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ABSTRACT
In a series of studies, we applied reverse translational medi-
cine, which affords understanding of immune pathogenesis 
via therapeutic intervention, to the MuSK subtype of my-
asthenia gravis (MG). Treatment with CD20-specific B cell 
depletion therapy (BCDT) demonstrated that MuSK MG 
patients respond remarkably well; the majority invariably 
reached remission accompanied by a remarkable drop in 
autoantibody levels. Circulating antibodies are primarily 
produced by bone marrow resident plasma cells, which do 
not express CD20. So, how does BCDT diminish MuSK au-
toantibodies and induce rapid remission? We developed a 
mechanistic model, which hypothesized that plasmablasts, 
which are short-lived antibody secreting B cell popula-
tions, produce MuSK-specific autoantibodies. Anti-CD20-
mediated BCDT is expected to deplete CD20-expressing 
plasmablasts or CD20 expressing memory cells that supply 
the plasmablast population. To test this hypothesis, we per-
formed a series of investigations, which were reported over 
the last seven years and are summarized in this review. First, 
we isolated plasmablasts from patients and generated hu-
man recombinant monoclonal autoantibodies (mAb) which 
bound MuSK and had pathogenic capacity, demonstrating 
that MuSK autoantibodies can be produced by this specific 
cell population. The characterization of the mAbs showed 
that MuSK autoantibodies can include unique properties 
including unusually high antigen binding affinity, and an el-
evated frequency of N-linked glycosylation in their binding 
domains. Further characterization suggested that MuSK 
autoantibody-producing cells may form in the early stages 
of B cell development due to defective tolerance mecha-
nisms. Finally, we sought to determine how these pathogen-
ic B cell clones behave over time. High throughput B cell re-
ceptor sequencing was applied to investigate longitudinally 
collected samples from patients treated with anti-CD20-
mediated BCDT. MuSK-specific clonal variants were de-
tected at multiple timepoints spanning more than five years 
and reemerged after BCDT-induced remission, predating 
disease relapse by several months. These collective investi-
gations provide a more detailed mechanistic understanding 

of MuSK MG, the key features of which include the pro-
duction of autoantibodies by circulating plasmablasts that 
can be diminished by CD20-specific BCDT, but a subset of 
which persist which then seed a reemergence of pathogenic 
clones prior to manifestation of clinical relapse. 
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Introduction
Autoimmune myasthenia gravis is an archetypal auto-

antibody-mediated disease (1, 2). The autoantibodies tar-
get molecules at the neuromuscular junction (NMJ), which 
leads to increased fatigability and muscle weakness in pa-
tients (1, 2). Disease subtypes can be defined by autoanti-
body specificity. The most frequently observed MG subtype 
is characterized by autoantibodies against the nicotinic 
acetylcholine receptor (AChR), comprising approximately 
85% of patients (1). The remaining patients can harbor au-
toantibodies targeting muscle-specific kinase (MuSK) (3) 
or lipoprotein receptor-related protein 4 (LRP4) (4, 5), 
while a small fraction do not have detectable circulating 
autoantibodies to known targets. Accordingly, this group 
is collectively categorized as seronegative. The pathogenic 
capacity of autoantibodies targeting AChR and MuSK have 
been clearly demonstrated with both in vitro (6-11) and in 
vivo approaches (12).

The immunopathology of the subtypes can differ sub-
stantially, which is well highlighted by the AChR and MuSK 
subtypes. The immunopathology of AChR MG is mediated 
by IgG1 and IgG3 subclass autoantibodies, which effect dis-
ruption of AChR signaling through complement activation 
and subsequent tissue damage, initiating receptor inter-
nalization, and interfering with ACh binding. Conversely, 
MuSK MG is largely governed by IgG4 autoantibodies. 
These autoantibodies are ineffective in activating comple-
ment and mediate pathology by physically blocking NMJ 
protein-protein interactions. Specifically, MuSK Abs inhibit 
the interaction between MuSK and LRP4, which is essen-
tial for MuSK phosphorylation and subsequent effective 
AChR clustering and signaling (13). Moreover, the patho-
genic capacity of MuSK autoantibodies is partly dependent 
upon fragment antigen-binding (Fab)-arm exchange, which 
generates functionally monovalent IgG4 antibodies (14). 

While much of the underlying immunopathology of 
MuSK MG is understood, further details are needed. Over 
the last decade, we established a potential mechanism de-
scribing how pathogenic autoantibodies develop in MuSK 
MG through applying reverse translational medicine. That 
is, by using knowledge observed in clinical studies in com-
bination with basic immunological research (15, 16). Spe-
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cifically, we leveraged the positive effect of anti-CD20-me-
diated B cell depletion therapy (BCDT) in treating MuSK 
MG patients, to build a model in which CD20-expressing 
plasmablasts are the key disease-relevant cells that pro-
duce MuSK autoantibodies (17). We pursued testing of 
this model and further investigated the immunopathology 
of relapse that can occur following anti-CD20-mediated 
BCDT-induced remission in MuSK MG patients (17). This 
mini-review will focus on different aspects of the immuno-
pathology of MuSK MG and will provide insights into the 
immunopathology of relapse after CD20-mediated BCDT.   

What we learned from anti-CD20-mediated B cell 
depletion in MuSK MG – the basis of our mechanistic 
model. 

B cells express different surface markers at different 
stages of B cell development and these markers can be used 
to identify and target specific B cell subsets (18). The clus-
ter of differentiation molecule 20 (CD20) is not expressed 
on B cells at early stages of development or when they have 
differentiated to plasma cells (18). Targeting CD20 with the 
monoclonal antibody, rituximab (RTX), was first success-
fully used for the treatment of B cell malignancies (19-21). 
Rituximab was then shown to be effective in autoimmune 
diseases including antibody-mediated chronic inflammato-
ry demyelinating polyneuropathy (CIDP), pemphigus vul-
garis, multiple sclerosis, rheumatoid arthritis (22-25), and 
MuSK MG, first in 2008 by the research group of Isabel Illa 
(26), then shortly afterward in a number of corroborative 
studies (17, 27, 28), including several by our group at Yale 
(29, 30). 

The B cell subsets that secrete autoantibodies (31) are 
short-lived plasmablasts and plasma cells. Some plasma-
blasts may express low levels of CD20, while plasma cells 
do not express CD20 (18, 32, 33). The response to RTX 
observed in MuSK MG patients often includes a rapid and 
near-complete reduction of autoantibody titer and sub-
sequent disease remission. The Illa group elegantly dem-
onstrated that, in contrast to the MuSK autoantibody ti-
ter, both total circulating IgG and tetanus vaccine specific 
IgG titers did not significantly diminish after BCDT (17). 
A sensible hypothesis explaining these findings is that the 
observed effect was based on the depletion of MuSK auto-
antibody-expressing, CD20-positive, short-lived plasma-
blasts and/or CD20-positive memory B cells that supply 
this plasmablast population (16). To test this mechanistic 
hypothesis, we isolated plasmablasts from MuSK MG pa-
tients with the intent of determining whether they produced 
MuSK specific autoantibodies (34). We took considerable 
care in the flow cytometry-based isolation, as these cells 
are challenging to identify because they are rare within the 
circulation and share surface markers with other B cell sub-
sets. The additional step of examining the isolated cells via 
morphology was performed, as plasmablasts are distinctly 
bigger than naive or memory B cells due to an enlarged 

cytoplasm. These isolated plasmablasts were cultured in 
a manner that allowed for antibody secretion into culture 
media, which was then tested for binding specificity towards 
MuSK using a live cell-based assay (34). We found that the 
secreted antibodies bound to MuSK demonstrating that 
plasmablasts are a source of autoantibodies in MuSK MG 
(34).

To perform a more rigorous experimental demonstra-
tion, we next produced recombinant human MuSK mono-
clonal autoantibodies (mAbs) from these plasmablasts (33-
35). We also included experienced (memory) B cells in our 
cell isolation approach; the result of which was that most of 
our MuSK mAbs originated from plasmablasts, while the 
rest were derived from memory B cells (33-35). Recom-
binant production of human mAbs allowed for an unlim-
ited source of human autoantibodies for study, given that 
those secreted in the culture media by stimulated B cells 
are limited in quantity. Additionally, experiments could be 
performed with individual autoantibody clones rather than 
a heterogeneous mixture found in the bulk cell culture me-
dia or serum. In addition to validating binding properties, 
we leveraged these mAbs to further investigate the devel-
opment of pathogenic B cells in MuSK MG and the patho-
genic effect of autoantibodies at the NMJ. 

Development of autoantibodies in MuSK MG
Human serum contains a multitude of distinct antibod-

ies with different variable regions, which is vital for the broad 
reactivity to a vast array of potential pathogens (36). Al-
though broad reactivity is important for protection against 
foreign antigens, self-reactivity is a possible by-product of 
the process that generates a diverse B cell and serum an-
tibody repertoire. This is because random combinations of 
antibody variable region genes are assembled to produce a 
repertoire with many different antigen specificities during 
B cell development. However, that initially generated reper-
toire can include reactivity to self (37). Both central and pe-
ripheral tolerance checkpoints prevent these self-reactive B 
cells from further development (38, 39). The fidelity of these 
checkpoints is compromised in several autoimmune disor-
ders. The result of which is increased frequencies of self-
reactive B cells within the naïve B cell repertoire (40). We 
found that the central and peripheral tolerance checkpoints 
are defective in MuSK MG (41). Therefore, it is reasonable 
to propose that the development and origin of MuSK auto-
antibodies is partly due to unsuccessful counter-selection of 
self-reactive B cells due to tolerance defects. 

The MuSK mAbs that we (33-35)  and others (42) gen-
erated contain multiple mutations in the sequences of their 
variable region, which is the characteristic hallmark of the 
affinity maturation process. The reversion of these sequenc-
es to their corresponding germline-encoded form, which 
would be found in the naïve B cell precursors, is a com-
mon approach that is used to investigate the development 
or origin of autoantibodies (43, 44). Given that some small 
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sequence areas of the antibody variable region (namely 
parts of the complementary determining region 3 (CDR3)) 
are not encoded by gene segments, the best approximation 
of the naïve, unmutated sequence is commonly called the 
unmutated common ancestor (UCA). Testing the binding 
properties of UCAs to the antigen recognized by the mature 
form can lead to at least two potential outcomes. The first 
is that UCA antibodies recognize the antigen, suggesting 
that the parental naïve B cell bound the antigen and that the 
same self-antigen is driving the affinity maturation process. 
The second outcome is that UCA antibodies do not recog-
nize the antigen, suggesting that the mature B cell may gain 
antigen specificity during the affinity maturation process. 
UCAs in several autoimmune diseases have been investi-
gated; there is no clear conclusion whether autoantigens 
predominantly drive the development of autoantibodies or 
whether antigen reactivity develops during affinity matura-
tion. UCA autoantibodies in neuromyelitis optica spectrum 
disorder (NMOSD), pemphigus vulgaris (PV) and systemic 

lupus erythematosus (SLE) do not recognize the associated 
self-antigen (43, 45-47), whereas UCAs in rheumatoid ar-
thritis and other mAbs in PV can exhibit specific reactivity 
to the disease-associated self-antigen (48, 49). We found 
that UCAs of MuSK mAbs recognize MuSK (33, 44) and 
that these UCAs have strikingly high affinities (nanomolar) 
for MuSK (44). Thus, we speculate that MuSK might be 
both the initiating and affinity maturation-driving self-anti-
gen of MuSK specific B cells, and that they escaped elimina-
tion as a consequence of defective tolerance mechanisms. 

Pathogenic and functional properties of MuSK autoan-
tibodies

Understanding the role of MuSK is an essential pre-
requisite for investigating how pathogenic MuSK autoanti-
bodies interfere with neuromuscular signaling at the NMJ 
(Figure 1). MuSK is associated with the development and 
preservation of the NMJ (50-53) and it forms a functional 
unit with low density lipoprotein receptor-related protein 
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Figure 1. Schematic of the interaction of MuSK, LRP4, agrin and Dok7 at the neuromuscular junction.   
The MuSK/LRP4 pathway is involved in the clustering of AChRs at the neuromuscular junction. MuSK has three immunoglobin-like 
domains 1-3 (Ig1-3) and a cysteine-rich domain (frizzled domain) on the ectodomain and an intracellular tyrosine kinase domain (65, 66). 
LRP4 is the (membrane-bound) ligand of MuSK and binds to the Ig-like domain 1 (54). The interaction of MuSK and LRP4 is enhanced 
when agrin binds to LRP4 which changes its conformation (54). Downstream of kinase-7 (Dok7) is an intracellular activator and substrate 
of MuSK, which binds to the kinase domain (65). Dok7 facilitates the autophosphorylation of MuSK (65, 67). The activation of the MuSK/
LRP4 pathway results in the dimerization and autophosphorylation of MuSK, which is important for the activation of downstream pathways 
that lead to the clustering of AChRs at the NMJ. LRP4 = Low Density Lipoprotein Receptor-Related Protein 4; MuSK = muscle-specific 
tyrosine kinase; AChR = nicotinic acetylcholine receptor. P+ = phosphorylation. This figure was created with Biorender.com.
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4 (LRP4) (54). The activation of the MuSK/LRP4 path-
way results in the dimerization and autophosphorylation of 
MuSK, which is important for the activation of downstream 
pathways that lead to the clustering of AChRs at the NMJ 
(Figure 1) (51). Most serum-derived MuSK autoantibod-
ies recognize the Ig-like domain 1 of MuSK, which interacts 
directly with LRP4 (Figure 1) (54, 55). It has been dem-
onstrated, with both in vitro and in vivo approaches, that 
MuSK autoantibodies prevent the interaction of MuSK and 
LRP4, which leads to diminished clustering of AChRs and 
subsequent impaired neuromuscular signaling (14, 33, 42, 
56-58). Some of the MuSK mAbs that we generated (33-
35), specifically recognized the Ig-like domain 1 (33) while 
several others recognized the Ig-like domain 2 (35). Irre-
spective of their domain specificity, these mAbs reduced 
AChR clustering when tested with an in vitro approach (33, 
35). 

IgG4 subclass antibodies have a unique property in that 
they can exchange half-molecules with other IgG4 subclass 
antibodies during a process termed Fab-arm exchange 
(FAE), which produces bispecific IgG4 that bind to their 
target antigen in a monovalent manner (59, 60). MuSK 
MG autoantibodies are mainly of the IgG4 subclass (61-63) 
and functional monovalency potentiates their pathogenic 
effect at the NMJ (14, 42, 44, 64). In work we performed 
collaboratively with Angela Vincent and Michelangelo 
Cao (35), we found that recombinant divalent MuSK 
mAbs phosphorylate MuSK and reduce AChR clusters in 
comparison to non-disease relevant, control antibodies. In 
contrast, monovalent variants of these same antibodies are 
much more pathogenically potent because they robustly 
diminish AChR clustering (44). Given these observations, 
we proposed that divalent antibodies can crosslink and 
activate MuSK (Figure 1). Monovalent antibodies, in 
contrast, block the interaction of MuSK with LRP4 
without any artificial crosslinking of MuSK. Thus, our 
work, along with key findings from the Leiden University 
group led by Maartje Huijbers and Jan Verschuuren (14, 
42), demonstrate that monovalency - generated by IgG4 
FAE - is important for the pathogenic effect of MuSK 
autoantibodies at the NMJ.  

In addition to valency, we found that affinity 
is important for the pathogenic capacity of MuSK 
autoantibodies (44). We found that only monovalent 
Fabs of mature, mutated autoantibodies prevented agrin-
induced clustering of AChRs, while UCA Fabs did not 
show any pathogenic capacity despite having high affinities 
(nanomolar range) for MuSK (44). Thus, we hypothesized 
that binding kinetics (association and dissociation) may 
play a key role in the different pathogenic capacities. To 
investigate this further, we turned to affinity measurements. 
Our autoantibodies recognize MuSK over a wide range of 
concentrations when using live cell-based assays (CBAs) 
(35, 44). However, the static nature of these assays does 
not provide any information on the kinetics of antibody 

association and dissociation. Consequently, CBAs are not 
ideal for properly measuring affinity. Accordingly, we used 
bio-layer interferometry and monovalent Fabs to measure 
the affinity of our antibodies to MuSK, rather than divalent 
mAbs, which would have provided avidity values. We found 
that mature MuSK autoantibodies had exceptionally high 
affinities (sub-nanomolar) and that the high Ka was driven 
by fast association and slow dissociation whereas their UCA 
counterparts associated slower and dissociated faster (44). 
Thus, high affinity, characterized by rapid association and 
delayed dissociation, together with monovalency appear to 
be key properties for the pathogenic development of MuSK 
mAbs and are necessary for potent monovalent pathogenic 
capacity at the NMJ (44).

Unique features of the circulating B cell repertoire in 
MuSK MG

We next turned our attention to studying the B cells 
in MuSK patients. We started by examining the BCR 
repertoire using adaptive immune receptor repertoire 
(AIRR) sequencing. Although conspicuous changes in the 
overall repertoire of MuSK MG patients relative to healthy 
controls were not observed, we observed some unique 
abnormalities (68). These changes in the B cell repertoire 
in MuSK MG are subtle but seem to be specific as the 
repertoire of AChR MG showed different abnormalities 
(68). The B cell repertoire of MuSK MG shows differences 
in preferential usage of variable region gene segments and 
indicates impaired mechanisms of central tolerance during 
B cell development (68). The most conspicuous observation 
provided by the BCR repertoire analysis concerned the 
frequency of N-linked glycosylation site motifs (N-X-
S/T, X cannot be proline) in the antibody variable region 
(IgG-VN-Glyc). The frequency of IgG-VN-Glyc is elevated in 
AChR and MuSK MG in comparison to healthy individuals 
(42, 69). These glycosylation sites were either acquired 
through affinity maturation or present due to a preferential 
usage of the select gene segments containing glycosylation 
sites in their germline configuration (69). Several of our 
MuSK mAbs included IgG-VN-Glyc motifs affording us the 
opportunity to test whether they were involved in binding, 
given their conspicuous occupation of the variable region. 
The removal of these glycosylation sites, however, did not 
alter the binding capacities of these mAbs (42, 69). Thus, 
the functional purpose of N-linked glycosylation sites in 
the variable region of autoantibodies in MG is currently 
not understood but might be connected to altered B cell 
activation (70). 

Immunomechanisms underlying relapse after anti-
CD20-mediated B cell depletion 

While most MuSK patients reach clinical remission 
following anti-CD20-mediated B cell depletion, patients 
can experience relapse years later (17, 71). Therefore, 
we wanted to study the immunomechanisms underlying 
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these relapses. We specifically focused on whether relapse 
is the consequence of reemerging historic clones or the 
development of newly generated pathogenic clones. To 
that end, we leveraged our MuSK mAbs, longitudinally 
collected samples, and AIRR sequencing. Specifically, with 
the BCR sequence of validated MuSK mAbs in-hand, we 
used AIRR sequencing to search for related clones present 
in longitudinal samples collected over several years prior 
to the mAb isolation. These longitudinal samples were 
collected during periods of both BCDT-induced remission 
and relapse. We found one pathogenic mAb and its 
corresponding clonal variants in a patient who had received 
several cycles of anti-CD20-mediated BCDT over almost 
79 months (33). These clonal variants acquired changes 
in the antibody variable region sequence indicative of 
continuous affinity maturation in germinal centers; these 
changes did not alter the binding and pathogenic properties 
of the identified MuSK clone (33). The clonal variants 
reemerged before clinically-detectable relapse, concurrent 
with increasing MuSK autoantibody titer (33). 

These persistent B cells express low levels of CD20 and 
show expression signatures associated with previous tissue 
homing and B cell survival (32). Likewise, plasmablast 
populations examined at the time of relapse expressed 
molecular signatures associated with B cell survival, B 
cell proliferation, and tissue homing (32, 33). Anti-CD20-
mediated BCDT, however, is effective in eliminating antigen 
specific B cells in the lymph nodes in NMOSD (72), and 
decreases the levels of B cells in both the circulation and 
bone marrow in RA (73). Thus, it is not clear whether tissue 

homing is protective or indicative of recent repopulation 
and proliferation in germinal centers. 

Summary 
Over the last decade, we developed a model to 

describe the development of pathogenic B cells in MuSK 
MG (Figure 2): The proportion of self-reactive B cells is 
elevated in the naïve B cell repertoire due to defects in the 
central and peripheral tolerance checkpoints (41). Among 
these self-reactive naïve B cells are clones that show strong 
and specific binding to MuSK indicating that the MuSK 
antigen might be initiating B cell activation and may also 
drive affinity maturation of these B cells in germinal centers 
(44), followed by differentiation into antibody-secreting 
plasmablasts (34). The secreted antibodies are mostly 
of the IgG4 subclass (61-63) and become functionally 
monovalent through the process of Fab-arm exchange 
(64). Binding of the monovalent pathogenic mAbs to 
MuSK impedes the clustering of AChRs which impairs the 
signaling from the nerves to the muscles (14, 33, 42, 44). 
Thus, affinity maturation and monovalency are necessary 
for the pathogenic development of MuSK autoantibodies 
and their pathogenic capacity at the NMJ (14, 33, 42, 44, 
64). Characteristic abnormalities in the B cell repertoire 
of MuSK MG patients include the elevated frequency of 
N-linked glycosylation motifs within the variable region 
(68, 69); the functional relevance of these observations 
is the object of future investigations. Lower expression 
of CD20 on persistent B cells, together with molecular 
signatures associated with B cell survival and tissue homing 
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Figure 2. Schematic diagram showing the development of the pathogenic B cell repertoire and features of autoantibodies that 
mediate disease in MuSK MG. This figure was created with Biorender.com.
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(32), may contribute to survival of persistent clones during 
BCDT as well as continuous antigenic stimulation. Among 
these persistent clones are pathogenic B cell clones that 
can be traced longitudinally over several years and through 
continuous BCDT treatments (33). These pathogenic 
clones can reemerge months before noticeable clinical 
relapse together with increasing autoantibody levels (33). 
Overall, this body of research provides both a mechanistic 
understanding of MuSK MG immunopathology and how 
disease relapse develops during a commonly used treatment 
strategy. 
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