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In nearly all animals, environmental pressures like food 
availability, competition, predation, climate, and disease 

drive resource-allocation trade-offs, which influence repro-
duction and survival, especially in females (Caracalas et al. 
2021). The environmental conditions a female experiences 
can result in maternal effects that influence the phenotypes of 
offspring (Marks et al. 2023). These can manifest as changes 
in offspring sex ratios, brood size, or hatchling size that can 
affect the offsprings’ survival or fitness (Marks et al. 2023; 
Caracalas et al. 2021).

Lizards employ varying reproductive strategies deter-
mined by their environments. When fewer resources are 
available, females might prioritize extending their lifespan and 
at least temporarily forego reproduction (Marks et al. 2023; 
Griesser et al. 2017; Caracalas et al. 2021). Alternatively, 
when fewer food resources are available, females might invest 
more energy into the size of a few individual eggs to maximize 
the success of each offspring (Cruz-Elizalde et al. 2023; Marks 
et al. 2023; Caracalas et al. 2021).

Predation also is a driving force behind reproductive 
trade-offs. It can force an animal to invest energy into mecha-
nisms that support locomotor capacities, like sprinting (Marks 
et al. 2023). Energetic investments into foraging and sprinting 
can force a trade-off in females between optimal anti-predator 
strategies or allocating more resources to offspring (Marks et 
al. 2023). Increasing muscle size is especially costly, and it can 
limit the resources a female can allocate to production of eggs. 

Also, the physical burden of a clutch reduces running speed 
and endurance (Cox et al. 2022).

Caudal autotomy is a predator-evasion tactic that involves 
self-amputation of the tail and, in some species, subsequent 
regeneration (Clause and Capaldi 2006; Barr et al. 2021). It 
allows a lizard to shed its tail when grasped by a predator and 
diverts the predator’s attention from the more vulnerable body 
because the amputated tail often is capable of rapid movements, 
giving the lizard an opportunity to escape (Brown et al. 1995; 
Clause and Capaldi 2006). However, tail loss can be physically, 
socially, and energetically costly. Varying among species, lizards’ 
tails play valuable roles in survival, fighting, locomotion, mate 
acquisition, and signaling. Additionally, the loss of a tail may 
result in decreased growth rates, loss of lipid energy reserves, and 
decreased reproductive capacity (Brown et al. 1995).

The Northern Curly-tailed Lizard (Leiocephalus carina-
tus armouri) employs caudal autotomy and exhibits vertical 
tail-curling behavior for reasons that include interactions 
with potential predators. Tail-curling can be used as a pur-
suit-deterrent to signal to a predator that it has been spotted, 
or to deflect attention to the tail, which can be autotomized 
(Cooper 2001; Kircher and Johnson 2017). Because the tail 
plays a larger role in predator evasion than in many lizards 
and because female curly-tailed lizards are much less likely to 
engage in intraspecific aggression than males (Knapp 2001), 
using broken tails as an indicator of predation pressure in 
females can be justified.
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Abstract.—The Northern Curly-tailed Lizard (Leiocephalus carinatus armouri) is invasive in Florida, where it has estab-
lished multiple populations. Like most animals, the species faces various environmental pressures, including predation, 
which influences reproductive strategies. To test the hypothesis that a correlation exists between predation rates on 
females and offspring-resource allocation, we examined specimens from 11 populations in Florida, assuming that those 
with broken tails had encountered a potential predator. To quantify offspring-resource allocation, we used the number 
of ovarian follicles in each female and the ratio of number to average size of the largest follicles. We predicted that those 
traits would differ between lizards with and without broken tails. We did not detect the expected correlation, suggesting 
that predation pressure did not affect the number or size of follicles. Consistent with other lizard species, we did find 
that larger body size was correlated with a greater number of follicles.
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Native to the Bahamas, L. carinatus armouri was first 
reported in 1940 in Palm Beach County, Florida, and has 
since expanded its range across the state (Weigl 1969; 
Thomason et al. 2020). We have a poor understanding of 
the species’ effects on native ecosystems; however, decreased 
numbers and shifts in microhabitats in Cuban Brown Anoles 
(Anolis sagrei) are evident wherever L. carinatus armouri is 
active (Smith and Engeman 2004), leading to speculation 
that native lizard populations might also be affected by L. 
carinatus armouri.

In one study, predation of juvenile L. carinatus armouri 
in South Florida was greater than that of adults (Meshaka et 
al. 2006), causing the authors to suggest that this selects for 
single clutches of large eggs and rapid growth of hatchlings 
to maturity. However, juvenile-focused predation also could 
select for greater numbers of offspring or clutches to increase 
chances of at least some juveniles surviving.

In this study we asked if maternal investment is related to 
predation pressure in South Florida populations of Northern 
Curly-tailed Lizards (Leiocephalus carinatus armouri) and 
sought to identify a trade-off between the energy spent on 
predator evasion and maternal investment.

Methods
We collected female L. carinatus armouri from 11 popula-
tions in South Florida in June and July of 2018–2019. Sites 
were selected based on previous sightings and from reported 
locations on EDDmapS (2024), a web-based mapping sys-
tem for documenting invasive species and pest distribution. 
We captured lizards using a noose tied to an extendable 
pole or glue board placed on the ground for about an hour 
at a time and constantly monitored. Lizards caught on glue 
boards were removed immediately. Lizards were euthanized 
and dissected under regulations outlined by the University 
of Florida Institutional Animal Care and Use Committee 
(#201709774) and permits issued by the Florida Fish and 
Wildlife Conservation Commission (EXOT-18-30) and 
Everglades National Park (EVER-2018-SCI-0036).

For broken tails, which are easily discernable even on 
regenerated tails, we measured the distance from the cloa-
cal aperture to the break. To measure offspring investment, 
we examined clutch or brood size, the main variables used to 
assess reproductive trade-offs in egg-laying species (Griesser et 
al. 2017). Due to individual variation in ovarian cycles, only 
a few females had shelled eggs. Instead, as maturing follicles 
are present in all sexually mature females, we used the size 
and number of ovarian follicles to estimate potential mater-
nal investment. Because follicles increase in size throughout 
the ovarian cycle (Meshaka et al. 2006; Silva et al. 2018), 
we counted and measured the largest size class of follicles in 
each ovary. For each female, we counted the total number of 
largest-size follicles and measured their diameters.

We created a compound variable that was a ratio of fol-
licle number to follicle size to represent relative within-clutch 
investment. For example, five large follicles averaging 2 mm 
in diameter would result in a value of 2.5. Considering both 
numbers and sizes in one variable reduced the bias from the 
natural changes in the ovarian cycle and is the most informa-
tive way of determining whether selection favors numerous 
small offspring or fewer large offspring. We used Analysis 
of Variance (ANOVA) to determine if a correlation existed 
between broken tails and the number and size of follicles to 
test the predictions that the number and the ratio of number 
to size of follicles would differ between individuals with and 
without broken tails. Additionally, because body size could 
affect the trade-off between survival and reproduction, thus 
becoming a confounding variable in this study since females 
with greater body mass could invest in larger follicles, larger 
clutches, or suffer higher predation rates (Caracalas et al. 
2021), we used SVL as a covariate in our ANOVA tests.

Results
We found no statistically significant interactions between the 
ratio of follicle number to size and lizards with broken tails 
(F1, 141 = 0.4198, p = 0.5181), between female SVL and num-
ber of broken tails (F1, 141 = 0.6500, p = 0.4215), or between 
SVL and the ratio of follicle number to size (F1, 141 = 1.1737, 
p = 0.2805). We did find a positive correlation between the 
number of largest follicles and SVL (F1, 141 = 16.3670, p = 
8.56e-05). However, this relationship did not differ between 
lizards with and without broken tails (F1, 141 = 0.0934, p = 
0.7604).

Discussion
Numbers and sizes of follicles did not differ significantly 
between female lizards that had encountered predators and 
those that had not (Fig. 1), causing us to reject our hypoth-
esis that predation rate was correlated with maternal invest-
ment. However, our methods considered only those lizards 
that survived encounters with broken tails, which created a 
survivorship bias. Also, because our data were obtained from 
preserved specimens (albeit wild-caught), we were unable to 
evaluate environmental variables (e.g., availability and quality 
of cover) across collection sites. In addition, because Northern 
Curly-tailed Lizards can undergo autotomy and regeneration 
several times in a lifetime (N. Claunch, pers. obs.), we could 
not determine when and how frequently autotomy occurred 
in each individual and, consequently, our metric could 
have underestimated predation pressure. Finally, accidents 
and intraspecific aggression, although less common among 
females, also could result in broken tails, which skews our data 
on predation pressure. Future studies on this subject might 
benefit by manipulating environmental conditions prior to 
reproduction and examining eggs and offspring phenotypes 
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from different maternal environments under controlled con-
ditions (e.g., Griesser et al. 2017).

In several families of lizards and even in species that 
range across climactic zones and employ different reproduc-
tive strategies, body sizes of mature females and clutch sizes 
exhibit a linear relationship (Tinkle et al. 1970). Our results 
indicated that this also is the case for L. carinatus armouri 
in South Florida, in which the number of largest follicles 
increased with SVL (Fig. 2).

We did not detect a significant correlation between SVL 
and broken tails, indicating that body size in surviving females 
did not affect apparent predation pressure. Although Meshaka 
et al. (2006) observed a high rate of predation on juvenile L. 
carinatus armouri in South Florida, few studies address size-
selective predation. Some predators appear to selectively prey 
on smaller individuals; for instance, Kookaburras (Dacelo 
novaeguineae) feed mainly on subadult Highland Water 
Skinks (Eulamprus tympanum) (Blomberg and Shine 2000). 
Others, like Small-Eyed Snakes (Cryptophis nigrescens), con-
sume large and small skinks in approximately equal numbers 
(Downes 2002). Selective predation could be attributable to 
active choice by the predator, differential prey vulnerability, 
or both (Downes 2002). Assuming that the presence of bro-
ken tails is an accurate measure of predation pressure, the lack 
of a significant correlation between SVL and broken tails sug-
gests that mature females of different sizes are equally vulner-
able to predators, at least in South Florida.

Our findings indicated that energy invested by female 
L. carinatus armouri in predator evasion did not result in a 
decrease in offspring resource allocation. This might be one 
reason for this invasive species’ success in South Florida and 
could imply that these populations might be resilient to 
removal tactics should eradication or removal efforts occur. 
Also, because Northern Curly-tailed Lizard habitat in South 
Florida has been dramatically altered by human activities, 

studies in more natural habitats in their native island range 
could yield different results.
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