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Facultative scavenging has gained some recognition as a
stabilizing force within ecological communities and is
thought to manifest in food webs as the number of scavenger-
carrion relationships increases (Wilson and Wolkovich 2011;
Beasley et al. 2019). Scavenger-carrion relationships are plen-
tiful within temperate forest communities (e.g., Wilmers et
al. 2003; Selva and Fortuna 2007; Gomo et al. 2020), but the
trophic linkages that are typically given the most attention by
research scientists are those existing between predators and
their prey. Although some anuran species are known to act as
facultative scavengers as larvae (e.g., Smith 2005; Street et al.
2013; Trivedi et al. 2018; Vazifdar et al. 2021), no such evi-
dence exists for Southern Leopard Frog (Rana sphenocephala
(= Lithobates sphenocephalus)) larvae.

Rana sphenocephala is a medium sized (maximum head-
body length = 127 mm) ranid native to the southeastern and
midwestern United States (Powell et al. 2016). This species is
a habitat generalist that occupies many types of water bodies
and remains active throughout most of the year (Tipton et
al. 2012). Rana sphenocephala larvae are generally considered
green algae feeders (Tipton et al. 2012; Dodd 2013) although
laboratory experiments indicate larvae have accepted other
foods that include lettuce, rabbit chow, and pelleted fish food
(Babbitt 2001; Sparling et al. 2006). Herein we provide what
is, to the best of our knowledge, the first report of R. spheno-
cephala larvae facultatively scavenging on a deceased vertebrate
in the wild; more specifically, on a Houston Toad, Bufo hous-
tonensis (= Anaxyrus houstonensis). We maintain recognition
of the generic names Bufo and Rana over the newer Anaxyrus
and Lithobates, respectively, for the sake of taxonomic stability
(Pauly et al. 2009) and to discourage paraphyletic groupings
(Yuan et al. 2016). Common names presented herein corre-
spond with the standard English names presented by Crother
(2017).

At 2343 h on 27 February 2021, while conducting an
anuran survey on a private ranch in Bastrop County, Texas,
USA, we observed four anuran larvae of identical appearance
scavenging on the carcass of an adult B. houstonensis (Fig. 1).
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This observation took place along the margin of a small pond
in a densely wooded forest patch (30.2162 N, 97.2418 W;
WGS 84). Although we are unaware of the exact cause of
death, the toad might have been killed by a mesocarnivore
(e.g., Schaaf 1970). After watching the larvae feed on the car-
cass for about one minute, we captured one of the larvae and
collected a small tail clip for genetic identification (stored in
95% ethanol), then released it. Although we suspected that
the observed larvae were R. sphenocephala, we felt that genetic
identification was warranted given the difficulty associated
with identifying anuran larvae in Texas based on morpho-
logical characters alone (Dixon 2013).

DNA was extracted from the tail clip using a Qiagen
DNeasy Blood and Tissue Kit following the manufactur-
er’s protocol. The mitochondrial gene cytochrome b (cytb)
was PCR-amplified using the primers BM1 (5-CCC CTG
AGA ATG ATATTT GTC CTC A-3) and BM2 (5-CCA
TCC AAC ATC TCA GCA TGA TGA AA-3’) (Meece et
al. 2005). PCR conditions included an initial denaturation
cycle of 94 °C for 3 min, and 40 subsequent cycles at 94
°C, 54 °C, and 72 °C for 1 min each. Success of the PCR
was assayed by gel electrophoresis and products were cleaned
using an ExoSAP-IT enzymatic protocol (Affymetrix). Clean
PCR products were cycle sequenced across 40 cycles, each
consisting of 20 sec at 96 °C, 20 sec at 50 °C, and 4 min at 60
°C. Cycle sequencing products were cleaned using CENTRI-
SEP spin columns (Princeton Separations) and underwent
capillary electrophoresis using an ABI PRISM 3500 XL
Genetic Analyzer.

Forward and reverse sequences were bidirectionally
aligned using MUSCLE (Edgar 2004) implemented in
Geneious v.8.1.9. The resulting consensus sequence was uti-
lized in a BLAST search of the NIH genetic sequence data-
base (GenBank) for initial taxonomic confirmation. Our
BLAST search revealed that the highest percentage identity
of the larva cytb sequence (307 bases total length; GenBank
OM128140.1) was 99.34% to a R. sphenocephala sequence
(GenBank KX269321.1).
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Fig. 1. Southern Leopard Frog (Rana sphenocephala [= Lithobates sphenocephalus]) larva scavenging on tissue from a Houston Toad (Bufo houstonensis [=

Anaxyrus houstonensis)) carcass (A); Rana sphenocephala larva in hand upon capture along with the B. houstonensis tissue it was scavenging (B); The bulk
of the B. houstonensis carcass located immediately adjacent to the tissue upon which the R. sphenocephala larva was scavenging (C); The anterior portion
of the B. houstonensis carcass with the following distinctive morphological characters exhibited: bean-shaped paratoid glands, thickened postocular cranial
crests, relatively reduced parietal crests, heavily tuberculated dorsal skin, and dorsal spotting that lacks clear borders (D). All photographs were taken on 27

February 2021 at the Griffith League Ranch in Bastrop County, Texas, USA (30.2162 N, 97.2418 W; WGS 84) by Lawrence G. Bassett.

We constructed a phylogeny of the resident anuran spe-
cies occurring on the Griffith League Ranch (Brown et al.
2011) to confirm the taxonomic identity of the scavenging
larva. We downloaded cytb sequence data from GenBank for
R. sphenocephala (n = 1) and known syntopic anuran taxa with
indirect development: the American Bullfrog (Rana catesbei-
ana (= Lithobates catesbeianus]) (n = 3), Hurter’s Spadefoot
(Scaphiopus hurterii) (n = 1), the Green Treefrog (Hyla cine-

rea) (n = 3), and the Gulf Coast Toad (Bufo nebulifer [=
Incilius nebulifer]) (n = 3). Cytochrome b sequence data for
some resident anuran taxa (e.g., Acris blanchardi [Blanchard’s
Cricket Frog], Hyla versicolor [Gray Treefrog], and B. hous-
tonensis) were unavailable. We substituted available cytb
sequences of Acris crepitans (Eastern Cricket Frog) (n = 3)
for A. blanchardi. A cytb sequence for Xenopus laevis (African
Clawed Frog), our chosen monophyletic outgroup (Hay et
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al. 1995; Gissi et al. 2006; Zhang et al. 2013), was likewise
downloaded from GenBank. All sequences were aligned with
the larva cytb sequence using the Geneious alignment tool
v.8.1.9 (Biomatters Ltd, 2013) with 65% similarity. The
resulting alignment was then manually trimmed to eliminate
hanging ends. Nucleotide substitution models were evalu-
ated with Bayesian information criteria (BIC) using MEGA
X v.10.2.6 (Kumar et al. 2018). The model with the low-
est BIC score was Hasegawa-Kishino-Yano (Hasegawa et
al. 1985) with a proportion of 0.58 invariant sites. We con-
ducted maximum likelihood phylogenetic analysis using
MEGA X v.10.2.6 with the aforementioned model param-
eters. Bootstrap values were estimated from a heuristic search
for 10,000 maximum likelihood iterations and the resulting
tree was rooted with the X. lzevis sequence data.

Our phylogenetic analysis placed the larval sequence as
sister to the reference R. sphenocephala sequence acquired
through GenBank with 100% bootstrap support (Fig. 2).
This clade was placed sister to another clade containing all
R. catesbeiana sequences (Fig. 2). Together, the results of our
BLAST search and phylogenetic analysis provide strong evi-
dence that the scavenging larvae were R. sphenocephala.

The consumption of carrion on behalf of R. sphenoceph-
ala larvae suggests that the larval diet of this taxon is broader
than previously described, reaching beyond the confines of
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strict algivory (Tipton et al. 2012; Dodd 2013). Anuran
larvae, in general, are often characterized as microphagous,
feeding on small organisms such as algae, bacteria, and pro-
tozoans (Stebbins and Cohen 1995). However, a growing
body of literature demonstrates that anuran larvae from a
diversity of families will consume carrion present in aquatic
environments (Smith 2005; Street et al. 2013; Alvarez et al.
2021). Continued research is needed to better understand
the breadth and composition of larval anuran diets, as well as
the frequency at which carnivory and facultative scavenging
occur. Continually reporting otherwise undescribed scaven-
ger-carrion relationships such as this is necessary for complete
food web characterization and enriches our collective under-
standing of nutrient cycling within relevant communities

(Beasley et al. 2019).
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Fig. 2. Cladogram of indirect-developing anurans known to inhabit the Griffith League Ranch in Bastrop County, Texas, USA, including the scavenging
tadpole. Eastern Cricket Frog (Acris crepitans) sequences were used in lieu of Blanchard’s Cricket Frog (Acris blanchardi) sequences due to an absence of
the latter on GenBank. GenBank accession numbers are provided in parentheses adjacent to each taxonomic unit. Cladogram produced from a boot-
strapped maximum likelihood analysis (replication = 10,000) of the mitochondrial cytochrome b gene. Analysis conducted in MEGA X v.10.2.6 using the

Hasegawa-Kishino-Yano model of nucleotide evolution. African Clawed Frog

(Xenopus laevis) was designated as a monophyletic outgroup. The number

adjacent to each node indicates the percentage of bootstrap replicates which generated a tree containing that node. Note that the tadpole scavenger forms a
monophyletic clade with the reference Southern Leopard Frog (Rana sphenocephala |= Lithobates sphenocephalus]) sequence.
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