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Bilaterally symmetric plans, a key feature of the vertebrate 
body plan, are symmetric under a reflection about the 

median axis (Stige et al. 2006; Klingenberg 2015). However, 
these structural and functional symmetries between left and 
right sides of the body are rarely perfect (Cocilovo et al. 2006; 
Stige et al. 2006; Hobbs et al. 2018). Asymmetric deviations 
include fluctuating asymmetry (FA) and directional asymme-
try (DA) (Stige et al. 2006; Bravi and Benítez 2013). Within 
a symmetrical structure, DA occurs when one side develops to 
a greater extent than the other, with most asymmetry in the 
same direction (Auffray et al. 1999). FA involves small and 
random deviations in symmetry, but with a variation nor-
mally distributed around a zero mean (Palmer and Strobeck 
2001; Tomkins and Kotiaho 2002; Stige et al. 2006). FA is 
usually thought to originate from random variation in the 
developmental processes and is therefore considered to be a 
component of within-individual variation (Klingenberg et al. 
2002; Stige et al. 2006). Because it is of non-genetic origin it 
has been widely used to detect developmental instabilities in 
individual quality (Auerbach and Ruff 2006; Angelopoulou 
et al. 2009; Costa et al. 2015), although genetic factors can 
modulate its expression (Stige et al. 2006; Palmer et al. 2010; 
Klingenberg 2015).

In turtles, the appendicular skeleton includes the pectoral 
and pelvic girdles. The pectoral girdle comprises two bones, 

the scapula, with an acromion process, and the coracoid 
(alternatively called the procoracoid), all forming a triradiate 
structure (Nagashima et al. 2013). The scapula is aligned dor-
soventrally and attaches to the carapace near the first thoracic 
vertebra. Ventrolaterally it forms part of the glenoid fossa, 
effectively the shoulder joint. The acromion process extends 
medially from each scapula to articulate with the entoplastron 
via ligaments. The coracoid forms the remainder of the gle-
noid fossa and extends medially. The majority of the abductor 
muscles attach to the coracoid processes and the acromial-
coracoid ligaments (Barone 1999).

Like most skeletal structures of turtles, the coracoid bones 
generally are assumed to be bilaterally symmetrical. The left-
right symmetry of the coracoid bones corresponds to match-
ing symmetry, which appears in situations where two sepa-
rate objects exist as mirror images of each other, as opposed 
to object symmetry, which refers to a single structure that is 
identical on both sides of a given or selected plane (Rohlf and 
Bookstein 1990).

Pondsliders, Trachemys scripta (Schoepff 1792) 
(Emydidae), are native to the central and southeastern United 
States and northern Mexico (Uetz et al. 2024, where they are 
among the most common turtles (Readel et al. 2008) and 
where they occupy a wide variety of habitats, including slow-
moving rivers, floodplain swamps, marshes, seasonal wet-
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lands, and permanent ponds (Readel et al. 2008; Wyneken 
et al. 2008). Pondsliders are very popular pets in Spain 
(Martínez-Silvestre et al. 2015). From 1983 to 1997, 500,000 
to 900,000 individuals were imported into Spain (Ministerio 
de Agricultura Alimentacion y Medio Ambiente 2010), where 
they have frequently been released into natural habitats.

Geometric morphometrics allows morphological varia-
tion to be depicted in a more integrative way than traditional 
multivariate methods (Claude et al. 2003). As the species has a 
negative impact on native pond turtle populations and more-
over can act as parasite and disease vector, released specimens 
are captured and legally euthanized (Ministerio de Agricultura 
Alimentacion y Medio Ambiente 2010). The main object of 
this study was to use a geometric morphometric approach to 
quantify for the first time the left-right symmetry of the cora-
coid in Pondsliders.

Materials and Methods
Specimen collection.—We obtained 42 dead adult Pondsliders 
(10 males and 32 females) from the Catalonian Reptile and 
Amphibian Rescue Center (CRARC). Sex was determined 
visually by size (females are larger), position of the cloaca and 
thickness and length of the tail (males have enlarged tails), and 
claws (males have elongated foreclaws) (Martínez-Silvestre et 
al. 2015; Readel et al. 2008). Corpses used in the study were 
from adult turtles without detectable abnormalities. Bones 
were manually obtained after the natural rotting of corpses.

Data collection and geometric morphometric analyses.—
Bones were labelled and levelled on a horizontal plane and 
photographed with a Nikon® D70 digital camera (image 
resolution 2,240 x 1,488 pixels) equipped with a Nikon AF 
Nikkor® 28–200 mm telephoto lens. The camera was placed 
parallel to the ground so the focal axis was parallel to the hori-

zontal plane and centered on each specimen. Pictures were 
digitized using tpsDig version 2.04 software (Rohlf 2015). 
We identified 14 paired two-dimensional (2D) landmarks 
(LMs; i.e., discrete and homologous loci in the space charac-
terized by their x- and y-coordinates) and 66 paired semiland-
marks (the latter outlining of medial and lateral curves of the 
bone) (Fig. 1). Semilandmarks were adjusted along the curve 
of the bone until they were in positions that most closely 
matched the reference configuration based on minimizing the 
Procrustes distance with tpsUtil version 1.70 software (Rohlf 
2015), creating new aligned coordinates that were analyzed 
along with LMs (Fig. 2). Landmarks and semilandmarks 
were digitized twice by the same person on different days to 
minimize measurement errors. The correlation between the 
Procrustes and tangent-shape distances was calculated using 
tpsSmall version 1.33 software (Rohlf 2015).

Figure 2. Procrustes superimposition of right (solid symbols) and left 
(open symbols) coracoids of Pondsliders (Trachemys scripta).

Figure 1. Image illustrating the set of seven landmarks (red symbols) 
and 33 semi-landmarks (yellow symbols) recorded on each coracoid of 
Pondsliders (Trachemys scripta). Photograph by Pere M. Parés-Casanova.
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Cartesian x-y coordinates were then extracted with a full 
Procrustes fit in order to remove information about position, 
orientation, and rotation. The Procrustes procedure allows 
the treatment of size and shape as two independent com-
ponents (Rohlf and Bookstein 1990; Bookstein 1991). Size 
was expressed as values of centroid size (CS: computed as 
the square root of the summed squared Euclidean distances 
from each landmark to the specimen centroid) (Bookstein 
1991). We then used Procrustes ANOVA to quantify the 
extent of asymmetric variation (Klingenberg et al. 2002). 
The coordinates of the superimposed right-left landmarks to 
assess asymmetry were in relation to individuals (symmetric 
component of variation), side (DA), their interaction (FA), 
and measurement error (ME) (Klingenberg and McIntyre 
1998). The ANOVA of shape variables tested whether FA 
was significantly larger than ME. This could be a serious 
issue because random ME can inflate the extent of variance. 
Since many statistical analyses are based on the amount of 
“explained” relative to “residual” variance, inflated variance 
from ME can result in a loss of statistical power. ME for size 
was tested with a Wilcoxon W paired test with individuals 
and number of digitizing sessions as factors.

Then we performed a multivariate regression of the 
Procrustes coordinates as shape variables on the log-trans-
formed CS values to analyze the allometric trends in each sex. 
Results are reported as a percentage value of the explained 
total shape variation from the size variation. No allometric 
effect (10,000 randomization rounds) was evident for sex. 
Canonical Variate Analysis (CVA) to compare sexes was done 
using Mahalanobis distance (Md). The Procrustes fit and 
most of the statistics were executed using MorphoJ software 
version 1.05 (Klingenberg 2011). For statistical analyses not 
incorporated into MorphoJ software, we used PAST version 

2.17c (Hammer et al. 2001). For all tests, statistical signifi-
cance was set at 5%.

Results
Variation of the specimens in shape space was perfectly cor-
related (r = 0.999998) with tangent space. This allowed the 
use of the plane approximation in ulterior statistical analyses 
and interpretation of results. Wilcoxon reflected similar sizes 
between replicas (W = 1828, p = 0.849). ANOVA showed no 
statistically significant in CS between configuration of right 
and left coracoids (Table 1). FA (individual × side interaction) 
exceeded ME more than twofold, so that estimates of FA were 
not compromised by ME. All other effects were much larger, 
and the effects of ME were therefore negligible (Table 1). 
DA (main effect of side) accounted for the bulk of variation 
(>95% of the total). This left-right asymmetry was larger in 
males (Md = 52.49; 10,000 randomization rounds) than in 
females (Md = 47.39) (Fig. 3), but allometry was not signifi-
cant for males (p = 0.350) or females (p = 0.479) (Fig. 4).

Table 1. Procrustes ANOVA tests performed for shape of the coracoid in 10 male (♂) and 32 female (♀) Pondsliders (Trachemys scripta). SS 
= sum of squares; MS = mean squares; DA = directional asymmetry; FA = fluctuating asymmetry; df = degrees of freedom. FA accounted for 
significantly more variance than error, exceeding it more than twofold so that the estimates of FA were not compromised. All other effects 
(DA and Individuals) were much larger, and the effects of measurement error were therefore negligible.

 Effect SS MS df F P

♂ Individual 0.15576310 0.00022772 684 1.19 0.013

 Side 0.74030729 0.00974088 76 50.72 < 0.0001

 Individual x side 0.13135762 0.00019204 684 4.38 < 0.0001

 Error 0.06667026 0.00004386 1520

♀ Individual 0.43006888 0.00018254 2356 1.55 < 0.0001

 Side 2.56736723 0.03378114 76 286.34 < 0.0001

 Individual x side 0.27795175 0.00011797 2356 2.05 < 0.0001

 Error 0.27967711 0.00005749 4864

Figure 3. Canonical Variate Analysis for coracoid shape of 42 (10 male 
and 32 female) Pondsliders (Trachemys scripta). The left-right asymmetry 
was greater in males than in females.
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Discussion
Our study used 2D geometric morphometric techniques to 
evaluate asymmetry between the left and right coracoids in 
adult T. scripta. Right coracoids were similar in size to their 
left counterparts, but we observed a large difference between 
left and right coracoid shapes, suggesting a presence of 
matched asymmetry and specifically directional asymmetry.

At this time, biological explanations of this pattern are 
purely speculative. Laterality results in a preferential asym-
metrical use of one side of the body for both sensory input 
and motor tasks, and it has been shown to exist across a wide 
range of species (Brown and Magat 2011; Byström et al. 
2020). Lateralities have been detected in turtles for social cog-
nition (Sovrano et al. 2018), kinematics (McCall 2014), and 
righting reflex (Domokos and Varkonyi 2008; Malashichev 
2016; Parés-Casanova et al. 2019).

In many species, male-male combat and male-male dis-
plays are initiated left side to left side (McCall 2014). In fact, 
in vertebrates, the right hemisphere appears to be dominant 
for controlling agonistic behavior and responses to potential 
threats, so the leftward bias would be stronger in measures 
of behavior involving aggression and reactivity (e.g., Austin 
and Rogers 2012). Without fixed or joint connections with 
other bony structures, compensatory mechanisms for limb 
lateralization will involve other structures, such as muscles. 
According to the principle of bone functional adaptation, 
bone modifies its strength in response to mechanical stress, so 
a bilateral mechanical asymmetrical loading will leave behind 
asymmetric skeletal elements. Consequently, unbalanced 
strength of adjacent muscles would result in an imbalance in 
the mechanical load of the limbs, and the unilateral prefer-
ence in muscle load would directly modulate external bone 
morphology. In other words, lateralized behavior can result 
in bone asymmetries and, if the magnitude of pectoral girdle 
shape depends on muscular activity, the lateralized function 
will affect left-right bone dimensions.

Females had more symmetrical coracoids than males. A 
possible scenario could involve intense male-male competi-

tion for mates, so male girdles would be more asymmetrical 
than those of females because males engage in increased kine-
matic activity for fighting. Moreover, turtle girdles in either 
sex do not become increasingly asymmetrical with age (as a 
proxy for size), thus reinforcing the functional scenario for 
explaining DA. However, part of the difficulty in making pre-
dictions on this variation stems from the paucity of studies 
examining growth patterns of bones in turtles.

In addition to a noticeable extent of DA, coracoid bones 
also exhibit FA. FA has been used as a measure of develop-
mental instability (de Coster et al. 2013), but since the right 
and left coracoids exhibit low levels of FA, its presence can be 
ascribed to random environmental factors rather than impli-
cating specific stressors, such as malnutrition, captive condi-
tions, or toxicity. Subclinical metabolic osteopathies (as we 
can assume improper diets of most animals kept as pets) can 
also be excluded. Moreover, Lajus et al. (2015) clearly stated 
that DA inflates FA.

The results of the present study support previous studies 
on turtle dynamic lateralization. An important future direc-
tion would be to study the possible correlation between asym-
metries of the girdles and muscular activity by objectively 
measuring the latter using electromyography, taking also 
into account any sex-related differences in the asymmetries 
of girdles.
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