

A Megarian Banded Centipede (*Scolopendra cingulata*) Preying on a Juvenile Ocellated Skink (*Chalcides ocellatus*) in Cyprus

Daniel Jestrzemski¹ and George Pishili²

¹Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
(danjetski@gmx.de [corresponding author]; ORCID: 0000-0003-0652-3016)

²European University Cyprus, Nicosia, Cyprus (giorgospishili@gmail.com; ORCID: 0009-0006-9064-9015)

Worldwide, predacious invertebrates play important roles in shaping populations of small vertebrates and can indirectly affect other wildlife as well (McCormick and Polis 1982; Nordberg et al. 2018; von May et al. 2019; Valdez 2020; Halpin et al. 2021). Several studies indicate that arthropods prey on vertebrates far more often than previously assumed (e.g., McCormick and Polis 1982; von May et al. 2019; Valdez 2020; Emery et al. 2021; Nyffeler and Gibbons 2022). Consequently, a better understanding of the natural history and feeding ecology of large predatory arthropods, as well as recognition of their predator-prey interactions with vertebrates, is critical for understanding how arthropods can shape vertebrate populations and communities (Nordberg et al. 2018; Valdez 2020). Centipedes in the family Scolopendridae, generalist predators and among the largest terrestrial venomous arthropods, prey on a wide range of invertebrates and even overpower and consume small vertebrates such as amphibians, reptiles, seabird chicks, and small mammals (McCormick and Polis 1982; Molinari et al. 2005; Lewis 2009; Goessling et al. 2012; Nordberg et al. 2018; Valdez 2020; Halpin et al. 2021). Most cases of predation

by giant centipedes on vertebrates have been observed in the tropics but few reports are known for Europe (e.g., Zimic and Jelic 2014). Scolopendromorph centipedes possess potent neurotoxins, which they inject with their powerful forcipules (Dugon and Arthur 2012), using it for predation as well as defense.

The Megarian Banded Centipede (*Scolopendra cingulata*) (Fig. 1), Europe's most common and largest (maximum body length > 150 mm) species of scolopendromorph centipede, has a distribution ranging from the Mediterranean to the Black Sea and into Russia (Simaikis et al. 2011, 2012). Consuming a wide range of arthropods and even small vertebrates, this nocturnal hunter is a top terrestrial invertebrate predator (e.g., Deimezis-Tsikoutas et al. 2020).

Most extant reptiles are carnivorous, and numerous species of lizards, snakes and turtles include arthropods in their diet (e.g., Georges 1982; Hardy and Crnkoovic 2006; Mizsei et al. 2019). The Ocellated Skink (*Chalcides ocellatus*) (Fig. 2) ranges from North Africa (including the Sahara Desert) and the southern Mediterranean to the Arabian Peninsula and into Pakistan. In Cyprus, it reaches a total length of 155 mm,

Figure 1. An adult Megarian Banded Centipede (*Scolopendra cingulata*) (12.0 cm body length fully stretched; 4.3 g body mass) from Skoulli Village, Cyprus. Photograph by D. Jestrzemski.

Figure 2. An adult Ocellated Skink (*Chalcides ocellatus*) (~15 cm SVL) from Geri Town, Cyprus. Photograph by George Constantinou.

with a maximum reported snout-vent length of 87.3 mm, and is commonly found in sandy areas and grassy lowlands with bushes and scattered stones, as well as in anthropogenically disturbed areas such as in rubbish sites (Osenegg 1989; Baier et al. 2013). Ocellated Skinks are nocturnal and primarily feed on insects (Carretero et al. 2010; Baier et al. 2013).

Case Study

We herein report for the first time the predation of *Scolopendra cingulata* on *Chalcides ocellatus* on 27 October 2017 at ~1500 h in scrubland habitat (phrygana) near Moni Village, Limassol District, Cyprus. When flipping a rock

Figure 3. A large adult Megarian Banded Centipede (*Scolopendra cingulata*) preying on a juvenile Ocellated Skink (*Chalcides ocellatus*) near Moni Village, Limassol, Cyprus. Note the centipede's legs grasping the lizard's body. Photograph by G. Pishilis.

(diameter ~ 40 cm), GP observed a large Megarian Banded Centipede (estimated length at least 17 cm, including the hind legs) that had grasped a juvenile Ocellated Skink with its legs (Fig. 3). The skink was substantially smaller than the centipede. Neither predator nor prey was moving. The centipede had sunk its forcipules into the prey's body and blood was visible around the puncture wound. After about two minutes, GP left the scene. As the centipede had made no attempts to escape or relinquish its prey, it likely continued feeding on the skink.

Discussion

Reptilian predation by Scolopendra cingulata.—Predation of reptiles by Megarian Banded Centipedes is rarely documented. To the best of our knowledge, this is only the third published report of saurophagy by *S. cingulata*. In the two other instances, *S. cingulata* was observed feeding on a Sharp-snouted Rock Lizard (*Dalmatolacerta oxycephala*) in Croatia (Korčula Island) (Zimić and Jelić 2014) and on an Aegean Wall Lizard (*Podarcis erhardii*) in Greece (Andros Island) (Deimezis-Tsikoutas et al. 2020). In both cases, predation was considered more likely than scavenging, as the tail and extremities of one lizard were still moving weakly (Zimić and Jelić 2014), and the scales of the other lizard were glossy like those of a live animal, and its general condition still relatively good (Deimezis-Tsikoutas et al. 2020).

Notably, all three observations of saurophagy by *S. cingulata* occurred on islands. On the one hand, islands might intensify trophic interactions between small reptiles and scolopendromorph centipedes due to their physical constraints, limited availability of prey, and possible food shortages. Such conditions presumably require centipedes and small reptiles to share the same microhabitats (e.g., rocky crevices, concrete or rock slabs, woody debris) and the predators to tackle unusually large or dangerous prey, which increases their risk (Patharkar et al. 2022). Under these conditions, *S. cingulata* might more frequently prey on lizards. On the other hand, these interactions certainly also occur on the mainland, where the same microhabitats are found. Furthermore, very large *S. cingulata*, which are more likely to prey on reptiles than smaller centipedes, are not limited to islands (Simaiakis et al. 2011). For example, in mainland Greece, *S. cingulata* can attain a body length of 15 cm and a body mass of 10 g (Fig. 4). Thus, very large Megarian Banded Centipedes can attain the same weight as neonatal Cypriot Blunt-nosed Vipers (*Macrovipera lebetinus lebetinus*), Cyprus's largest and heaviest snake species (Jestrzemska and Kuzyakova 2018). Hence, in light of their impressive maximum size and relatively potent venom, we suspect that Megarian Banded Centipedes include a wide range of small Mediterranean lizards and snakes in their diet.

Although juvenile *C. ocellatus* are more likely to become prey of *S. cingulata* than the larger adults, an ontogenetic

Figure 4. An adult Megarian Banded Centipede (*Scolopendra cingulata*) of 15.0 cm body length (fully stretched) and 10.0 g body mass from Thrace, Greece, illustrating the large size to which these arthropodan predators can grow. The grid size is 1 cm. Photograph by D. Jestrzemski.

dietary shift (or cross-predation) can occur, with adult *C. ocellatus* feeding on *S. cingulata* (e.g., McCormick and Polis 1982). A comparable example is a large adult Aegean Wall Lizard (*Podarcis erhardii*) consuming a Megarian Banded Centipede in Greece (Andros Island) (Patharkar et al. 2022).

Lizard tolerance for centipede venom likely increases with body size, whereas the consumption of venomous prey (e.g., scolopendromorph centipedes) might have evolved as an anti-predator response, with nutrient gain a side benefit for lizards. Lizards living in sympatry with giant centipedes might have also developed a higher resistance against centipede venom (Patharkar et al. 2022).

Another predation event recorded on Golem Grad Island, Macedonia, involved a *S. cingulata* (body mass 4.8 grams) that had been devoured by a juvenile Nose-Horned Viper (*Vipera ammodytes*; body mass 4.2 grams) but had partly eaten its way out of the snake's body and thus killed its predator before succumbing (Arsovski et al. 2014). As *S. cingulata* is common prey of *V. ammodytes* (Clark 1967; Laing 2020) and other reptiles such as the Cypriot Whipsnake (*Hierophis cypriensis*) (Baier et al. 2013), situations might occur when centipedes kill (or even devour) reptilian predators in defense.

The influence of protective microhabitats and human-made structures.—Protective microhabitats are important, as they facilitate interactions between small reptiles and arthropod predators (Pike et al. 2010; Nordberg et al. 2018). Such structures are critical refuges for Ocellated Skinks and giant

centipedes, both of which are secluded and hidden during the day (Klingel 1960; Baier et al. 2013). As centipedes lack the waxy cuticle of insects and arachnids, they lose water more rapidly and are particularly dependent on moist microclimates and protection from sunlight (Barnes 1982). Hence, *S. cingulata* and *C. ocellatus* might encounter each other in protective microhabitat relatively frequently, suggesting that predatory interactions between these species are likely more common than generally thought. However, lizards can reduce the risk of centipede predation by avoiding habitats shared with the latter. Pike et al. (2010) found that centipedes (*Cormocephalus* sp.) and geckos (*Oedura lesueuri*) used rocks with similar structural features (size and thickness), but despite that overlap of suitable microhabitats rarely shared rocks in the field. In fact, the authors observed an ontogenetic shift in habitat selection by geckos in response to the presence of centipedes, with juvenile geckos preferring wide crevices without centipedes, whereas adults chose narrow crevices even if these contained centipedes. Yet, geckos of all life stages left crevices when centipedes were added, showing both size- and context-dependent antipredator behavior. *Chalcides ocellatus* also might avoid centipede predation by similar, possibly size-dependent shifts in anti-predator behavior.

Human-made structures entrapping small wildlife with or without purpose (e.g., animal enclosures, buildings) also can facilitate encounters between small herpetofauna and predaceous arthropods, thus increasing the predation risk for the former (e.g., Carpenter and Yoshida 1966; Lewis et al. 2010; Pomeroy et al. 2021). Moura et al. (2015) and Silva Vieira et al. (2021) reported two instances of giant centipedes preying on lizards in pitfall traps in the Brazilian Caatinga (Table 1). In the first case, a Spix's Whiptail (*Ameivula ocellifera*) (SVL 69.5 mm) was attacked and killed by a *Scolopendra* sp., whereas in the second encounter, a Naked-Toed Gecko (*Gymnodactylus geckoides*) (SVL 43 mm) was overpowered by a giant centipede (*S. viridicornis*) (156 mm total length).

Numerous other records document giant centipedes preying on reptiles and amphibians in tropical countries, where the body sizes of a number of scolopendromorph species exceed that of *S. cingulata* (e.g., Molinari et al. 2005). For example, tropical giant centipedes (*Scolopendra* spp.) have been observed overpowering snakes several times larger than themselves, including McClung's Philippine False Coral Snake (*Hemibungarus McClungi*) (Acuña et al. 2021), Baker's Cat-eyed Snake (*Leptodeira bakeri*) (Goessling et al. 2012; Van Buurt and Dilrosun 2017), and albeit unsuccessfully, attacking Malayan Kraits (*Bungarus candidus*) (Radcliffe et al. 2020).

Island studies of vertebrate predation by Scolopendra spp.—The ecological impact of giant centipede populations can be especially consequential on islands (Emery et al. 2021). For instance, the Phillip Island Centipede (*Cormocephalus*

Table 1: Literature records of centipedes (Arthropoda: Chilopoda) preying on lizards (Reptilia: Squamata).

Centipede species	Lizard species	Lizard family	Country and situation	Reference
<i>Cormocephalus</i> sp.	Velvet Gecko (<i>Oedura lesueuri</i>)	Diplodactylidae	Morton National Park, southeastern New South Wales, Australia.	Pike et al. 2010
<i>Cormocephalus</i> sp.	Copper-tailed Skink (<i>Ctenotus taeniolatus</i>)	Scincidae	Morton National Park, southeastern New South Wales, Australia.	Pike et al. 2010
<i>Heterostoma</i> sp. (cf. <i>Ethmostigmus</i> sp.)	Gecko (<i>Diplodactylus</i> sp.)	Diplodactylidae	Australia, about six miles from the town of Wilcannia on the Darling River, underneath a dead log, 18 September 1879.	Whittell 1883
<i>S. cingulata</i>	Sharp-snouted Rock Lizard (<i>Dalmatolacerta oxycephala</i>)	Lacertidae	Medvinjak on the island of Korčula (Croatia), 7 July 2014, diurnally.	Zimić and Jelić 2014
<i>S. cingulata</i>	Aegean Wall Lizard (<i>Podarcis erhardii</i>)	Lacertidae	Andros Island, Greece, 6 June 2019, around noon.	Deimezis-Tsikoutas et al. 2020
<i>S. cingulata</i>	Ocellated Skink (<i>Chalcides ocellatus</i>)	Scincidae	Cyprus, Limassol, Moni, 27 October 2017, around 1500 h afternoon.	This study
<i>S. dehaani</i>	Bowring's Supple Skink (<i>Lygosoma bowringii</i>)	Scincidae	Thailand, Nakhon Ratchasima, Suranaree University of Technology (SUT) campus, diurnal predation, 4 November 2018, 1621 h.	Hodges and Goodyear 2021
<i>S. gigantea</i>	Wiegmann's Striped Gecko (<i>Gonatodes vittatus</i>)	Sphaerodactylidae	Trinidad and Tobago, Chacachacare Island, in captivity.	Charles and Smith 2009
<i>S. morsitans</i>	Eyrean Earless Dragon (<i>Tymanocryptis tetraporophora</i>)	Agamidae	Australia, Central Queensland, 29 December 2023, 2320 h.	McFadden and McFadden 2025
<i>S. heros</i>	Common Chuckwalla (<i>Sauromalus ater</i>)	Iguanidae	Tinajas Altas Mountains, Arizona, USA, 9 September 2022, 1840 h.	Koleska et al. 2023
<i>S. subspinipes</i>	Asian House Gecko (<i>Hemidactylus frenatus</i>)	Gekkonidae	Australia, Christmas Island.	Emery et al. 2021
<i>S. subspinipes</i>	Blue-tailed Skink (<i>Cryptoblepharus egeriae</i>)	Scincidae	Australia, Christmas Island.	Emery et al. 2021
<i>S. subspinipes</i>	House Gecko (<i>Hemidactylus mercatorius</i>)	Gekkonidae	Ambila-Lemaitso, Madagascar, 3 January 2016, 2257 h.	Prötz et al. 2023
<i>S. valida</i>	Atlantic Lizard (<i>Gallotia atlantica</i>)	Lacertidae	Spain, Lanzarote (30 August 1985, 6 May 2005).	Hamilton et al. 2010
<i>S. viridornis</i>	Naked-toed Gecko (<i>Gymnodactylus geckoides</i>)	Phyllodactylidae	Fazenda Almas Private Natural Reserve in the Cariri western region, municipality of São José dos Cordeiros, Paraíba State, Northeastern Brazil, inside a pitfall trap, 10 May 2013, 0800 h.	Vieira et al. 2021
<i>Scolopendra</i> sp.	Spix's Whiptail (<i>Ameivulla ocellifera</i>)	Teiidae	Caatinga, at the Monumento Natural Grotto do Angico, municipality of Poço Redondo, state of Sergipe, Brazil, inside a pitfall trap, 21 February 2013, in the morning.	Moura et al. 2015
Unknown species of giant centipede (Scolopendridae)	Australian Native House Gecko (<i>Gehyra dubia</i>)	Gekkonidae	Australia, North Queensland, 23 August 2015, 2343 h.	Nordberg et al. 2018; E. Nordberg, pers. comm.

coynei) has evolved as a terrestrial top predator on the Norfolk Islands (Australia), with vertebrates making up nearly half of its diet (48%) on Phillip Island. The vertebrate content consisted of squamates (30.5%), seabird nestlings (*Pterodroma nigripennis*) (7.9%), and scavenged fish remains regurgitated by seabirds (9.6%), with annual nestling predation rates of up to 19.6% (3,724 individuals). This example emphasizes the potential of arthropod predators in altering the vertebrate reproductive output and modifying trophic structures and nutrient flow in island ecosystems (Halpin et al. 2021). When scolopendromorph centipedes are introduced on islands, they can also pose a threat to the survival of native reptilian species. Emery et al. (2021) found that the invasive centipede *S. subspinipes* acted as an opportunistic predator and intraguild competitor of the Blue-Tailed Skink (*Cryptoblepharus egeriae*) on Christmas Island (Australia). The authors also confirmed that, in addition to Blue-Tailed Skinks, *S. subspinipes* consumed Common Wolfsnakes (*Lycodon capucinus*) and the Common House Gecko (*Hemidactylus frenatus*). In the experiments, high densities of *S. subspinipes* reduced the survival of *C. egeriae* on the island by 44%. The authors further observed a significant reduction in body condition of skinks co-housed with *S. subspinipes*, as well as predator avoidance behaviors, which are energetically and physiologically costly, and negatively affect the survival of prey populations (Emery et al. 2021).

Arthropod predation on vertebrates: Relative frequency and scientific research.—Although centipede predation on vertebrates likely occurs more frequently than previously assumed, such encounters are rarely observed. In 500 hours of visual field surveys, Nordberg et al. (2018) recorded only a single case of centipede predation on vertebrates, namely a scolopendromorph (*Scolopendra* sp.) feeding on a native Australian House Gecko (*Gehyra dubia*). Their total of five cases of arthropods preying on vertebrates translated into only one recorded arthropod attack per 100 survey hours. However, invertebrate predators were responsible for 23.3% (wet season) and 6.8% (dry season) of all attacks on lizard models deployed for quantifying attack frequencies (Nordberg et al. 2018).

Despite numerous online and newspaper records of arthropods preying on vertebrates, these events are only occasionally documented in the scientific literature, with most published articles describing individual observations and appearing as natural history notes. The relative rarity of such articles and their scattered distribution give an impression of rarity of arthropod predation on vertebrates, which hinders the identification of patterns and the potential impact of these trophic relationships (Valdez 2020). Also, few studies have systematically investigated the frequency of arthropod predation on vertebrates or its ecological impacts on the latter (e.g., Pike et al. 2010; Nordberg et al. 2018; Emery et al. 2021).

Conclusions

We conclude that arthropod predation on vertebrates, as well as the natural history and ecology of predatory arthropod groups such as centipedes and spiders should be studied more frequently and with greater intensity by performing, for example, controlled experiments with manipulated predator and prey densities in mesocosms (Pike et al. 2010) or with models used to quantify attack frequencies (Nordberg et al. 2018). Also, new technologies such as stable isotope analysis or DNA extraction techniques can help to identify prey in fecal samples of predatory invertebrates, thus allowing for more precise dietary analyses and possibly revealing a greater frequency of vertebrate consumption by invertebrates than currently thought (Nordberg et al. 2018). Novel camera traps designed for sampling small vertebrates and large invertebrates also could be used to record trophic interactions between these groups (Hobbs and Brehme 2017). Finally, the anecdotal nature of numerous observations of invertebrate predation on vertebrates further underlines the value of citizen science in contributing natural history data to the current body of knowledge (e.g., Acuña et al. 2021).

Acknowledgements

We thank George Constantinou for sharing his photograph of an Ocellated Skink (*Chalcides ocellatus*) and the “Biodiversity of Cyprus” facebook group as a citizen-science platform for sharing natural history observations (<https://www.facebook.com/groups/630048507041816/>).

Literature Cited

Acuña, D., N. Isagani, and K.M. Pitogo. 2021. Predation on a McClung's Philippine False Coral Snake, *Hemibungarus McClungi* (Weigmann 1835), by a giant spiny centipede, *Scolopendra spinosissima* Kraepelin 1903, on Luzon Island, The Philippines. *Reptiles & Amphibians* 28: 417–419. <https://doi.org/10.17161/randa.v28i3.15782>.

Arsovski, D., R. Ajtić, A. Golubović, I. Trajčeska, S. Đorđević, M. Andelković, X. Bonnet, and L. Tomović. 2014. Two fangs good, a hundred legs better: juvenile viper devoured by an adult centipede it had ingested. *Ecologica Montenegrina* 1: 6–8. <https://doi.org/10.37828/em.2014.1.2>.

Baier, F., D.J. Sparrow, and H.J. Wiedl. 2013. *The Amphibians and Reptiles of Cyprus*. Edition Chimaira, Frankfurt am Main, Germany.

Barnes, R.D. 1982. *Invertebrate Zoology*. Holt-Saunders International, Philadelphia, Pennsylvania, USA.

Carpenter, C.C. and J.K. Yoshida. 1966. Predation on lizards by *Callisoma* (Coleoptera). *The Southwestern Naturalist* 11: 413–414.

Carretero, M.A., P. Lo Cascio, C. Corti, and S. Pasta. 2010. Sharing resources in a tiny Mediterranean island? Comparative diets of *Chalcides ocellatus* and *Podarcis filfolensis* in Lampione. *Bonn Zoological Bulletin* 57: 111–118.

Charles, S.P. and S. Smith. 2009. *Gonatodes vittatus* as prey of *Hemidactylus palaiichthus* and potential prey of *Scolopendra gigantea*. *Living World, Journal of the Trinidad and Tobago Field Naturalists' Club* 2009: 42–43.

Clark, R.J. 1967. Centipede in stomach of young *Vipera ammodytes meridionalis*. *Copeia* 1967: 224–224. <https://doi.org/10.2307/1442201>.

Deimezis-Tsikoutas, A., G. Kapsalas, and P. Pafilis. 2020. A rare case of saurophagy by *Scolopendra cingulata* (Chilopoda: Scolopendridae) in the central Aegean Archipelago: A role for insularity. *Zoology and Ecology* 30: 48–51. <https://doi.org/10.35513/21658005.2020.1.6>.

Dugon, M.M. and W. Arthur. 2012. Prey orientation and the role of venom availability in the predatory behaviour of the centipede *Scolopendra subspinipes mutilans* (Arthropoda: Chilopoda). *Journal of Insect Physiology* 58: 874–880. <https://doi.org/10.1016/j.jinsphys.2012.03.014>.

Emery, J.P., L.E. Valentine, Y. Hitchen, and N. Mitchell. 2021. Survival of an Extinct in the Wild skink from Christmas Island is reduced by an invasive centipede: implications for future reintroductions. *Biological Invasions* 23: 581–592. <https://doi.org/10.1007/s10530-020-02386-3>.

Georges, A. 1982. Diet of the Australian freshwater turtle *Emydura krefftii* (Chelonia: Chelidae), in an unproductive lentic environment. *Copeia* 1982: 331–336. <https://doi.org/10.2307/1444611>.

Goessling, J.M., W.I. Lutterschmidt, R.A. Odum, and H.K. Reinert. 2012. *Leptodeira bakeri* (Aruban Cat-eyed Snake). Predation. *Herpetological Review* 43: 345.

Halpin, L.R., D.I. Terrington, H.P. Jones, R. Mott, W.W. Wong, D.C. Dow, N. Carlile, and R.H. Clarke. 2021. Arthropod predation of vertebrates structures trophic dynamics in island ecosystems. *The American Naturalist* 198: 540–550. <https://doi.org/10.1086/715702>.

Hamilton, R., J.A. Mateo, C.N. Hernández-Acosta, and L.F. López-Jurado. 2016. Artrópodos depredadores del lagarto atlántico (*Gallotia atlantica*) en la isla de Lanzarote (Islas Canarias). *Boletín de la Asociación Herpetológica Española* 27: 56–58.

Hardy, L.M. and A.C. Crnkoovic. 2006. Diet of amphibians and reptiles from the Engare Ondare River Region of central Kenya, during the dry season. *African Journal of Herpetology* 55: 143–159. <https://doi.org/10.1080/21564574.2006.9635546>.

Hobbs, M.T. and C.S. Brehme. 2017. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates. *PLoS ONE* 12: e0185026. <https://doi.org/10.1371/journal.pone.0185026>.

Hodges, C.W. and J. Goodyear. 2021. Novel foraging behaviors of *Scolopendra dehaani* (Chilopoda: Scolopendridae) in Nakhon Ratchasima, Thailand. *International Journal of Tropical Insect Science* 41: 3257–3262. <https://doi.org/10.1007/s42690-021-00431-9>.

Jestrzemski, D. and I. Kuzyakova. 2018. Morphometric characteristics and seasonal proximity to water of the Cypriot blunt-nosed viper *Macrovipera lebetina lebetina* (Linnaeus, 1758). *Journal of Venomous Animals and Toxins including Tropical Diseases* 24: 42. <https://doi.org/10.1186/s40409-018-0175-6>.

Klingel, H. 1960. Vergleichende Verhaltensbiologie der Chilopoden *Scutigera coleoptrata* L. ("Spinnenassel") und *Scolopendra cingulata* Latreille (Skolopender). *Zeitschrift für Tierpsychologie* 17: 11–30. [https://doi.org/10.1111/j.1439-0310.1960.tb00191.x](https://doi.org/https://doi.org/10.1111/j.1439-0310.1960.tb00191.x).

Koleska, D., M. Ertner, P. Hammerschmid, O. Trávníček, T. Holer, and D. Souder. 2023. Predation record of a Common Chuckwalla, *Sauromalus ater* (Iguanidae), by a Giant Desert Centipede, *Scolopendra heros* (Scolopendridae). *Reptiles & Amphibians* 30: e18966. <https://doi.org/10.17161/randa.v30i1.18966>.

Laing, A.P. 2020. Observations on the diet of the nose-horned viper (*Vipera ammodytes*) in Greece. *Herpetological Bulletin* 153: 37–39. <https://doi.org/10.33256/HB153.3739>.

Lewis, J.G.E. 2009. The taxonomy and biology of the centipede *Scolopendra amazonica* in the Sudan. *Journal of Zoology* 149: 188–203. <https://doi.org/10.1111/j.1469-7998.1966.tb03893.x>.

Lewis, J.G.E., P. Daszak, C.G. Jones, J.D. Cottingham, E. Wenman, E., and A. Maljkovic. 2010. Field observations on three scolopendrid centipedes from Mauritius and Rodrigues (Indian Ocean) (Chilopoda: Scolopendromorpha). *International Journal of Myriapodology* 3: 123. <https://doi.org/10.1163/1875-25410X12578602960425>.

McCormick, S. and G.A. Polis. 1982. Arthropods that prey on vertebrates. *Biological Reviews* 57: 29–58. <https://doi.org/10.1111/j.1469-185X.1982.tb00363.x>.

McFadden, M.S. and J.M. McFadden. 2025. Predation of an adult Eyrean Earless Dragon, *Tymanocryptis tetraporophora* Lucas & Frost, 1895, by a Red-headed Centipede, *Scolopendra morsitans*, in Australia. *Herpetology Notes* 18: 221–223.

Mizsei, E., Z. Boros, Á. Lovas-Kiss, C. Szepesváry, M. Szabolcs, G. Rák, J. Ujszegi, Z. Gál, S. Lengyel, and G. Puskás. 2019. A trait-based framework for understanding predator-prey relationships: Trait matching between a specialist snake and its insect prey. *Functional Ecology* 33: 2354–2368. <https://doi.org/10.1111/1365-2435.13446>.

Molinari, J., E.E. Gutiérrez, A.A. de Ascencio, J.M. Nassar, A. Arends, and R.J. Márquez. 2005. Predation by giant centipedes, *Scolopendra gigantea*, on three species of bats in a Venezuelan cave. *Caribbean Journal of Science* 41: 340–346.

Moura, L.O.G., C.M.S. Machado, A.O. Silva, B.M. da Conceição, A.S. Ferreira, and R.G. Faria. 2015. Predation of *Ameivulla ocellifera* (Spix, 1825) (Squamata: Teiidae) by *Scolopendra* sp. *Herpetology Notes* 8: 389–391.

Nordberg, E.J., L. Edwards, and L., Schwarzkopf. 2018. Terrestrial invertebrates: An underestimated predator guild for small vertebrate groups. *Food Webs* 15: e00080. <https://doi.org/10.1016/j.fooweb.2018.e00080>.

Nyffeler, M. and J.W. Gibbons. 2022. Spiders feeding on vertebrates is more common and widespread than previously thought, geographically and taxonomically. *The Journal of Arachnology* 50: 121–134. <https://doi.org/10.1636/JoA-S-21-054>.

Osenege, K. 1989. Die Amphibien und Reptilien der Insel Zypern. Diploma Thesis, University of Bonn, Bonn, Germany.

Patharkar, T., L. Van Passel, and K.M. Brock. 2022. Eat or be eaten? An observation of *Podarcis erhardii* consuming *Scolopendra cingulata* from Andros Island, Cyclades, Greece. *Herpetozoa* 35: 209–212. <https://doi.org/10.3897/herpetozoa.35.e94006>.

Pike, D.A., B.M. Croak, J.K. Webb, and R. Shine. 2010. Context-dependent avoidance of predatory centipedes by nocturnal geckos (*Oedura lesuerii*). *Behaviour* 147: 397–412. <https://doi.org/10.1163/000579509X12578482408448>.

Pomeroy, J., G.P. Brown, G.J. Webb, and R. Shine. 2021. The fauna fights back: invasive Cane Toads killed by native centipedes in tropical Australia. *Australian Zoologist* 41: 738–742. <https://doi.org/10.7882/AZ.2021.002>.

Prötzel, D., L.O. Randriamanana, and F. Glaw. 2023. Invasive centipede (*Scolopendra subspinipes*) preying on a house gecko (*Hemidactylus mercatorius*) in eastern Madagascar. *Spixiana* 45: 276.

Radcliffe, C., B. Nadolski, P. Suwanwaree, and C.H. Barnes. 2020. *Bungarus candidus* (Malayan Krait). Predation attempt by centipede. *Herpetological Review* 51: 860–861.

Silva Vieira, W.L., M.B. Ribeiro Gonçalves, E. Rodrigues Morais, F.V. Macedo Júnior, and K. Silva Viera. 2021. Predation of naked-toed gecko, *Gymnodactylus geckoides* Spix, 1825 by giant centipede, *Scolopendra viridicornis* Newport, 1844 in northeastern Brazil (Squamata: Phyllodactylidae). *Herpetology Notes* 14: 671–673.

Simaiakis, S.M., S. Giokas, and Z. Korsós. 2011. Morphometric and meristic diversity of the species *Scolopendra cingulata* Latreille, 1829 (Chilopoda: Scolopendridae) in the Mediterranean region. *Zoologischer Anzeiger* 250: 67–79. <https://doi.org/10.1016/j.jcz.2010.11.006>.

Simaiakis, S.M., A. Dimopoulou, A. Mitrakos, M. Mylonas, and A. Parmakelis. 2012. The evolutionary history of the Mediterranean centipede *Scolopendra cingulata* (Latreille, 1829) (Chilopoda: Scolopendridae) across the Aegean Archipelago. *Biological Journal of the Linnean Society* 105: 507–521. <https://doi.org/10.1111/j.1095-8312.2011.01813.x>.

Valdez, J.W. 2020. Arthropods as vertebrate predators: A review of global patterns. *Global Ecology and Biogeography* 29: 1691–1703. <https://doi.org/10.1111/geb.13157>.

Van Buurt, G. and H. Dilrosun. 2017. Predation by an Amazonian Giant Centipede (*Scolopendra gigantea*) on a Baker's Cat-eyed Snake (*Leptodeira bakeri*). *Reptiles & Amphibians* 24: 127. <https://doi.org/10.17161/randa.v24i2.14166>.

von May, R., E. Biggi, H. Cárdenas, M.I. Diaz, C. Alarcón, V. Herrera, R. Santa-Cruz, F. Tomasinelli, E.P. Westeen, C.M. Sanchez-Paredes, J.G. Larson, P.O. Title, M.R. Grundler, M.C. Grundler, A.R. Davis Rabosky, and D.L. Rabosky. 2019. Ecological interactions between arthropods and small vertebrates in a lowland Amazon rainforest. *Amphibian & Reptile Conservation* 13: 65–77.

Whittell, H.R. 1883. On the voracity of a species of *Heterostoma*. *Proceedings of the Linnean Society of New South Wales* 8: 33–34. <https://doi.org/10.5962/bhl.part.28639>.

Zimić, A. and D. Jelić. 2014. Interspecific illusions: Underestimation of the power of the Mediterranean banded centipede. *Interspecijske iluzije: Podcenjivanje snage Opasne strige*. *Hyla* 2014(1): 27–29.