

A Predation Attempt on a Three-spined Stickleback (*Gasterosteus aculeatus*) Fry by a Larval Santa Cruz Long-toed Salamander (*Ambystoma macrodactylum croceum*)

Leyna R. Stemle, Aidan E. O'Brien, Fabio L. Tarazona-Tubens, and Christopher A. Searcy

Department of Biology, University of Miami, 1301 Memorial Dr., Rm. 225, Coral Gables, Florida 33146, USA (leynastemle@hotmail.com)

The Santa Cruz Long-toed Salamander (SCLTS) (*Ambystoma macrodactylum croceum*) is an imperiled subspecies of mole salamander endemic to Santa Cruz and Monterey Counties, California, USA (USFWS 2019). These salamanders are thought to have generalist feeding habits, often consuming anything they can fit in their mouths (Ruth 1989). For SCLTS larvae, this includes plankton, small invertebrates like chironomids, and Pacific Chorus Frog tadpoles (Anderson 1968) and larvae also have been observed to be cannibalistic (R. Spranger, pers. comm.).

At 1748 h on 27 May 2024, we found a larval SCLTS (34 mm SVL, 70 mm TL, 2.1 g) attempting to consume a Three-spined Stickleback (*Gasterosteus aculeatus*) fry in Monterey County, California (Fig. 1) (GPS points withheld due to endangered status). At the time of capture, the salamander had consumed the entire fish except for the caudal fin. Despite repeated peristaltic motions, the salamander

seemed unable to ingest this last segment of the fish. To identify the prey and obtain both the salamander and fish measurements, we carefully removed the prey from the salamander's mouth. The fish (20 mm long, 3 mm wide, 0.08 g) was 3.8% of the salamander's body weight and 59% of its SVL. We do not know if the salamander would have been successful in its attempt to ingest its prey had we not caught it. The salamander was released in apparent good condition.

This observation is of note because normally the presence of fish has a negative influence on salamander presence and abundance (Kenison et al. 2016). Our observation documents that sufficiently large larvae might be able to ingest stickleback fry, which would be only the third documented vertebrate prey of a SCLTS (Anderson 1968). Axolotls (*Ambystoma mexicanum*), Two-toed Amphiumas (*Amphiuma means*), Eastern Hellbenders (*Cryptobranchus alleganiensis*), Neuse River Waterdogs (*Necturus lewisi*), and Mudpuppies (*Necturus*

Figure 1. A larval Santa Cruz Long-toed Salamander (*Ambystoma macrodactylum croceum*) eating a Three-spined Stickleback (*Gasterosteus aculeatus*) fry. Photographs by L.R. Stemle.

maculosus) consume fish as important components of their diets (Nickerson et al. 1983; Peterson et al. 1989; Zambrano et al. 2010; Mitchell 2013; Haines 2021). Additionally, Idaho Giant Salamanders (*Dicamptodon aterrimus*) are known to eat fish to some extent (Sepulveda et al. 2012). Other salamander species such as Spotted and Marbled Salamanders (*Ambystoma maculatum* and *A. opacum*) often are overambitious when consuming prey and might even overload gastric capacities (A.E. O'Brien, pers. obs.; Wright and Wittaker 2001). So, while some salamanders prey on fish, essentially all observations are in species that are substantially larger than larval SCLTS. Five of the six species that we found with records of fish predation are fully aquatic, and therefore are expected to encounter fish more frequently than SCLTS or even most other species of *Ambystoma*, which breed primarily in ephemeral, fishless bodies of water (Anderson 1967; Cook et al. 2023).

Although this predation attempt by a larval SCLTS was on a stickleback fry, adult sticklebacks are much larger and are possible predators of these endangered salamanders or their eggs (Burko 1975). The maximum size of larval SCLTS is ~45 mm SVL (Anderson 1967) compared to 65 mm standard length (tip of the nose to the base of the tail) for adult sticklebacks (DeFaveri and Merilä, 2013).

Acknowledgements

Funding and/or in-kind support was provided by a USFWS/CDFW Section 6 grant (G# Q2180110), NSF GRFP, University of Miami Kushlan Fund, and the University of Miami. This field-work was performed under the auspices of University of Miami IACUC protocol number 20-040-ad02. Permits were provided by USFWS PER0036012-1 and TE-108507 (FWSVFWO-24), and CDFW S-192880001-19290-001.

Literature Cited

Anderson, J.D. 1967. A comparison of the life histories of coastal and montane populations of *Ambystoma macrodactylum* in California. *American Midland Naturalist* 1967: 323–355. <https://doi.org/10.2307/2423346>.

Anderson, J.D. 1968. A comparison of the food habits of *Ambystoma macrodactylum sigillatum*, *Ambystoma macrodactylum croceum*, and *Ambystoma tigrinum californiense*. *Herpetologica* 24: 273–284.

Burko, T. 1975. *Size-selective Predation by the Threespine Stickleback*. Unpublished MSc. Thesis, University of British Columbia, Vancouver, British Columbia, Canada. <https://doi.org/10.14288/1.0093468>.

Cook, D.G., L.R. Stemle, D.L. Stokes, A.F. Messerman, J.A. Meisler, and C.A. Searcy. 2023. Habitat value of constructed breeding pools for the endangered Sonoma population of California tiger salamander. *The Journal of Wildlife Management* 87: e22370. <http://dx.doi.org/10.1002/jwmg.22370>.

DeFaveri, J. and J. Merilä. 2013. Variation in age and size in Fennoscandian three-spined sticklebacks (*Gasterosteus aculeatus*). *PLoS One* 8: e80866. <https://doi.org/10.1371/journal.pone.0080866>.

Haines, A.M. 2021. Common Mudpuppy (*Necturus maculosus* (Rafinesque, 1818)) in western New York: A seasonal comparison of diet, body condition, and capture methods. *Journal of Herpetology* 56: 324–335. <https://doi.org/10.1670/20-141>.

Kenison, E.K., A.R. Litt, D.S. Pilliod, and T.E. McMahon. 2016. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (*Ambystoma macrodactylum*). *Canadian Journal of Zoology* 94: 243–249. <http://dx.doi.org/10.1139/cjz-2015-0160>.

Mitchell, J.C. 2013. Body size and diet of *Amphiuma means* (Caudata: Amphiumidae) from southeastern Virginia. *Journal of the North Carolina Academy of Science* 129: 66–68. <https://doi.org/10.7572/2167-5880-129.2.66>.

Nickerson, M.A., R.E. Ashton, Jr., and A.L. Braswell. 1983. Lampreys in the diet of hellbender *Cryptobranchus alleganiensis* (Daudin) and the Neuse River water-dog *Necturus lewisi* (Brimley). *Herpetological Review* 14: 10.

Peterson, C.L., J.W. Reed, and R.F. Wilkinson. 1989. Seasonal food habits of *Cryptobranchus alleganiensis* (Caudata: Cryptobranchidae). *The Southwestern Naturalist* 34: 438–441. <https://doi.org/10.2307/3672180>.

Ruth, S.B. 1989. Seaside Uplands Santa Cruz long-toed salamander study. Unpublished report, Science and Research Consulting Services. Marina, California, USA.

Sepulveda, A.J., W.H. Lowe, and P.P. Marra. 2012. Using stable isotopes to test for trophic niche partitioning: a case study with stream salamanders and fish. *Freshwater Biology* 57: 1399–1409. <https://doi.org/10.1111/j.1365-2427.2012.02800>.

USFWS (U.S. Fish and Wildlife Service). 2019. Santa Cruz long-toed salamander (*Ambystoma macrodactylum croceum*), 5-year review: Summary and evaluation. U.S. Fish and Wildlife Service, Washington, D.C., USA.

Wright, K.M. and B.R. Whittaker (eds.). 2001. *Amphibian Medicine and Captive Husbandry*. Krieger Publishing Co., Malabar, Florida, USA.

Zambrano, L., E. Valiente, and M.J. Vander Zanden. 2010. Food web overlap among native axolotl (*Ambystoma mexicanum*) and two exotic fishes: carp (*Cyprinus carpio*) and tilapia (*Oreochromis niloticus*) in Xochimilco, Mexico City. *Biological Invasions* 12: 3061–3069. <https://doi.org/10.1007/s10530-010-9697-8>.