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ABSTRACT
Very few areas of medical genetics have been so profoundly 
impacted by the advent of next- generation sequencing 
(NGS) as the field of congenital myasthenic syndromes 
(CMS). This is due to the formidable genetic heterogeneity 
of CMS, a dearth of diagnostic clinical clues of CMS types, 
and the imperative need to establish an accurate molecular 
diagnosis of CMS type before any medication is started. 
A molecular diagnosis of CMS is fundamental not only to 
provide an appropriate therapy, but more importantly, to 
avoid potential deleterious treatments. Thus, NGS has 
transformed the tedious and expensive task of searching 
for causative mutations in an ever-expanding list of genes 
linked to CMS into an effective, and relatively inexpensive 
process that can rapidly identify the variant of CMS in 
question. One of the consequences of this transformation 
is a paradigm shift in the clinical practice of CMS that no 
longer requires, with rare exceptions, the use of special 
muscle biopsies that enable the analysis of the function and 
ultrastructure of the neuromuscular junction to determine 
the type of CMS. Another technological advance of recent 
years is CRISPR/Cas9, which allows genome editing at 
the zygotic stage, thus greatly simplifying the generation of 
mouse models carrying the same human CMS mutations in 
orthologous mouse genes. This permits an in-depth analysis 
of the pathogenesis and treatments of CMS caused by 
specific gene mutations. In terms of therapy, in addition to 
the classical pharmacologic treatments of CMS, including 
pyridostigmine sulfate, albuterol and 3,4 diaminopyridine, 
AAV-based gene therapies are now at the preclinical stage 
for several types of CMS. In this brief review, CMS are 
classified in six major groups: (1). presynaptic CMS, (2) 
synaptic CMS, (3) postsynaptic CMS; 4. CMS affecting 
the agrin-signal transduction pathway, (5) CMS linked to 
disorders of glycosylation, and (6) CMS associated with 
abnormalities of the cytoskeleton. 
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Introduction
Congenital myasthenic syndromes (CMS) continue 

being a topic of broad interest for clinicians and scientists 
alike because CMS are treatable disorders and because the 
understanding of these conditions provides fundamental 
knowledge about the function of the neuromuscular 
junction (NMJ). 

Heterogeneity of CMS and patterns of genetic 
transmission: 

The mechanisms of failure of neuromuscular 
transmission in CMS are quite heterogeneous, and all stem 
from defects of genes encoding proteins that participate 
directly or indirectly in  neuromuscular transmission. Often, 
more than one mechanism contributes to the pathogenesis 
of a single disorder.  

Mutations causing CMS usually involve single 
genes, except for large DNA deletions that affect more 
than one gene. The most common inheritance of CMS 
is Mendelian autosomal recessive, however mutations in 
several genes, including those encoding the adult subunits 
of the acetylcholine receptor (AChR), Synaptotagmin 2 
(SYT2), and SNAP25 can also be dominantly inherited.1-4 
De novo mutations, which are often seen in dominant 
forms of CMS, are the only type of mutations that have so 
far been described in CMS caused by defects of SNAP25.5 
The X-linked pattern has not yet been associated with the 
pathogenesis of CMS. 

CMS linked to proteins that are exclusive vs non-exclusive 
of the NMJ:  

The first described variants of CMS were those caused 
by mutated proteins participating directly in the process of 
neuromuscular transmission and present only at the NMJ. 
Examples of these variants are CMS caused by mutations 
in the subunits of the adult AChR and rapsyn. Pathogenic 
mutations in these genes result only in CMS. By contrast, 
mutations of genes encoding proteins that participate 
indirectly in neuromuscular transmission and that are not 
present exclusively at the NMJ result in less consistent 
and more complex phenotypes in which CMS is only part 
of broader syndromes. An example of this is mutations 
in DPAGT1 that can result in a limb-girdle congenital 
myasthenic phenotype along with other features of 
glycosylation type Ij disease, including developmental delay, 
microcephalia and seizures. Another example is mutations 
in LAMB2 that can result in CMS along with other features 
of Pierson syndrome, including microcoria and congenital 
nephrotic syndrome. 

https://journals.ku.edu/rrnmf/
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Classification of CMS:  
CMS are traditionally classified based on the location 

of the protein encoded by the gene causing the disease in 
three major groups: presynaptic, synaptic, and postsynaptic 
types (Figure 1). This classification is helpful to arrange 
CMS according to the primary site of pathology. However, 
in many types of CMS, such as those resulting from deficient 
proteins of the agrin signaling pathway and glycosylation 

Figure 1: Diagram showing the most important proteins linked to the pathogenesis of CMS in the postsynaptic (A), presynaptic (B) and 
synaptic (C) compartments. Abbreviations: AcCoA: acetyl coenzyme A,  AChE: acetylcholinesterase catalytic subunits, BL: basal lamina, 
CHT: high-affinity choline transporter, ColQ: collagen-like tail subunit, mt: mitochondria, NaV1.4: sodium channel protein type 4 subunit 
alpha (SCN4A), VAChT: vesicular acetylcholine transporter, SV2A: synaptic vesicle protein 2A.  

disorders, there are both pre- and postsynaptic defects. 
Table 1 presents a proposed classification of CMS based on 
the primary site of the defect, while Table 2 lists the most 
important allelic variants of genes linked to CMS Another 
approach to classify CMS is by sequential numbers in the 
order that they were discovered, and this is the way CMS 
variants are listed in the NCBI OMIM web site https://
www.ncbi.nlm.nih.gov/omim

Table 1. Classification of CMS
Presynaptic

a. Defects of the cholinergic pathway:
    ChAT deficiency (CHAT)*†

    High-affinity presynaptic choline transporter deficiency (SLC5A7)
  Vesicular ACh transporter deficiency (SLC18A3) 

b. Defects of mitochondrial function with presumptive effect on the cholinergic pathway:
PREPL deficiency (PREPL)
Mitochondrial citrate carrier (SCL25A1)

c. Defects of SNAREs 
    SNAP25 deficiency (SNAP25B). DOMINANT‡

    VAMP1 deficiency (VAMP1)
d. Defects of Ca2+ sensors, active zone linkers, and kinetic proteins:

    Synaptotagmin2 defect (SYT2). DOMINANT

https://www.ncbi.nlm.nih.gov/omim
https://www.ncbi.nlm.nih.gov/omim
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 Synaptotagmin2 recessive deficiency (SYT2)
    Munc13-1 deficiency (UNC13A)

 Rabphilin3a (RPH3A)
    Myosin9a deficiency (MYO9A)
Synaptic

a. Defects of collagen proteins:
    ColQ deficiency (COLQ)
    COL13A1 deficiency (COL13A1)

b. Defects of laminins:
    Laminin beta2 deficiency (LAMB2)
    Laminin alpha5 deficiency (LAMA5)
Postsynaptic

a. Defects of the ACh receptor:
       Without major kinetic changes:
       Receptor deficiency (CHRNA1/B1/D/E)
  With major kinetic changes:
       Slow-channel syndrome (CHRNA1/B1/D/E) DOMINANT
       Fast-channel syndrome (CHRNA1/B1/D/E)
b.  Prenatal myasthenia (Escobar Syndrome) (CHRNG)
c.  Defects of rapsyn (RAPSN)
        Generalized
        With facial deformities
d. Defect of the sodium channel
       Sodium channel myasthenic syndrome (SCN4A)

Defects of signaling pathways
Agrin deficiency (AGRN)
 Proximal
 Distal with presynaptic deficit
MuSK deficiency (MUSK)
LRP4 deficiency (LRP4)
DOK7 deficiency (DOK7)

Defects of glycosylation 
 GFPT1 deficiency (GFPT1)
 DPAGT1 deficiency (DPAGT1)
 ALG2 deficiency (ALG2)
 ALG14 deficiency (ALG14)
 GMPPB deficiency (GMPPB)

Defects of the cytoskeleton 
 Plectin deficiency (PLEC1)

*The most frequent forms of each group are bolded. 
† Linked gene is shown in parenthesis.
 ‡Indicates dominant forms.
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Table 2. Most important phenotypic and allelic variants of genes linked to CMS
Presynaptic
   SLC5A7 (choline transporter) hereditary motor neuropathy (dominant) 
   VAMP1 spastic ataxia (dominant)
 SNAP25 epileptic encephalopathy, ataxia, and intellectual disability
 SYT2 hereditary motor neuropathy (dominant)
Synaptic
   LAMB2 microcoria, congenital nephrotic syndrome (Pierson syndrome)
   LAMA5 congenital nephrotic syndrome, bent bone dysplasia, myopathy
Postsynaptic 
 CHRNA1, CHRNB1, CHRND receptor deficiency and slow channel syndrome
 CHRNE receptor deficiency, slow channel syndrome and fast channel syndrome
 RAPSN proximal, focal with facial malformations in Jewish people from Iran and Iraq (E-box mutations)
 SCN4A paramyotonia congenita, periodic paralysis (dominant)
Defects of signaling pathways
 AGRN proximal variant and distal variant with LEMS-like features
 LRP4 Cenani-Lenz syndactyly syndrome
Defects of glycosylation 

DPAGT1 congenital disorder of glycosylation (developmental delay, seizures)
ALG2 congenital disorder of glycosylation
ALG14 Myopathy, seizures, and progressive cerebral atrophy
GMPPB Muscular dystrophy, intractable seizures

Defects of the cytoskeleton 
PLEC1 myopathy, epidermolysis bullosa, pyloric atresia 

Defects linked to mitochondrial metabolism
PREPL hypotonia-cystinuria syndrome
SCL25A1 combined D-2- and L-2-hydroxyglutaric aciduria, agenesis of corpus callosum, developmental delay,  
seizures. 

PRESYNAPTIC DEFECTS 
CMS caused by presynaptic defects are rare, and with 

the exception of deficiency of choline acetyltransferase 
(ChAT) most are represented by single case reports or only 
by a few families. 

Defects of the cholinergic pathway: 
ChAT deficiency (CHAT): The disorder was 

initially referred to as familial infantile myasthenia and 
later changed to CMS associated with episodic apnea.6,7 
However, since not all cases of ChAT deficiency present 
with episodic apnea and not all the CMS associated with 
episodic apnea are due to CHAT mutations, it is preferrable 
to refer this condition simply as ChAT-CMS. The severity 
of this disease is extraordinary variable: it can range from 
mild forms that tend to improve after puberty to extremely 
severe forms resulting in wheelchair-bound status, 
continuous ventilatory support and gastric tube.7-9 This 
variant of CMS has several distinctive features including: 
(1) association with apneas, (2) fast-developing muscle 

fatigue (within minutes), (3) paradoxical impairment with 
cold temperatures such as weakness triggered by cold water 
of a swimming pool,10 (4) in mild cases no decrement to 
repetitive nerve stimulation (RNS), but decrement only 
after 5 minutes of nerve stimulation at 10 Hz.10,11 and (5) 
ptosis without ophthalmoparesis and unsatisfactory long-
term response to pharmacologic treatments. Severe cases 
of ChAT-CMS present with psychomotor delay,9,12 but 
autonomic dysfunction is surprisingly absent. Mutations in 
CHAT has been described in other species, including dogs,13 
zebrafish,14 C elegans 15 and Drosophila.16 Several molecular 
defects have been associated with ChAT-CMS, including 
missense, nonsense, frameshift, and microdeletions.7,8,9,17 
Large deletions are peculiar because they also involve 
the VAChT gene located in the first intron of CHAT.18 
This condition has been reported world-wide in North 
America,7,19,17 South America,9 Europe,19 the Middle East,20 

Malaysia,21 and China.8 
High-affinity choline transporter (SLC5A7): 

Patients with mutations in this gene present many of 
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the symptoms described above for ChAT-CMS, thus 
representing an example of locus heterogeneity.22 However, 
the choline transporter CMS can present with antenatal 
forms resulting in arthrogryposis or stillbirths, and CNS 
involvement is more frequent than in ChAT-CMS. 

Vesicular ACh transporter deficiency (SLC18A3): 
This is a rare condition that shares many clinical features 
with ChAT-CMS, including muscle fatigability, apneas and 
paradoxical worsening with low temperatures (swimming 
pool sign).23

PREPL deficiency (PREPL): This condition results 
from recessive deletions, involving the PREPL gene and 
other contiguous genes on chromosome 2p21.24 When 
the SLC3A1 gene is included in the deletion there is also 
cystinuria. The clinical manifestations include severe 
neonatal hypotonia, fluctuating ptosis, facial paresis, 
dysarthria, feeding difficulties and growth hormone 
deficiency. An anconeus biopsy in one patient showed 
severe reduction of MEPP amplitudes with normal AChR 
density strongly suggestive of an underlying abnormality of 
ACh synthesis. Beneficial response to pyridostigmine and 
albuterol is variable and often transient. 

Deficiency of mitochondrial citrate carrier 
(SCL25A1): Biallelic mutations in this gene can result in 
mild proximal weakness and variable ocular and bulbar 
involvement.25 Patients often show developmental delay 
and dysmorphic features. The mutation p.(Arg247Gln) 
is a recurrent mutation present in individuals of different 
ethnic groups.26 As in the previous group an anconeus 
biopsy performed in a single patient showed normal MEPP 
amplitudes with normal AChR density, which points to 
a defect of ACh synthesis. Reported patients showed no 
consistent beneficial response to either anticholinesterase 
medication or albuterol. 

Defects of SNAREs:
SNAP25: This severe and dominant form of CMS is 

associated with arthrogryposis, cortical excitability, ataxia, 
and developmental delay.4,5  

VAMP1 (synaptobrevin 1): VAMP-CMS is a recessive 
CMS characterized by hypotonia, impaired external ocular 
muscle function, developmental delay, joint contractures, 
and Lambert-Eaton myasthenic syndrome (LEMS)-like 
features on EMG testing.27 

Defects of Ca2+ sensors, proteins of the active zone, 
and kinetic proteins:

Synaptotagmin 2 defect (SYT2) (dominant): This is 
a relatively mild form of CMS with motor axonal neuropathy 
as an allelic variant. All mutations so far described are 
missense mutations altering calcium binding sites in 
the CB2 domain. There is frequent  multigenerational 

involvement and LEMS-like features on electrophysiologic 
testing. The condition usually responds to treatment with 
3,4 diaminopyridine (DAP).28  

Synaptotagmin 2 defect (SYT2) (recessive): This is 
a severe form of CMS with onset at birth or prenatally. Most 
of the reported cases involved consanguinity and nonsense 
or frameshift mutations resulting in protein truncation.29-31 
There is modest ocular involvement, but severe bulbar 
and generalized weakness with muscle atrophy. The EMG 
shows denervation and LEMS-like features in response 
to RNS. Patients show modest response to albuterol, 
pyridostigmine and 3,4 DAP. 

Munc13-1 deficiency (UNC13A): This is a severe 
form of CMS, which has been so far only described in a 
single patient. Munc13-1 has a C2A and C2B domains 
that interacts with SNARES and participates in calcium 
homeostasis. The reported patient had a homozygous 
nonsense mutation predicting a large truncation of the 
protein. The patient had microcephaly, developmental 
delay, cortical EEG irritability, joint contractures, and 
LEMS-like features on electrophysiologic testing. A muscle 
biopsy showed normal NMJ ultrastructure and LEMS-like 
electrophysiology.32 

Rabphilin 3a deficiency (RPH3A): Pathogenic 
mutations in the RPH3A gene have been found in two 
independent families of patients with a mild presynaptic 
CMS associated with hand incoordination and tremors.33,34 
The muscle biopsies showed double membrane sacs 
encircling synaptic vesicles. The pathogenic mechanism of 
this condition is unclear, but rabphilin 3a, as Synaptotagmin 
2 and Munc13-1, encompasses a C2A and C2B Ca2+/
phospholipid binding domains that when altered may affect 
synaptic vesicle homeostasis.  

Myosin 9a deficiency (MYO9A): Two non-related 
patients affected with ptosis, ophthalmoparesis, global 
weakness, bulbar involvement, and respiratory crises were 
found to have deleterious mutations in MYO9A,35 which 
encodes the unconventional myosin 9a. CNS symptoms, 
including learning difficulties and vertical nystagmus were 
also reported. Muscle biopsies were not available. Patients 
responded to pyridostigmine. The underlying pathogenic 
mechanism is unclear, but expression studies in cell lines 
and zebrafish indicated that myosin 9a is fundamental for 
neurite extension and axonal transport.36 

 
SYNAPTIC DEFECTS

Except for ColQ deficiency synaptic CMS are rare 
forms of CMS. 

Defects of collagen proteins:
ColQ deficiency (COLQ): Deficiency of ColQ, is 
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a relatively common variant of CMS and is the first one 
that was completely characterized by microelectrode 
recordings and electron microscopy of the NMJ.37 The 
condition results from mutations in COLQ, the gene that 
encodes the triple-helix strands that assemble with three 
homotetramers of the AChE catalytic subunit and holds the 
enzyme at the endplate.38 The ultrastructure of the NMJ in 
ColQ-CMS shows a characteristic triad consisting of: (1) 
reduced size of nerve terminals, (2) encasement of nerve 
terminals by the Schwann cell, and (3) focal degeneration 
of the postsynaptic folds.37 In some cases, numerous 
endocytic vesicles in the subsynaptic region can be seen, 
a feature in common with slow-channel CMS (SCCMS). 
Because ACh cannot be hydrolyzed, once it is released 
from the nerve terminal it accumulates at the synaptic 
cleft re-exciting the AChR ion channel. This in turn results 
in endplate potentials (EPPs) of prolonged duration that 
remain above threshold level longer than the refractory 
period of the muscle fiber enabling them to trigger multiple 
muscle action potentials. This feature of ColQ-CMS is also 
shared with the SCCMS and can be clinically observed by 
EMG recordings showing repetitive compound muscle 
action potentials (CMAPs) in response to a single nerve 
stimulation. Failure of neuromuscular transmission in 
ColQ-CMS occurs as a result of multiple mechanisms, 
including presynaptic deficit, staircase summation of 
EPPs leading to depolarization of the endplate and AChR 
desensitization. Treatment is limited to sympathomimetic 
drugs, such as albuterol. 

COL13A1 deficiency (COL13A1): This is a rare 
recessive CMS characterized by early onset in life and 
predominant involvement of bulbar and axial musculature 
without significant impairment of external ocular muscle 
function.39,40 The mechanism of failure of neuromuscular 
transmission is unknown, but studies in Col13a1 -/- mice 
indicate both pre- and post-synaptic involvement.39 
Affected patients show a moderate response to albuterol 
and 3,4 DAP.40

Defects of laminin proteins:
Laminin beta2 deficiency (LAMB2): This is a 

very rare form of CMS occurring in survivors of Pierson 
syndrome after a successful renal transplant. Only two cases 
reported in the literature, both showing ultrastructural 
changes of the NMJ reminiscent of ColQ-CMS.41,42 In 
one case there was a favorable response to 3,4 DAP, but 
pyridostigmine resulted in an adverse effect.   

Laminin alpha5 deficiency (LAMA5): A rare 
recessive form of CMS with only one case formally 
reported.43 The described case showed LEMS-like features. 
The clinical manifestations of biallelic LAMA5 mutations 

are protean and include congenital nephrotic syndrome,44 
bent bone dysplasia and myopathy.45 The reported case 
responded to 3,4 DAP, albuterol and pyridostigmine. 

POSTSYNAPTIC DEFECTS 
More than half of CMS are caused by mutations in the 

genes encoding the adult subunits of the AChR or rapsyn. 
Deficiency of AChR expression (CHRNA1, 

CHRNB1, CHRND, CHRNE): This is the most common 
variant of CMS and can result from mutations in any of the 
genes encoding the adult subunits of the AChR. There is an 
overwhelming majority of mutations in the gene encoding 
the epsilon subunit.46 The reason for this is unclear, but a 
possible explanation is that since the adult epsilon subunit 
can be compensated by re-expression of the fetal gamma 
subunit (encoded by CHRNG), these patients tend to have 
milder forms of CMS. Thus, they are less vulnerable to nat-
ural selection pressure enabling them to pass their mutated 
genes to their offspring. Examples of this include CHRNE 
1267delG in Roma people and CHRNE 1293insG in East-
ern Europeans.47,48 

Biallelic mutations in CHRNA1, which encodes the 
ACh binding alpha-subunit usually result in  severe and 
potentially fatal CMS. By contrast mutations in CHRNG 
result in prenatal CMS and represent one of the multiple 
causes of the Escobar syndrome, which is characterized by 
arthrogryposis multiplex, joint contractures, pterygia, and 
respiratory distress.49

Ocular involvement is usually prominent in patients 
with deficiency of AChRs. Patients respond well to pyr-
idostigmine and surprisingly also to albuterol and 3,4 DAP, 
likely because the sizes of nerve terminals in these patients 
are normal allowing increased ACh output without deple-
tion.

Slow-channel CMS (CHRNA1, CHRNB1, CHRND, 
CHRNE): SCCMS is the most common dominant form of 
CMS, and it can result from mutations affecting the AChR 
transmembrane domains M1 and M2, the M2–M3 linker, 
and the N-terminal.50 The most severe forms are those in-
volving the M2 domain, while those affecting the N-termi-
nal are milder.51 The SCS shares a number of similarities 
with ColQ deficiency even though they result from very 
different pathogenic mechanisms. The similarities include 
repetitive CMAPs to a single nerve stimulus, depolariza-
tion block from staircase summations of EPPs, subsynaptic 
degenerative changes and poor or adverse response to an-
ticholinesterase medications. Treatment involves medica-
tions that shorten the channel open time, such as quinidine, 
quinine, and fluoxetine.52 

Fast-channel CMS (CHRNA1, CHRNB1, CHRND, 
CHRNE): Mutations in all the adult subunits of the AChR 
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can cause low agonist affinity with shortened AChR ion 
channel kinetics and result in the fast-channel syndrome. 
However, as in the case of receptor deficiency, these muta-
tions are most common in the epsilon subunit. The εP12L 
mutation is indeed the most common fast-channel muta-
tions, and it results in a serious disease with a potentially 
fatal outcome.53,54 The treatment of this condition is similar 
to that of AChR deficiency.     

Rapsyn deficiency (RAPSN): Mutations in the gene 
encoding rapsyn is another relative common cause of 
CMS. Rapsyn is a 43-kD postsynaptic protein intimately 
associated with the receptor and essential for clustering 
of AChRs.55,56 The severity of this disease is extraordinary 
variable, it can range from severe and potentially fatal neo-
natal forms to very mild forms with onset during childhood 
or adulthood. Often patients are born with arthrogryposis 
multiple indicating prenatal disease.57 Patients with severe 
forms suffer recurrent respiratory crises, which at variance 
with patients with ChAT mutations, do not occur spontane-
ously, but are usually triggered by intercurrent infections. A 
predominant bulbar involvement with facial malformations 
has been described in Jewish people from Iran and Iraq, 
who were found to possess pathogenic E-box mutations.58

The mutation N88K, which derives from an old Indo-
European founder is often found at least in one of the alleles 
of patients with Rapsyn-CMS.59,60 In contrast with patients 
with AChR ε subunit mutations, patients with RAPSN mu-
tations seldom show involvement of extraocular muscles. 
Treatment is similar to that for patients with AChR defi-
ciency. 

Defect of the skeletal muscle sodium channel (SC-
N4A): This is a unique type of CMS characterized by recur-
rent episodes of generalized and bulbar weakness reminis-
cent of periodic paralysis. However, the clinical presenta-
tion also includes muscle fatigue, ptosis and ophthalmopa-
resis more consistent with CMS. 61,62 Decrement of CMAP 
amplitudes in response to repetitive nerve stimulation at 2 
Hz is modest but becomes obvious with nerve stimulations 
at higher rates. The management of this condition is based 
on a dual therapy with pyridostigmine and acetazolamide.  

DEFECTS OF SIGNALING PATHWAYS (AGRN, MUSK, 
LRP4, DOK7) 

This is an important group of CMS involving a signal 
transduction pathway that is fundamental for the develop-
ment and maintenance of the NMJ.63-66 The clinical presen-
tations of these disorders are very heterogeneous, but all 
share predominant proximal limb weakness, variable bul-
bar and ocular involvement and poor or adverse response 
to pyridostigmine. Stridor is also common, particularly in 
the DOK7-CMS.67  The disease can start anytime in life and 

weakness of neck muscles, sometimes presenting as a drop-
head syndrome, is a distinctive characteristic of these con-
ditions.68,69 From the pathophysiologic standpoint all these 
variants present presynaptic and postsynaptic involvement. 
Surprisingly, N-terminal mutations in the AGRN gene can 
result in distal limb involvement and a LEMS-like syn-
drome. The reason for this is unclear, but it may involve a 
disrupted interaction of agrin and the gamma subunit of 
laminin with the presynaptic voltage-gated calcium chan-
nel.70,71 The DOK7-CMS is the most common variant of this 
group, in part due to several recurrent mutations, including 
c.1124_1127dupTGCC and many other mutations affecting 
all the protein domains.72 Treatment is based on sympatho-
mimetic drugs such as albuterol. 

DEFECTS OF GLYCOSYLATION (GFPT1, DPAGT1, ALG2, 
ALG14, GMPPB) 

The discovery of the association between limb-girdle 
myasthenia with tubular aggregates and the gene encod-
ing the enzyme glutamine-fructose-6-phosphate-trans-
aminase 1 (GFPT1) by linkage analysis was surprising but 
understandable given the heavy glycosylation of proteins 
of the NMJ.73 Patients in this group resemble patients with 
DOK7 mutations because of the proximal limb weakness. 
However, the muscle biopsies of these patients often re-
veal tubular aggregates and patients seldom show bulbar 
or ocular involvement.74 In addition, patients with DPAGT1 
and ALG2 can present with more complex phenotypes that 
includes mental delay and seizures.75,76 Patients with muta-
tions in GMPPB may present with myopathy, encephalopa-
thy, and intractable seizures.77 The treatment of this group 
includes pyridostigmine and albuterol. 3,4 DAP should be 
avoided because of the possibility of seizures.  

DEFECTS OF THE CYTOSKELETON 
Plectin deficiency (PLEC1): Mutations in PLEC1 

can cause epidermolysis bullosa simplex, which may associ-
ate with muscular dystrophy (EBS–MD) or pyloric atresia 
(EBS–PA).78,79  Rare cases may also show neuromuscular 
transmission failure.80 Treatment involves pyridostigmine 
and albuterol. 3,4 DAP should be avoided because of the 
possibility of an underlying cardiomyopathy and heart ar-
rythmia. 

Other genes with possible association with CMS: 
Several other genes have been suspected to cause CMS, 
but the genetic mode of transmission and mechanism 
of failure of neuromuscular transmission have not been 
completely elucidated. These genes include, TOR1AIP1,81 
PURA,82,83 CHD8,84 SCN8A85, and many other genes linked 
to hereditary myopathies.86 

Non-pharmacological treatments: In children with 
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severe forms of CMS the protection of the respiratory 
function is of paramount importance. Therefore, 
tracheotomy, mechanical ventilation and gastric tube are 
all important measures that when indicated, need to be 
implemented early in the course of the disease to prevent 
respiratory insufficiency, anoxic brain injury and permanent 
neurologic damage. Surgical correction of scoliosis is also 
important to eliminate a potential mechanical impediment 
of proper respiratory function. 

Finally, upcoming molecular therapies based on 
monoclonal antibodies,87 AAV-mediated gene therapy and 
many other target-therapies may expand in the near future 
the list of treatments available for CMS.88-90
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