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ABSTRACT
Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) belongs to the  CMGC 
group of kinases that are named after cyclin-dependent kinases (CDKs), mitogen-activated 
protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs).  
DYRK-related kinases comprise a novel subfamily of protein kinases with unique structural, 
biochemical, and enzymatic features. In humans, DYRKs phosphorylate a set of proteins and 
play a critical role in apoptosis, DNA damage repair, cell proliferation, survival, and devel-
opment. Dysregulation of DYRK protein kinases have been associated with cancer biology. 
In recent years, several studies have reported some kinase inhibitors affecting cancer devel-
opment and progression, making them potential therapeutic drugs. However, challenges 
remain in understanding the molecular mechanisms and roles of each member of the DYRK 
family in cancer initiation and progression. In this review, we will highlight the importance of 
DYRK kinases in cancer biology.
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Background 

Cancer is an abnormal growth of cells. Cancer 
cells have mutations that lead to dysregulated ex-
pression of oncogenes and tumor suppressor genes, 
the results of these changes altering the expression of 
hundreds of genes [1-3].  The proto-oncogene c-Src 
is the first cancer gene identified to encode a protein 
kinase [4]. In human cells, 538 protein kinases have 
been identified [5]. Based on the sequence homolo-
gy of their catalytic domains, these protein kinases 
are classified into several groups [6]. Dual-speci-
ficity tyrosine phosphorylation-regulated kinases 
(DYRKs) are a subfamily of the CMGC kinase group 
that encompasses cyclin-dependent kinases (CDKs), 
mitogen-activated protein kinases (MAPKs), glyco-
gen synthase kinases (GSKs), and CDK-like kinas-
es(CLKs), as well as tyrosine kinase gene v-ros cross 
hybridizing kinases (RCKs) [6]. The extended DYRK 
family members are classified into three subfami-
lies: Dual specificity (DYRK) kinases, pre-messen-
ger RNA processing protein 4 kinases (PRP4s), and 

homeodomain-interacting protein kinases (HIPKs) 
[6]. The DYRK subfamily is clustered into two classes 
(Class I and Class II) with five members in humans. 
Class I DYRKs include DYRK1A and DYRK1B (also 
known as Mirk from mini brain-related kinase), and 
Class II has DYRK2, DYRK3, and DYRK4. 

The DYRK members are autophosphorylated on 
a tyrosine residue to reach full kinase activities [7, 8] 
and play key roles in signaling pathways that control 
cell survival, differentiation, cell death, embryonic 
neurogenesis, development processes [9, 10],  and 
cancer biology [11]. Regarding DYRK involvement 
in the regulation of tumorigenic processes, several 
studies have reported alterations in the expression 
of DYRK genes in tumor samples and have revealed 
DYRK-dependent mechanisms that contribute to tu-
mor initiation and progression.  However, challenges 
remain, including DYRK kinase inhibitors, clinical 
implications, and therapeutic opportunities. This re-
view will highlight the importance of DYRK kinases 
in their involvement in signaling pathways and can-
cer biology.

http://journals.ku.edu
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DYRK kinase subfamily 

DYRK-related kinases compose a distinct fami-
ly of protein kinases defined by the structural simi-
larity of their kinase domains and their capability to 
autophosphorylate on tyrosine residues. Autophos-
phorylation of DYRKs on tyrosine is a one-off event 
that occurs during translation and induces kinase ac-
tivation [12, 13] The members of the DYRK family 
have unrelated sequences outside the catalytic kinase 
domain (DH-box, Dyrk homology box), and differ 
in their tissue distribution, substrate specificity, and 
subcellular localization [14]. Class I DYRKs contain a 
functional, bipartite nuclear localization signal (NLS) 
at the N-terminus to the DH-box, and a proline-, glu-
tamic acid-, serine-, and threonine-rich (PEST) at the 
C-terminus which is typically found in proteins that 
are targeted for degradation. Class I also contains a 
histidine-rich region in the C terminus [11, 15]. Class 
II includes a conserved kinase domain and adjacent 
N-terminal autophosphorylation accessory region 
(NAPA) domain to the DH box but not a PEST do-
main at the C-terminus (Figure 1) that is essential for 
autophosphorylation of the activation loop tyrosine 
[16].                           

The kinase structural domain of DYRK1A con-
tains an N-terminal lobe (N-lobe) with five antipar-
allel β-strands, a conserved regulatory αC helix, and 
a larger C-terminal lobe (C-lobe) [17]. DYRK1A and 
DYRK1B are closely related and highly expressed in 

human tissues [11], and both are characterized as 
negative regulators of the cell cycle and are involved 
in cell survival, growth arrest, and differentiation [18, 
19]. The mammalian mini-brain (MNB) ortholog 
DYRK1A plays a key role in the MNB-like phenotype 
and aberrant retinal development [20, 21], which in-
dicates a conserved mechanism for the normal devel-
opment of the central nervous system in mammals 
[16]. Moreover, DYRK1A protein kinase has a nonre-
dundant vital role in the maintenance of adult brain 
neuronal activities by regulating transcription factor, 
nuclear factor of activated T cells (NFAT) [9], and cy-
clin AMP response element-binding protein (CREB) 
[22]. DYRK1A and DYRK3-specific runs of histidine 
residues participate in phase-separated subcellular 
compartments [23]. DYRK1B has been illustrated as 
a negative regulator of the cell cycle and encodes a 
dual-specificity serine/threonine (S/T) protein kinase 
with roles in cell survival and differentiation [24, 25]. 
In addition, the kinase activity of DYRK1B attenu-
ates DNA double-strand breaks (DSBs)-induced gene 
silencing and leads to compromised DNA damage 
repair that coordinates DSB repair on transcribed 
chromatin [26]. DYRK2 phosphorylates NFATc and 
regulates calcium signaling, resulting in NFATc in-
activation through cytoplasmic sequestration [9, 27]. 
Recent studies have shown that DYRK2 is a novel 
mammalian ciliogenesis-related protein kinase that 
plays an important role in regulating Hedgehog (Hh) 
signaling in the control of ciliogenesis [28]. DYRK2 

Figure 1: Schematic representation of the mammalian family of DYRKs, indicating their phylogenic relationships, degree 
of homology, and protein domains. NLS: nuclear localization; DH: DYRK homology; PEST: proline-, glutamic acid-, serine-, 
and threonine-rich; His: histidine; S/T: serine/threonine; aa: amino acid. Image created in BioRender. Moududee, S. (2024)  
https://BioRender.com/k39x947.
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and DYRK3 are closely related and encoded by pa-
ralogous genes that originate from gene duplication 
[29]. DYRK3 is localized to stress granules (SG) and 
regulates a cyclic partitioning mechanism between 
SG and cytosol through its kinase activity [30]. DYR-
K1A, DYRK2, and DYRK4 differ in their substrate 
specificities whereas DYRK2 and DYRK4 are less bi-
ased than DYRK1A. DYRK4 is widely expressed in all 
human tissues, unlike its rat and mouse orthologues 
that are predominantly expressed in the testis [31]. 
In neurons, DYRK2, DYRK3, and DYRK4 are mostly 
localized in the cytosolic portion of cell bodies, with 
DYRK2 seen in the dendrites and part of the axon 
and DYRK3 and DYRK4 mainly confined to the den-
drites; in contrast, DYRK1A is mainly localized to 
the nucleus [32]. Taken altogether, the structural dif-
ferences and subcellular localizations of DYRKs may 
determine their differential functions in the cells.

DYRKs in Cancer

Protein phosphorylation is one of the most sig-
nificant mechanisms for signal transduction between 
cells and within cells. DYRK phosphorylation can in-
fluence a broad range of cellular processes including 

transcription, apoptosis, cell cycle progression, cell 
motility, metabolism, cell survival, and differentia-
tion, which play important roles in human diseases 
including various cancers. DYRK family members 
have been linked to cancer biology as their expres-
sion is different between normal and tumor tissues 
and many DYRK substrate proteins are key players 
in cancer biology [11]. In this section, we will discuss 
the involvement of each member of the DYRK family 
in cancer.

DYRK1A

The gene encoding DYRK1A is highly conserved 
and located on chromosome 21 in the Down syn-
drome critical region (DSCR) [33]. Previous studies 
have illustrated that individuals with Down syndrome 
show a markedly reduced incidence of solid tumors 
[34] and a considerably lower incidence of cancer-as-
sociated mortality [35]. DYRK1A is a pleiotropic ki-
nase that phosphorylates proteins that play crucial 
roles in angiogenesis, DNA damage repair, cell cycle 
regulation, cancer stem cell properties, transcription, 
and cell signaling regulation [36] (Figure 2). DSCR1 
is located in the Down syndrome critical region 

Figure 2: An overview of interactions between DYRK1A and proteins involved in a variety of cellular processes. RNF169: Ring finger 
protein 169; FOXO1: Forkhead box protein 1; SIRT1: silent information regulator sirtuin 1; NOTCH: neurogenic locus notch homo-
log protein; STAT3: signal transducer and activator of transcription  3; TRAF3: TNF receptor-associated factor; GLI1: glioma-associ-
ated oncogene 1; NFAT: nuclear factor of activated T-cells; VEGFR2:  Vascular endothelial growth factor receptor 2; EGFR: epidermal 
growth factor receptor; p53: tumor protein 53; REST: RE1-silencing factor; ID2: inhibitor of DNA Binding 2; LIN52: protein lin-52 
homolog; CDC23: Cell division cycle 23; CycD1: cyclin D1; CycD3: cyclin D3; DREAM: dimerization partner (DP), retinoblastoma 
(RB)-like, E2F and MuvB complex. Image created in BioRender. Moududee, S. (2024) https://BioRender.com/k39x947.
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and coordinates with DYRK1A to reduce angiogen-
esis through vascular endothelial growth factor 2 
(VEGF2)-dependent signaling and the downstream 
nuclear factor of activated T cells (NFAT)-dependent 
transcriptional response in endothelial cells [9, 37]. 
DYRK1A contributes to acute megakaryoblast leuke-
mia (AMKL) development through NFAT signaling 
[38]. The signal transducer and activator of transcrip-
tion 3 (STAT3) is a DYRK1A substrate that regulates 
tumor progression [39, 40] and astrogliogenesis [41]. 
STAT3 is activated in solid tumors such as lung, pros-
tate, breast, head, neck, gastric, colorectal, hepatocel-
lular, and brain cancers [42]. The inhibition of DYR-
K1A diminishes STAT3 activities and proliferation 
of non-small cell lung cancer (NSCLC) cells due to 
impaired EGFR signaling [43]. 

Glioma-associated oncogene 1 (GLI1, officially 
named GLI Family Zinc Finger 1) is an  oncogen-
ic transcription factor whose nuclear translocation 
and functional activity are regulated through phos-
phorylation by DYRK1A. GLI1 is the effector of Son-
ic Hedgehog (SHH) signaling that regulates tumor 
growth and cell survival as well as metastasis [44]. 
Moreover, the  NOTCH pathway has appeared as 
an oncogenic pathway in solid tumors and blood can-
cers [45]. On the other hand, it has also been revealed 

that the NOTCH pathway plays a role as a tumor sup-
pressor in myeloid malignancies [46]. These findings 
suggest that the  NOTCH pathway may have both 
positive and negative impacts on tumor growth and 
cell survival. The RE1-silencing factor (REST) is like 
NOTCH and has been identified as a cancer-related 
gene in medulloblastoma [47, 48], characterized as an 
oncogene in neuroblastoma (NB), a common extra-
cranial solid tumor in children [49], and glioblastoma 
(GBM) that is in the adult brain [50, 51]. Therefore, 
DYRK1A has diverse, non-redundant roles in cancer 
biology, which may be a potential target in develop-
ing new strategies against cancers.

DYRK1B

DYRK1B is also named Minibrain-related kinase 
(Mirk). DYRK1B’s functions have been well charac-
terized. DYRK1B plays a vital role in muscle differ-
entiation through regulatory effects on transcription, 
growth arrest, myogenesis, cell cycle progression, mo-
tility, and cell survival [25]. Thus, we will discuss the 
protumorigenic roles of DYRK1B in cancer, which 
mostly involve prosurvival signaling pathways (Fig-
ure 3). DYRK1B kinase is a potential pharmacologi-
cal target in cancer since it is overexpressed in several 

Figure 3: A graphical representation of the interactions between DYRK1B/Mirk and a variety of biological process-
es. MKK3: mitogen-activated protein kinase (MAPK) kinase 3; Rac: RAS-related C3 botulinum toxin substrate; ERK: 
extracellular signal-regulated kinase; RanBPM: Ran-binding protein M. CycD: Cyclin D; FOXO: Forkhead box pro-
tein; GLI1: glioma-associated oncogene 1.   Image created in BioRender. Moududee, S. (2024) https://BioRender.
com/k39x947.
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types of solid tumors and cancer cell lines, including 
rhabdomyosarcoma [25], ovarian cancer [52], non-
small cell lung carcinoma [53], breast cancer [54], 
prostate cancer, colon cancer [55, 56], and pancreatic 
ductal adenocarcinoma [57, 58], and its overexpres-
sion is correlated with patients’ poor prognosis. 

DYRK1B acts as a negative cell cycle regulator to 
maintain the survival of quiescent cancer cells [3, 59] 
and as a tumor cell survival factor conferring resis-
tance to chemotherapies by counteracting the G0 /
G1–S phase transition [60]. DYRK1B maintains the 
S phase checkpoint by stabilizing the cyclin-depen-
dent kinase (CDK) inhibitor and induces the degra-
dation of cyclin D [3], respectively.  Additionally, the 
mammalian dimerization partner (DP), retinoblas-
toma (RB)-like, E2F and MuvB (DREAM) complex 
represses cell cycle-dependent genes during quies-
cence complex that represses cell cycle gene expres-
sion in G0-arrested cells [3, 19]. The regulation of 
the cell cycle by DYRK1B is mediated through cyclin 
D phosphorylation [61-63], suggesting that cancer 
cells require active Mirk/DYRK1B to maintain quies-
cent status that is less sensitive to chemotherapy and 
radiotherapy [64]. In this regard, pharmacological in-
hibition of DYRK1B may be a promising therapeutic 
approach to sensitize cancer cells to chemotherapy 
and radiotherapy.

Inhibition or depletion of DYRK1B has been 
shown to exaggerate DNA damage and apoptosis 
caused by chemotherapeutic drugs that target prolif-
erating cells [65-68] in cancer cell lines of various tu-
mor origins [69, 70]. Depletion of DYRK1B increases 
the nuclear translocation of Forkhead box protein O 
(FOXO) and enhances the apoptosis of ovarian can-
cer cells [52]. The functional interaction of DYRK1B 
and oncogenic transcription factor glioma-associated 
oncogene family zinc finger 1 (GLI1) significantly re-
duces in vivo tumor growth of GLI1-dependent pan-
creatic cancer cell lines [71]. In addition, DYRK1B 
has been reported to target the tumor suppressor 
NKX3.1 for proteasomal degradation in prostate can-
cer cell [72]. DYRK1B inhibition in prostate cancer 
can increase the NKX3.1 suppressor protein level 
besides its impact on cell cycle regulators [3].  How-
ever, it remains elusive to understand its mechanism 
fully. DYRK1B kinase is active in pancreatic and 
rhabdomyosarcoma cancer cells through oncogenic 
mitogen-activated protein kinase 3 (MKK3) signal-
ing pathway [25, 57, 73]. In addition, MKK3 activates 
p38 in response to stress signals induced by DNA 
damage [73]. In conclusion, DYRK1B may be a po-
tential pharmacological target in cancer therapy.

DYRK2

DYRK2 has been found in all eukaryotes, and 
surprisingly across all orthologues, the conserved 
function of DYRK2 is to regulate cell division and 
tissue development [74, 75]. Over the past two de-
cades, many studies have found that the substrates 
of DYRK2 are involved in cell growth, cell survival, 
cell proliferation, development, gene transcription, 
and proteasomal regulation [24, 76, 77]. The role of 
DYRK2 in cancer is the focus of this review.

DYRK2 plays diverse roles as a tumor suppressor 
and an oncogene in different cancers such as breast, 
liver, colorectal, ovarian, gastric, lung, and prostate 
cancers, as well as in chronic myeloid leukemia [76, 
78] (Figure 4). Yoshida et al have reviewed the tu-
mor suppressor role of DYRK2 in different cancers 
with antitumorigenic functions involving apopto-
sis, cell cycle regulation, cancer stemness, epitheli-
al-to-mesenchymal transition (EMT), and metasta-
sis [79]. DYRK2 suppresses cancer cell proliferation 
and invasion by regulating cyclin-dependent kinase 
14 (CDK14) expression [80]. Previous studies have 
reported that CDK14 is an oncogene [81-84], and 
upregulated expression of CDK14 promotes tumor 
cell proliferation, migration, and invasion in breast 
cancer [80, 81].  To elucidate the function of DYRK2 
as an oncogene, some oncogenic substrates have 
been reported such as 26S proteasome [74, 85, 86], 
p53 [27, 87], Heat shock factor 1 (HSF1) [27], c-Myc 
[88], Seven in absentia homolog 2 (SIAH2) [89], and 
NOTCH1 [90]. DYRK2 phosphorylates and activates 
26S proteasome and HSF1, thereby stimulating the 
proteotoxic stress pathway during tumorigenesis in 
breast cancer [78]. Cancer cells are exposed to pro-
teotoxic stress by increasing protein folding capaci-
ty that is controlled by HSF1 or expanding the mis-
folded/aggregated protein degradation through 26S 
proteasome [91, 92]. DYRK2 phosphorylates the 
regulatory particle 3 (Rpt3) subunit on the ATPase 
ring of the 19S subunit of the proteasome on a con-
served Thr25 site, leading to enhanced substrate 
translocation and degradation [74]. Expression of 
DYRK2 is inversely associated with Snail expression 
but positively associated with E-cadherin expression, 
hence DYRK2 regulates Snail and promotes epitheli-
al-mesenchymal transition (EMT) to drive invasion 
in human breast cancer [93]. Ectopic expression  of 
DYRK2 phosphorylates mTOR at Thr631, leading to 
ubiquitination and degradation [94]. The correlation 
between DYRK2 and mTOR regulates the sensitivi-
ty to Everolimus (an mTOR inhibitor) in hormone 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ubiquitination
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receptor-positive breast cancer [94]. As detailed in a 
previous review article, DYRK2 may induce apopto-
sis through phosphorylating c-Jun, c-Myc, and HSF1, 
inhibit cell stemness by suppressing Kruppel-like fac-
tor 4 (KLF4) and telomerase reverse transcriptase 
(TERT) expression via androgen receptor (AR), and 
reduce cell proliferation via suppression of CDK14 
expression, as well as suppress EMT, invasion, and 
metastasis through phosphorylation of Snail and in-
duction of mTOR degradation [95].

Colorectal cancer is one of the most common ma-
lignant diseases and a leading cause of cancer‐related 
death worldwide [96]. The role of DYRK2 in colorec-
tal cancer has been investigated in cell lines, tissue 
samples, and xenograft mouse models [28].  DYRK2 
phosphorylates p53 to regulate apoptotic cell death in 
response to DNA damage [27, 79]. Previous studies 

have shown that DYRK2‐mediated phosphorylation 
initiates  the  degradation of several proteins via the 
ubiquitin-proteasome system. Interestingly, DYRK2 
functions as a scaffold for the E3 ubiquitin ligase com-
plex containing E3 isolated by the differential display 
(EDD), DNA damage-binding protein 1 (DDB1), and 
Vpr binding  protein (VPRBP), and DYRK2–EDVP 
E3 ligase complex. Meanwhile, the E3 ubiquitin ligase 
complex has a crucial function in regulating normal 
mitotic progression because overexpression of both 
DYRK2 and EDD [97, 98] is frequently reported in 
cancers [2]. Overexpression of DYRK2 suppresses 
c-Jun, c-Myc, Ki-67, and Cyclin-D expression, thus 
inhibiting cell growth, cell migration, invasion, and 
metastasis of colorectal cancer [96, 99]. DYRK2 plays 
an important role in epithelial-mesenchymal tran-
sition (EMT) by degrading Snail and stabilizing E‐

Figure 4: Overview of the roles of DYRK2 in a variety of cancers. HSF1: heat shock factor 1; mTOR:  mammalian target of rapamycin; 
miR622: microRNA 622; E-cad: E-Cadherin; N-cad: neural cadherin; MOAP1: modulator of apoptosis 1, miR183: microRNA 183; 
CDK14: cyclin dependent kinase 14; Rpt3-T25: regulatory particle 3-T25; ki-67: kiel-67; CycD: Cyclin D; DNMT1: DNA methylation. 

Image created in BioRender. Moududee, S. (2024) https://BioRender.com/k39x947.
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cadherin, leading to inhibition of cell migration and 
invasion [96]. DYRK2 expression is correlated with 
an EMT transcription factor TWIST, DNA methyla-
tion (DNMT1), and a tumor-related gene (miR-622) 
in colorectal cancer samples and cell lines [100, 101]. 

The functional roles of DYRK2 in gastric, leuke-
mia, ovarian, liver, and prostate cancer have also been 
investigated in patient tissue samples, cell lines, and 
xenograft mouse models [28]. Taken together, these 
reports suggest that DYRK2 may be a tumor suppres-
sor or oncogene dependent on the cancer type, which 
can be targeted differentially according to its role in 
each type of cancer. 

DYRK3 & DYRK4

The roles of DYRK3 and DYRK4 in cancer have 
not been well studied compared to the other DYRKs 
[11]. A limited number of studies have revealed the 
important roles of DYRK3 and DYRK4 in tumori-
genesis.

Analysis of DYRK3 substrates has led to iden-
tifying consensus phosphorylation sequences for 
DYRK proteins [102]. DYRK3 promotes cell surviv-
al through phosphorylation and activation of  silent 
information regulator sirtuin 1 (SIRT1), an NA-

D+-dependent protein deacetylase that has potential 
in various  physiological processes  including energy 
metabolism and stress response. Knockdown of en-
dogenous DYRK1A and DYRK3 leads to hypophos-
phorylation of SIRT1 and increased acetylation levels 
of p53 to regulate p53-mediated apoptotic response 
to genotoxic stress [103]. In organisms across the 
eukaryotic kingdom, DYRK3 is linked to cellular 
stress responses, ranging from genotoxic stress, irra-
diation, nutrient starvation, and osmotic stress [29, 
104, 105]. DYRK3 regulates the stability of P-gran-
ule-like structures and couples stress granule dissolu-
tion to the mechanistic target of rapamycin complex 
1 (mTORC1) signaling [30] (Figure 5). Moreover, 
DYRK3 regulates the  phase transition of mem-
brane-less organelles in mitosis [106]. It presents a 
cyclic partitioning mechanism between stress gran-
ules and the cytosol via a low-complexity domain in 
its N terminus and its kinase activity [30]. A recent 
study has reported that DYRK3 may influence the 
formation of plasma membrane-associated platforms 
(PMAPs) by regulating Liprin-α1’s ability to assem-
ble the protein network that promotes cell motility at 
the edge of the cell, affecting the formation of PMAPs 
and the formation and turnover of adhesions at the 
protruding cell edge [107].

Figure 5: An overview of the interactions between DYRK3 and proteins involved in several bio-
logical processes. PRAS40:  proline-rich Akt substrate of 40; mTORC1: mammalian target of rapa-
mycin complex 1, Liprin-α1: Liprin-alpha1. Image created in BioRender. Moududee, S. (2024) 
https://BioRender.com/k39x947. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sirtuin1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-deacetylase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/physiological-process
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A few studies have found DYRK3’s roles in spe-
cific types of tumors. One study has revealed that 
DYRK3 inhibits hepatocellular carcinoma (HCC) 
[108], whereas another study has shown that DYRK3 
was upregulated in neuroblastoma patients with poor 
prognosis [109]. DYRK3 may be linked to the aggres-
siveness of glioblastoma [110, 111], and downregula-
tion of DYRK3  impairs glioblastoma cell migration 
and invasion [112]. A recent study has shown that 
DYRK3 is a tumor-promoting oncogene in serous 
ovarian cancer (SOC) as DYRK3 knockdown inhib-
its cell viability, invasion, and in vivo tumor growth 
[113]. Overall, DYRK3’s roles in cancer are compli-
cated and cancer-type dependent.

DYRK4 is the fourth member of the DYRK sub-
family, which has not been well studied in cancer. One 
study has found that phosphorylation of the second 
tyrosine residue within the activation loop appears to 
have the potential for the full activity of DYRK4 [31]. 
DYRK4 exhibits different substrate specificity, unlike 
other members of the DYRK family, with 24 out of 
30 peptide substrates containing a serine/threonine 
residue followed by a proline, indicating that DYRK4 
may be characterized as a proline-directed kinase 
[31]. DNA methylation is one of the most common 
epigenetic modifications and plays a potential role in 
carcinogenesis [114]. A recent study has revealed an 
association between DYRK4 hypomethylation in pe-
ripheral blood and an  increased risk of lung cancer 
(LC), which suggests the feasibility of blood-based 
DNA methylation as a new biomarker for the de-
tection of LC [115]. The mechanism and functional 
implications underlying this association between 
DYRK4, and LC need further investigation. Another 
study has reported that overexpression of a neoplastic 
chimerical transcript  RAD51AP1-DYRK4 is associ-
ated with luminal B breast cancers (7–17.5 %), and 
expression of RAD51AP1-DYRK4 is tumor-specific 
and enriched in estrogen receptor-positive (ER+) lu-
minal B breast tumors (7–18%) compared to luminal 
A tumors (3–4%) [116]. However, the pathological 
role of RAD51AP-DYRK4 in luminal B breast can-
cer remains unclear. Future studies will be needed to 
pinpoint the mechanisms engaged by RAD51AP1-
DYRK4 to endow breast cancer cells.

Conclusion

Current literature reports indicate that DYRKs 
are a new class of ‘kinase of interest’ in human diseas-
es including cancer. However, the roles of DYRKs in 

cancer have not been fully elucidated, although there 
are many findings from studying DYRK expression 
in cancer cell lines, tumor tissues, and xenografted 
mouse models. DYRKs have been shown to play tu-
mor-suppressor roles or oncogenic roles, depending 
on the specific DYRK members and types of cancer. 
More studies are needed to understand the physio-
logical and pathological functions of DYRK family 
members in normal and malignant cells. This knowl-
edge will help develop DYRK inhibitors that may 
have potential in cancer treatment. However, many 
challenges will be encountered as DYRKs appear to 
be activated when they are translated, thus lacking 
an obvious upstream kinase to be targeted. Target-
ing DYRKs per se or their binding to their substrates 
may be feasible as shown by a limited number of 
DYRK inhibitors. Developing a highly selective in-
hibitor against a specific DYRK member is another 
challenge, which must be considered as the roles of 
DYRKs are different.
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