation.

University leaders need to develop a coherent strategy for the effective use of data within
their institutional contexts. We must be clear about our responsibility to use tools wisely
to inform our decision making. We cannot and should not abdicate our judgment, author-
ity, or responsibility to datasets. We must develop strategies for working on multiple or-
ganizational levels. Data and analytics as well as engagement, context, conversation,
judgment, and narratives can all be brought together to help us map our way forward and
release the energies we need to construct our future.

A Map for Understanding Decision Making
Michael J. O’Brien, Professor of Anthropology and Dean, College of Arts and
Sciences, University of Missouri

How does one make good decisions when faced with an information overload? In view of the
different processes and scales involved in decision making, especially decisions about the
quality of a behavior or product, how do we determine which one predominates in a giv-
en situation? At one extreme, an individual makes an informed decision based on careful analysis,
and at the other extreme, people effectively copy one another without thinking about it.

Big data can be used to “map” decisions along two dimensions: social influence and information.
My colleagues and I have developed a simple heuristic map which captures the essential elements
of human decision making that should be of concern to businesses, marketers, and even university
administrators. The north—south axis of the map represents how well people are informed about
their decisions. The east—west axis represents the degree to which agents make their decisions indi-
vidually or socially. At the far west is one hundred percent individual learning, where agents rely
only on their own knowledge of the costs and benefits of a particular behavior. At the far eastern
edge is pure social learning, where people do only as others do.

Why might this matter? Because most policymaking assumes that people all reside in the north-
west—people make their own decisions asocially, with their own goals and preferences. The map
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relates specifically to patterns we can resolve from behavioral data, whether those data come from
sales records or citations to scholarly articles and books.

We evolved in a world of few but important choices, but we live in a world of many, largely inter-
changeable ones. Just as we feel adapted to the new order of the world, new fashions and technolo-
gies wash over us, new buzzwords enter our conversation.

These elements—flux, learning, selection, and random events—bring about a new age of models of
human behavior. Probability distributions, population size, invention rate, interaction networks, and
time span become the key parameters. Marketing becomes less about satisfying “the” archetypal
consumer and more about how many interconnected consumers affect each other’s behavior. Old
ideas, such as the sanctity of the “brand,” have to be recast in terms of this bigger, more anthropo-
logical map. To do all this, it pays to have data analysts schooled in evolutionary theory.

“Big Data” Projects in High Energy Physics and Cosmology at Kansas State University
Glenn Horton-Smith, Associate Professor, Department of Physics, Kansas State
University

Present-day experimental high energy physics has been characterized as having three
frontiers: an Energy Frontier, explored by experiments requiring the highest energies
achievable; an Intensity Frontier, explored by experiments requiring the highest intensi-
ties achievable; and a Cosmic Frontier, explored using naturally-occurring cosmic parti-
cles and observations of the cosmos. Research at these frontiers naturally requires the
analysis of vast amounts of data.

The High Energy Physics (HEP) group at K-State engages in research on all three fron-
tiers. On the Energy Frontier, the primary effort is the CMS experiment at the Large Had-
ron Collider (LHC). On the Intensity Frontier, we work on multiple neutrino experiments.
On the Cosmic Frontier, the emphasis is on developing and testing models of dark energy
with the goal of understanding the nature of the phenomenon driving the observed accel-
eration of the expansion of the universe.

In HEP, we tend to use open-source software as much as possible. The ability to inspect
source code, and correct and contribute to it if necessary, is important. Two examples of
commonly used software are Geant4 and ROOT.

Intermixed with this development process is a process of presentation of ideas and inter-
mediate results to individual colleagues and groups of various sizes within the experi-
mental collaboration, invariably leading to suggestions and corrections based on the col-
leagues' knowledge of relevant aspects of the experiment. The design of ROOT allows the
researcher to quickly modify and repeat analyses as needed.

A particularly useful data-driven method for measuring efficiency is the “tag-and-probe”
method. It is especially useful when the new particles or interactions are detected solely
through the observation of known particles whose properties are well understood. The
known particles are also produced in simpler, well-understood reactions. The tag-and-
probe method “tags” known interactions in which a particle of a particular type must be
produced, then uses the particle known to be produced in that interaction as a “probe” to
determine efficiency and an estimated uncertainty for the efficiency estimate.

xii



In academic analytics, data from “peer” and “aspirational peer” institutions and programs
can be used to enable a kind of closed-boxed analysis in which metrics are developed in a
data-driven way without using any data from the analyst's own institution. Insisting on
such an approach to academic analysis could be a way for top research administrators to
address concerns about releasing detailed program data to individual program heads or
researchers for their own analyses.

Evolution of Research Reporting — From Excel to QlikView
Matthew Schuette, Principal Research Analyst, Enterprise Analytics, University of

Kansas Medical Center

In the last ten years, the University of Kansas Medical Center (KUMC) has experienced
strong growth in its academic, clinical and research enterprises. The importance of acces-
sible data, high-quality reporting, and analytics for both research and financials escalated
during this time, shaped by enterprise growth and leadership focus. The lead partner in
business intelligence (BI) and institutional research (IR) at KUMC is the Office of Enter-
prise Analytics (EA). Starting in 2009 the institution began looking heavily into compre-
hensive financial tracking and an appropriate BI tool for this venture.

The primary source of research and financial data is PeopleSoft (PS) Enterprise Financial,
Grants, and Human Capital Management systems. One of the vital roles of Enterprise An-
alytics is to mine, massage, and join tables from PS, and to use internal business practice
rules to create consolidated tables. Prior to the implementation of QlikView (QV) on
campus, most research data tables and reports were created on-demand using SAS data
steps, procedures, and SQL queries. The use of SAS as a data mining and consolidation
tool remains high, specifically for ad-hoc reporting and areas where development in a BI
tool would not be cost- or time-effective.

Up until the Bl-era at KUMC, nearly all research reports were delivered with Excel. SAS
provides easy exporting and importing of Excel files, and most staff on campus has famil-
iarity with its features. The use of Excel for ad-hoc reporting will continue for the foresee-
able future. Bl tools require moderate training in the use of developed applications, as
well as security access being granted. QlikView is a business intelligence tool which is
highly flexible, has a rich, visual user interface, and allows users to clearly see associations
between data.

Enterprise Analytics assists KUMC’s Research Institute with annual reporting and there
are many ad-hoc requests that we receive each year. Monthly reports provide administra-
tors with an overall look at grant and clinical trial activity at the end of each month, while
showing year-to-year trends. The raw data were produced with SAS, exported to Excel
templates, and then further formatted. Requests for reports on investigator percent effort
as well as formatted NIH Other Support documentation are currently in the form of Excel
tables and Word files, and EA receives 300-400 of these requests per year. QlikView de-
velopment of these same reports is in finishing stages, and the convenience will be pro-
vided to the RI and other department administrators to get the information whenever
they need it.

Historically, EA provided rankings of NIH awards to medical schools, based on total dol-
lars awarded during the federal fiscal year, to KUMC research or department administra-
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tors, and also produced summary reports for our website. In QlikView, the NIH Rankings
report is available to all users, and provides both yearly detail and trending information.
The advantage with QV is that the user can select any institution/school/department, one
or multiple years, and to view public or overall rankings.

Departmental “Scorecards” are delivered to the Vice Chancellor of Research and provide
a complete fiscal year listing of projects by department as well as information on paid ef-
fort vs. committed effort for individual faculty in the School of Medicine. All reports are
Excel formatted. There is no intention to integrate these reports into the QlikView envi-
ronment._The advent of BI tools, quicker and relatively cheaper computing memory and
power, and enhanced institutional focus, has led KUMC into a newer world of data min-
ing, intelligent and self-service reporting, along with data and analytically-driven decision
making.

A Rational Approach to Funding Your Research Enterprise
Douglas A Girod, Executive Vice Chancellor, University of Kansas Medical
Center; Executive Dean, KU School of Medicine

Paul Terranova, Vice Chancellor for Research, University of Kansas Medical
Center

Clay Tellers, Principal, Academic Healthcare Division, ECG Management

This paper outlines the efforts of the University of Kansas School of Medicine to develop a
rational and reproducible funding model for the allocation of Institutional resources for
the defined purpose of supporting the Research Mission. This effort was undertaken as an
element of a more comprehensive funding model project that also including funding allo-
cations for the Education and Service mission areas.

A transparent and collaborative process was utilized to engage institutional and depart-
mental leaders in the development of the model. Through the course of the process this
input was critical in identifying elements of the model or unique situations in the institu-
tion that needed to be incorporated or modified to be truly representative of the research
efforts. This process has also facilitated the “buy in” of the leaders in the model.

A first pass high level simulation of the model would suggest a level of funding at about
47% of the amount of salary currently placed on grants for research faculty effort. In other
words, this does seem to model roughly 50% of the faculty research effort as envisioned
by the model. Thus it would appear to achieve the targeted goal.

The funding allocation model is developed at the Departmental level. Since the model is
based on Associate Professor AAMC salary benchmarks, the actual distribution of the
faculty in a given department may differ.

The successful implementation of the model will require a complete understanding of the
key elements by Chairs and faculty alike. A result of developing the model at the Depart-
mental level allows for the Chair to manage the Department budget to account for the idi-
osyncrasies of a given Department yet sets clear accountability to the Institution for meet-
ing all the required missions with the given funding allocations.
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Once the model is run at the Departmental level there will likely be variations between
the funding allocation dictated by the model and the current funding allocations which
are largely historical in nature. It is anticipated that if variations of more than 10% occur a
staged adjustment over a few years will be necessary to avoid major programmatic dis-
ruptions. These adjustments will need to occur in the course of the normal institutional
budget cycle.

Understanding, Evaluating, and Reporting Research Productivity and Impact
Julienne M. Krennrich, Assistant Director of Research Initiatives, Engineering
Research Institute, [owa State University

Arun K. Somani, Associate Dean for Research, College of Engineering, lowa State

University

Martin H. Spalding, Associate Dean for Research, College of Liberal Arts and
Sciences, Iowa State University

The peer review system has historically played a large role in measuring impact. As scien-
tific research has matured, the growth and fine-tuning of sub fields has made it increas-
ingly difficult to compare impacts across disciplines and departments.

The traditional measures of impact are: publications, citations, student and postdoc in-
volvement, funding profile and technology transfer. The h-Index?, a measure combining
publications with citations, was developed as a way of measuring individuals' career
achievements, but depending on the completeness of the publication-tracking system,
faculty-to-faculty comparisons within the same discipline are difficult to compare. Another
question is whether a citation implies a positive or negative impact. There is a bias toward
reporting only positive impacts and with an additional pressure that more is always bet-
ter.

Over the past 30 years, the research enterprise in the United States has seen amazing
growth in the competition for research dollars (state, private and federal). In many areas
(particularly mature ones such as physics and chemistry), growth in the scientifically-
trained workforce has continued, but the trend in available research dollars is decidedly
negative.

It is possible to gauge the impact of a single grant by tracking publications enabled by the
funding, intellectual property enabled by the funding, student/postdoctoral training ena-
bled by the funding, impacts on the discipline and outside the discipline. Taken together,
these metrics can provide a qualitative measure of the grant, but it may be years before an
accurate measure can be made. There is an inherent time lag in achieving outputs after
dollars are allocated.

We propose a topic-based evaluation model, grouping publications by researcher-defined
topics and computing an equivalent h-index for an entire topic. This would alleviate the
time lag in the system by collecting publications on a topic and not just as a result of a
single grant. Using appropriate weight factors we would include citations, intellectual
property and follow on, such as news articles. This would enable multiple papers with
low-medium citations to be weighted more, thereby more accurately measuring a re-
searcher's contribution to a topic over a lifetime.
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To accomplish this, researchers would register with a publication-tracking service, e.g.,
Google Scholar.

Topic keywords or topic numbers would need to accompany publications in the profile so
that the publications can be grouped according to topic. We envision that faculty would
report such data to their Department Chairs annually. Tagging grants with data such as
number of graduate students being supported and number of degrees conferred will be
more time intensive. Over time, the data produced would be very valuable, so it is worth
investing in the effort up front. On the whole, we are moving forward; we are beginning
to understand how technology and metrics can help us perform better evaluations, but we
are still in the experimentation stage.

Data Mining and Neurocomputational Modeling in the Neurosciences
Kimberly Kirkpatrick, Professor, Department of Psychological Sciences, Kansas State
University

The era of "big data" and the increasing focus on analytics is impacting most scientific dis-
ciplines, including research in cognitive and behavioral neuroscience. The growth of
complexity of experimental data sets has led to the need for increased emphasis on data
reduction and data mining techniques. An important companion to data mining is neuro-
computational modeling, which is increasing in importance in the neurosciences.

Such techniques such as data mining and modeling require the use of technical computing
applications such as MATLAB, which can create barriers for incorporating students into
the research process. The present paper discusses the challenges faced in the big data era
of neuroscience and provides some ideas for tools than can promote success by research-
ers, and their students, in facing such challenges.

The overarching mission of modern behavioral and cognitive neuroscience research is to
pinpoint the neurobiological mechanisms of that underlie complex cognitive processes
and the resulting behaviors. Cognitive neuroscientists typically focus on studying human
populations, whereas behavioral neuroscientists typically focus on animal models of hu-
man behavior. There have been a number of exciting breakthroughs in the neurosciences
that have led to the expansion of the complexity and size of data sets that are now typical-
ly collected in experimental studies.

The growth of the collection of increasingly large and more complex data sets in the neu-
rosciences is leading to the need for the development of new tools to promote capabilities
for data mining. Technical languages such as MATLAB can serve as an excellent source
for developing customized scripts and functions, and these can be made accessible to stu-
dents involved in research through the use of GUISs.

The future of neuroscientific research would be greatly benefited by increased availability
of archived data for mining and computational modeling, increased sharing of tools for
analysis, and the development of standards for approaches to mining neuroscientific data.
An important companion to data mining is computational modeling, which provides a
means of understanding complex patterns in data.

Computational modeling is increasingly informed by neurobiology and this is leading to
increased developments in neurocomputational modeling, which explicitly incorporate
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neurobiological evidence in the development of process models of behavior. Here, too, the
use of technical computing languages coupled with GUIs can provide powerful tools for
model development and implementation.

What Does It Mean?
Susan Kemper, Roberts Distinguished Professor, Psychology, and Senior Scientist,

Gerontology, University of Kansas

The great promise of analytics is that benchmarking — faculty members, departments,
universities, - will lead to wise strategic decision-making. My question is “what does it
mean” to see “every variable in each academic discipline ...[and] national quartile, quin-
tile, decile, and vigintile summaries..” (Academic Analytics, 2013)?”

The real challenge is to move beyond descriptive analytics. Even comparative analytics
don’t really answer the right questions. The data and its visualization must be coupled
with an explanatory theory. Knowing how individual faculty members, departments, or
universities stack up on various metrics — those “quartile, quintile, decile, and vigintile”
comparisons - doesn’t really provide answers to how productivity can be enhanced or
sustained. And I think we are distracted by the logistics of compiling all this data and
generating the fancy graphics, apps, and visualizations.

At the 2001 Merrill Retreat on “evaluating research productivity,” I turned to some sage
advice from 1897: Cajal (1999) recognized 6 impediments to faculty productivity — what
he termed “diseases of the will: the dilettantes or contemplators; the erudite or biblio-
philes; the instrument addicts; the megalomaniacs; the misfits; and the theory builders (p.
75).”

Cajal cautions that independent judgment, intellectual curiosity, perseverance, and con-
centration are the keys to productivity. Beyond these prerequisites, Cajal emphasizes that
research productivity results from a “passion for reputation, for approval and applause,”
and a “taste for originality, the gratification associated with the act of discovery itself”.
These are the real determinates of faculty productivity. Analytics, no matter how aestheti-
cally plotted as “quartile, quintile, decile, and vigintile summaries” do not assess this
“passion for reputation” and this “taste for originality.” That’s what it means — to be pro-
ductive, to have an impact.

Research Analytics: Facilitating the use of metrics to improve the research profile
of academic programs
Rodolfo H. Torres, Associate Vice Chancellor, Research and Graduate Studies, University

of Kansas

The increase in external requirements of accountability faced by academic institutions and
the need to convey to diverse non-expert audiences the contributions that the research en-
terprise provides to society, make it important that we find simple ways to put in evi-
dence what we do.

Some data and tools are publically available and subject to scrutiny by the general public.
It is important that we conduct a serious analysis within our academic institutions to pro-
vide a solid understanding of what we can measure and what we cannot, to properly
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communicate to different audiences some true measures of research productivity and how
they demonstrate the achievements of our institutions of higher education.

The data sources and tools available today for quantitative analysis are sophisticated and
diverse. At KU, like at most research universities, we systematically track institutional da-
ta that relates to our programs scholarly productivity in different forms.

Despite the relatively easy access to tools and information, there are commonly-
encountered barriers that restrict a wider use of research analytics. The analysis of the da-
ta is sometimes complex and subject to misinterpretation. Equally important is the fact
that the type of data analysis needed can be extremely time-consuming. To mitigate some
of these barriers we are currently developing a “consulting service” model. Our goal is to
help academic programs to analyze the data.

Academic Analytics collects information on more than 30 different metrics of research
productivity. Using 15 of the metrics, which are typically “per faculty” counts meant to
account for different program sizes, a Faculty Scholarly Productivity Index (FSPI) is comput-
ed using z-scores for each metric and weights similar to those used by the last NRC study.
While the FSPI provides a snapshot number that could be used for a quick comparison
with peers, looking in more detail at the data on which the index is based is often a lot
more revealing. Understanding how the different metrics affect the program profile and
how they may relate to each other is of crucial importance.

A common need of programs in the current economic environment is the search for new
funding sources. The program market share tool of AA can be used to aid in this regard. The
analysis is limited to funding from Federal Agencies, which can present a quite incom-
plete picture in some disciplines, but it is still of value and shows potential opportunities
not tapped by a program. Such information could become very valuable for a program
trying to increase their external funding.

As imperfect as the current metrics and data may be, they still provide tremendous
amount of information that we did not have before. The key is to focus on what we can
tell from such metrics and data and what we cannot. A careful use of technology and the
availability of data could prove to be a big aid in the important engagement of our aca-
demic institutions in the planning and assessing of our research mission.

Research Excellence in the Era of Analytics: Considerations for Information Technology
Gary K. Allen, CIO, University of Missouri-Columbia; VP-IT, University of Missouri

System

The intended outcome of applying analytics to student and enrollment management data
is to identify students who are at risk and provide interventions to help retain the stu-
dents. Applying business intelligence tools to the task of helping students succeed is a
natural extension of data-driven guidance.

Successfully applying analytics to research and other faculty activities is likewise predi-
cated on clear and feasible outcomes. Application of analytics to the research enterprise
might well be as productive if focused on how to support researchers' data analytics activ-
ities rather than trying to measure a given faculty member’s research productivity.
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The quality of research activities is particularly difficult to measure. Clear, comprehensive
sets of relevant measures and approaches to compare those measures are not universally
agreed-upon and are currently unavailable. Several hundred research universities are cli-
ents of Academic Analytics, LLC. For a subset of scholarly disciplines, this group has de-
fined variables and will generate and manipulate structured data related to the productiv-
ity and quality of research. The primary data comparisons use the following data: (1) the
publication of scholarly work as books and journal articles, (2) citations to published jour-
nal articles (3) research funding by federal agencies, and (4) honorific awards bestowed
upon faculty members.

For the foreseeable future, institutions will face increasing pressure to assess and optimize
their research enterprises in response to diminished research grant funding, reduced fi-
nancial support from state and federal governments, and pressure from the general public
and university boards to limit increases in tuition revenues.

Analytics must be thoughtfully and carefully applied to higher education. To be accepted,
research analytics must be conceived and used as a mechanism for improvement. As
higher education struggles to balance openness and data security, identity management to
control access privileges and protect intellectual property will be increasingly critical.
Clearly intentional choices will be necessary to optimize an IT infrastructure that can be
sufficiently flexible and nimble to meet demands not yet known or fully understood.

To be worthwhile, research analytics must support planning and illuminate decisions. The
data being analyzed must be relevant to the question at hand and needs to be studied
within the context of the strategic decisions. Analytics cannot take the place of leadership.
While IT can contribute to a successful data analytics program, the technology is not what
is vital - rather it is the leadership and the ability to make difficult choices.

Student Training in the Era of Big Data Physics Research
Amit Chakrabarti, William and Joan Porter Professor and Head, Department of Physics,
Kansas State University

Availability of Big Data is having a major impact on research and student training in all
sub disciplines of physics. High Energy Physics and Cosmology are at the forefront of Big
Data Physics. How do we train undergraduate physics majors and graduate students in
this era of Big Data physics research? All physics students must be encouraged to view
physics as both a fundamental and foundational science that provides an effective back-
ground for a diversity of career paths. Many of the problems that will need to be solved in
the coming decades will occur on the interface between physics and related areas.

Of foremost importance is to train students in the physical models that have been so suc-
cessful in explaining Nature. This is essential to provide the students with Big Data inter-
pretation skill. Early involvement in research is a must. Research experience lets students
put to use theories they learn in class and acquaint themselves with the faculty, post-docs
and other students. These experiences help students make good career decisions, and in-
volvement in research is fun.

Another essential component of student training in this new era is the introduction of spe-
cialized computational skills early in their career. On one hand, this will teach them to
apply tailor-made computational algorithms based on understanding the specific physics
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of the problem at hand. On the other hand, introduction to Open Source and Visual pro-
gramming skills will help them with their career decisions. Training in both oral and writ-
ten technical communication skills and the ability to translate from Techie language to
English will be critical for success in a wide variety of situations.

Once new opportunities for physics faculty are identified, their research programs can be
broadened by systematically engaging companies in the research work. This will bring
industrial support to research and create a culture of solving practical problems. Such ex-
perience in “producing products” will have a profound impact on professors and students
equally. K-State will be a powerful economic driver for growth and development by gen-
erating new knowledge and producing graduates who will impact Kansas, the nation and
the world.

Finally, a brief discussion of assessment of student achievements in the Big Data era is
warranted. The K-State Physics Education Research Group is in the forefront of creating a
large database of nationally representative data with support from the American Associa-
tion of Physics Teachers and the National Science Foundation. Once the database is creat-
ed, faculty will be able to visualize and compare their students’ performance to huge na-
tional database of results from 50+ research-based assessment instruments.

Curriculum development and student training must be undertaken in view of these recent
developments. Topics on student training and Big Data Physics projects discussed here
are in the context of the physics department at Kansas State University. Their implica-
tions, however, go beyond the borders of one physics department or one University.
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