

First Record of a Melanistic Andaman Krait (*Bungarus andamanensis*) in Chidiya Tapu, Andaman and Nicobar Islands, India

Nariman Vazifdar¹ and Monowar Alam Khalid²

¹Independent Researcher, Mumbai, India (narimanvazifdar@gmail.com)

²Integral University Lucknow, Lucknow, India

The Andaman Krait (*Bungarus andamanensis*), an Andaman Island endemic, is a nocturnal and secretive venomous species found in a variety of natural and human-altered habitats, where it preys primarily on other snakes (Whitaker and Captain 2004). Its distinctive appearance is characterized by its glossy black to brown dorsum marked by 39–47 white or yellowish bands that encircle its body at

Figure 1. A typical Andaman Krait (*Bungarus andamanensis*) (top) and a melanistic individual (bottom) from Chidiya Tapu, Andaman and Nicobar Islands, India. Photographs by Nariman Vazifdar.

regular intervals (Whitaker and Captain 2004) (Fig. 1). We herein report a recent sighting of a melanistic individual (Fig. 1) from Chidiya Tapu, Andaman and Nicobar Islands, India.

At 2130 h on 13 April 2024, NV encountered a large black snake (~90 cm total length) along a forest trail near a freshwater pond in the vicinity of Chidiya Tapu, South Andamans. Based on the characteristic and distinctive hexagonal vertebral scales (Gopalkrishnakone and Chou 1990), it was clearly a species of *Bungarus*. Its most striking feature, however, was the near-total absence of the typical white or yellow bands that are otherwise characteristic of Andaman Kraits. The snake's uniform dark color suggests it was a melanistic *Bungarus andamanensis*.

To the best of our knowledge, this is the first record of a melanistic *Bungarus andamanensis*. Melanism (i.e., hyperpigmentation of melanin; Borteiro et al. 2021) has been documented in many species, including reptiles (e.g., Gibson and Falls 1979; Lorioux et al. 2008; Jagar and Ostanek 2011), and King (1988) speculated that island populations could harbor more melanistic individuals due to the isolated nature of those populations and the resultant restrictions in gene flow.

Literature Cited

Borteiro, C., A.D. Abegg, F.H. Oda, D. Cardozo, F. Kolenc, I. Etchandy, I. Bisai, C. Prigioni, and D. Baldo. 2021. Aberrant colourations in wild snakes: case study in Neotropical taxa and review of terminology. *Salamandra* 57: 124–138.

Gibson, A.R. and J.B. Falls. 1979. Thermal biology of the common garter snake *Thamnophis sirtalis* (L.). II. The effects of melanism. *Oecologia* 43: 99–109. <https://doi.org/10.1007/BF00346675>.

Gopalkrishnakone, P. and L.M. Chou. 1990. *Snakes of Medical Importance: Asia-Pacific Region*. Singapore University Press, National University of Singapore, Singapore.

Jagar, T. and E. Ostanek. 2011. First record of a melanistic Dalmatian *Algyrodes* (*Algyrodes nigropunctatus*) in Slovenia. *Natura Sloveniae* 13: 59–60.

King, R.B. 1988. Polymorphic populations of the garter snake *Thamnophis sirtalis* near Lake Erie. *Herpetologica* 44: 451–458.

Lorioux, S., X. Bonnet, F. Brischoux, and M. De Crignis. 2008. Is melanism adaptive in sea kraits? *Amphibia-Reptilia* 29: 1–5.

Whitaker, R. and A. Captain. 2004. *Snakes of India: The Field Guide*. Draco Books, Chennai, India.