A fossil species of the primitive mymarid genus *Borneomymar* (Hymenoptera: Mymaridae) in Eocene Baltic amber

Michael S. Engel¹, Ryan C. McKellar¹,², & John T. Huber³

Abstract. A new fossil species of fairyfly (Hymenoptera: Chalcidoidea: Mymaridae) is described and figured from a well-preserved female in middle Eocene (Lutetian) Baltic amber as *Borneomymar pankowskiorum* Engel, McKellar, & Huber, new species. This species represents the fourth genus from Baltic amber whose extant species now occur only in southeastern Asia, Australia, and Madagascar.

INTRODUCTION

Like most Chalcidoidea, the fossil record of Mymaridae is scant. Huber & Greenwalt (2011) and Poinar & Huber (2011) reviewed the fossil taxa and illustrated the five known Cretaceous genera. Huber (2002) discussed extant taxa purported to occupy relatively basal positions within the family and proposed a hypothesis of their early diversification. *Borneomymar* Huber was placed almost at the base of the putative phylogeny. The genus is currently known from three species distributed from Malaysian Borneo (Sarawak and Sabah), Sulawesi (Indonesia), and northern Madagascar (Huber, 2002). Like several other extant genera of Mymaridae, species of *Borneomymar* have 5-segmented tarsi and an 8-segmented funicle. Based on recent discovery of the male,
one of the described species is almost certainly misplaced and will be removed from \textit{Borneomymar} (Huber, unpubl. data). The other two differ from the other basal genera by having the ovipositor greatly elongate and exserted beyond the apex of the gaster by more than twice the body length. The biology of species of \textit{Borneomymar} is unknown, but Huber (2002) speculated that they may be parasitoids of Orthoptera eggs oviposited deeply in plant tissue.

A specimen of \textit{Borneomymar} obtained from middle Eocene (Lutetian) Baltic amber is described here and compared to its closest living relative, from Madagascar. Some insight is also provided regarding the climate in the Baltic area of Europe that was likely prevalent during the Eocene.

\textbf{MATERIAL AND METHODS}

The extinct species described here is known from one specimen preserved in a light yellow piece of Baltic amber, relatively clear of debris and other inclusions. The amber piece was lightly ground and polished along one side to permit a clearer view of the specimen. Morphological terminology and descriptive details follow those of Huber (2002). Measurements were made with an ocular micrometer on an Olympus SZX-12 stereomicroscope and are given in µm. The extant species, \textit{Borneomymar madagascar} Huber, was photographed with a digital scanning camera attached to a microscope, and the resulting layers combined electronically using Zerene Stacker® and retouched as needed with Adobe® Photoshop. Institutional abbreviations include: AMNH, American Museum of Natural History, New York, New York, USA; CAS, California Academy of Sciences, San Francisco, California, USA; GMGD, Geowissenschaftliches Museum der Universität Göttingen, Göttingen, Germany; SEMC, Snow Entomology Museum Collection, Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas, USA; UCR, University of California, Riverside, Riverside, California, USA.

\textbf{SYSTEMATIC PALEONTOLOGY}

\textit{Genus Borneomymar} Huber

\textit{Borneomymar pankowskiorum} Engel, McKellar, & Huber, new species

\textbf{ZooBank: urn:lsid:zoobank.org:act:41C2B38E-DC7B-4BAA-A5D6-E6C590C7074D}

(Figs. 1–4)

\textbf{Diagnosis}: The new species (Figs 1–4) is most similar to the extant species \textit{B. madagascar} (Fig. 5). It differs by having the legs and scape–funicle segment 1 light brown (yellow in \textit{B. madagascar}) and proportionally shorter marginal setae (ratio of longest marginal setal length/maximum forewing width 0.57 for the fossil species, versus 0.76–0.86 in \textit{B. madagascar}). The new species differs from the extant species \textit{B. discus} Huber by its uniformly clear wings (distinctly patterned with brown in \textit{B. discus}) and shallower gaster (deeper, almost circular in \textit{B. discus}).

\textbf{Description}: ♀: Total body length (excluding ovipositor) 1010; exserted ovipositor ~2540; head length ~230; mesosomal length 430; metasomal length 490 (without hypopygium); forewing length 1040, width ca. 200 (angle precludes accurate width measurement); longest marginal setae 113; hind wing length 670, width ~30; antennal proportions (scape, pedicel, funicular articles, clava) 90, 50, 60, 80, 80, 80, 80, 70, 70, 70, 170; typical flagellar article width 30; width of apical clava 40.
Color (as preserved) apparently pale brown throughout, with slightly darker regions along dorsal surface of mesosoma; wings uniformly hyaline, without dark markings (Figs. 1–3). Head shape taphonomically distorted, with vertex sunken, but ocelli still visible and arranged approximately in equilateral triangle, with lateral ocellus separated from margin of compound eye by two or more ocellar diameters and all interocellar distances approximately 1.5 ocellar diameters; clypeus rounded and slightly protuberant; mandible narrow, apparently with two blunt teeth on apex (but visibility is poor); toruli within one torular diameter of transverse trabecula; radicle short, much less than one-half length of scape; scape expanded within apical half; pedicel slightly wider than funicular articles; funicle with eight articles of relatively uniform lengths; clava slightly longer than apical two funicle articles. Mesosoma with gentle dorsal convexity; pronotum about one-half length of mesoscutum; mesoscutum 140 long, with low dorsal convexity; mesoscutellum length 120, anteriorly with low dorsal convexity, frenum flat with fine, transverse, anteriorly convex frenal groove near mid-length of mesoscutellum; metanotum with dorsellum 70 long, rhomboidal, and nearly flat; propodeum without visible sculpture and with gradual declivity. Forewing membrane with microtrichia apparently uniformly distributed (difficult to be sure due to wing angle but figured as such in figure 4; there may well be regions of membrane that
are glabrous); venation extending 0.66× forewing length (venation length 690) (Figs. 3, 4); longest marginal setae 0.57× as long as greatest wing width. Metasoma with short petiole, and with total length slightly more than mesosoma; gaster height about 0.4× its length, terga of relatively equal lengths; posterior four terga bear short, inclined setae along posterior margins; hypopygium large, translucent, projecting distinctly beyond gastral apex (Figs. 1–3); ovipositor greatly elongate, much longer than twice entire body length (Figs. 1, 2, 4), without setae along exserted length.

♂: Unknown.

Holotype: ♀, SEMC F001019, middle Eocene (Lutetian), Baltic amber; fossil insect collection, Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas.

Etymology: The specific epithet is a patronym honoring the family of Mark Pankowski of Rockville, MD, who first recognized the significance of the specimen and made the acquisition of the holotype possible.
DISCUSSION

The new species is almost identical to the extant, basal mymarid B. madagascar (Fig. 5). The strong similarity in morphological details between these two species indicates that they are closely related, and supports interesting biogeographic implications, shared by other, unrelated taxa as well. Moreover, it demonstrates a remarkable degree of bradytely in a lineage of mymarids over a period of at least 45 million years. This morphological stasis suggests some degree of constancy in ecology and habits, perhaps even in terms of the clade of hosts, over a long duration of time and despite considerable climatic and geographic shifts (Simpson, 1944). Obviously, suitable biotic and abiotic conditions have persisted throughout this time, although their

Figure 4. Habitus drawing of holotype female (SEMC F001019) of Borneomymar pankowskiorum, new species.
geographic centers have shifted, and permitted the lineage to avoid strong selection for morphological change, or extinction. This same phenomenon is known in various groups of insects, some of more than twice the geological age (Engel & Grimaldi, 2002; Clarke & Chatzimanolis, 2009; Cognato & Grimaldi, 2009; Chatzimanolis et al., 2013). *Borneomymar pankowskiorum* represents the most primitive genus of extant Mymaridae that has been found in Tertiary deposits. No Cretaceous species of Mymaridae has yet been found in Tertiary deposits or vice versa.

The Eocene climate was the warmest of the Cenozoic and experienced the Paleocene-Eocene Thermal Maximum and Early Eocene Climatic Optimum, the latter comprising a nearly 200,000 year span of elevated global temperatures that began falling by the second half of the epoch. Regions that are cold temperate or even arctic today harbored rich tropical or subtropical floras and faunas (Engel, 2001; Archibald & Farrell, 2003; Grimaldi & Engel, 2005; Wappler & Denk, 2011; Wappler et al., 2013). The specimen of *Borneomymar* described above is the third or possibly the fourth mymarid

Figure 5. Habitus photographs of female of *Borneomymar madagascar* Huber, from Madagascar: Fianarantsoa, Massif de Andringitra (CAS); lower left inset shows entire specimen; the center of the compound eye is collapsed (scale bars = 500 µm). Top inset shows head, anterior view (scale bar = 100 µm).
ACKNOWLEDGEMENTS

We are deeply indebted to Mark Pankowski for recognizing the significance of the present specimen and for making its acquisition possible. Mark’s admirable dedication toward the advancement of paleoentomological studies is inspiring. We are further grateful to two anonymous reviewers for their comments on an earlier version of the manuscript, and to Jennifer Read for preparing the images of *B. madagascar* reproduced here. This is a contribution of the Division of Entomology, University of Kansas Natural History Museum.

REFERENCES

ZooBank: urn:lsid:zoobank.org:pub:2F0E6314-2167-41AB-94E0-0F1266E17CC4
Novitates Paleoentomologicae is an international, open access journal that seeks to disseminate the results of research conducted on fossil arthropods, particularly fossil insects, at the University of Kansas. The journal covers all aspects of fossil arthropod research including, but not limited to, comparative morphology, paleobiology, paleoecology, phylogenetics, systematics, taphonomy, and taxonomy.

Novitates Paleoentomologicae was established at the University of Kansas through the efforts of Michael S. Engel, Jaime Ortega-Blanco, and Ryan C. McKellar in 2013 and each article is published as its own number, with issues appearing online as soon as they are ready. Papers are composed using Microsoft Word® and Adobe InDesign® in Lawrence, Kansas, USA.

Editor-in-Chief
Michael S. Engel
University of Kansas

Assistant Editors
Ryan C. McKellar
University of Alberta
Jaime Ortega-Blanco
University of Kansas

Novitates Paleoentomologicae is registered in ZooBank (www.zoobank.org), archived at the University of Kansas and in Portico (www.portico.org), and printed on demand by Southwestern Oklahoma State University Press.

http://journals.ku.edu/paleoent
ISSN 2329-5880