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ABSTRACT
Acetate, the simplest short-chain fatty acid, serves key roles in urological health as both 
a nutrient and an endogenous molecule. It originates from gut microbial fermentation of 
dietary fiber and is found in common foods like dairy products, pasta, coffee, and vinegar. 
Additionally, acetate is synthesized internally to support energy metabolism and cell sig-
naling pathways. This review highlights recent advancements in understanding acetate’s 
function as a signaling molecule in regulating cell fate and activity, with implications for 
urological health and disease treatment. The potential of acetate as a biomarker for urolog-
ical health is examined, offering valuable insights that could enhance strategies for disease 
diagnosis, management, and therapeutic development. Furthermore, the review explores 
the application of non-invasive imaging techniques to monitor acetate metabolism for the 
diagnosis, staging, and management of urological cancers.
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Acetate has been known since ancient times, 
largely due to the use of vinegar in food preservation 
and cooking. In 1845, German chemist Hermann 
Kolbe made a significant breakthrough by synthe-
sizing acetic acid from inorganic compounds for the 
first time [1,2]. Acetate refers to the ion formed when 
a proton (H⁺) is lost from acetic acid, resulting in a 
simple two-carbon molecule (CH₃COO⁻). The term 
“acetate” can also denote salt containing this anion 
or an ester of acetic acid [1,2]. As the simplest of the 
short-chain fatty acids (SCFAs), acetate is a two-car-
bon (C2) molecule that plays an important role in 
various biological processes [3-5] (Figure 1). The lev-
els of acetate in human tissues are influenced by both 
exogenous sources, such as dietary intake, and endog-
enous production pathways. According to the Codex 
General Standard for Food Additives, primary dietary 
sources of acetate include bread, dairy products, dried 
pasta, coffee and its substitutes, liquid eggs, processed 
meats, smoked or frozen fish, salt substitutes, ethanol, 
and vinegar [4,5]. Beyond dietary intake, acetate is 
also produced within cells through several metabol-
ic pathways: histone deacetylation reactions, direct 
conversion from pyruvate in cells with high glycolytic 
activity, and hydrolysis of acetylated metabolites [6-

11]. For example, the enzyme acyl-CoA thioesterase 
12 (ACOT12) activates in the liver, releasing free ac-
etate from acetyl-CoA, which then enters circulation 
to supply other tissues with a readily available meta-
bolic substrate [9-11].

In mammals, plasma acetate is primarily pro-
duced by the gut microbiota through the fermenta-
tion of dietary fiber. This fermentation generates high 
concentrations of SCFAs—acetate (C2), propionate 
(C3), and butyrate (C4)—in a consistent ratio of 3:1:1, 
resulting in a combined concentration of 50-150 mM 
[12,13]. SCFAs are efficiently absorbed from the gut 
lumen and initially taken up by colonic epithelial cells 
[14]. The remaining SCFAs enter the liver via the por-
tal vein, where acetate levels are further enriched as 
hepatocytes metabolize propionate, a gluconeogenic 
precursor [15]. The residual acetate is released into 
the bloodstream, where its concentration typically 
ranges from 50 μM to 200 μM in human plasma. Cir-
culating acetate is then available for uptake and ox-
idation by peripheral tissues, including those in the 
urological system [5].

This review examines acetate’s role as a signaling 
molecule in urological health and disease treatment 
(Figure 2A). Urinary acetate levels in both healthy 
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and diseased urological conditions are also discussed 
(Figure 2B). Additionally, it explores the use of 
non-invasive positron emission tomography (PET) 
imaging to assess acetate uptake and metabolism by 
urological cells as a tool for diagnosis, cancer staging, 
and monitoring of disease progression, treatment re-
sponse, and therapeutic efficacy (Figure 2C). 

Role of Acetate as a Signaling Molecule in 
Urological Health and Pathology

The physiological role of acetate extends well 
beyond its function as a nutritional source, with 
emerging evidence highlighting its importance as a 
signaling molecule [3,16-18] (Figure 2A). This role is 
mediated primarily through its conversion into ace-
tyl-coenzyme A (acetyl-CoA) by acetyl-CoA synthe-
tases, which catalyze the ATP-dependent ligation of 
acetate and CoA. Acetyl-CoA is a pivotal metabolite 
at the intersection of glycolysis and the TCA cycle 
(tricarboxylic acid cycle), playing a central role in en-
ergy metabolism [3,5,16-19] (Figure 1). Beyond this, 

acetyl-CoA serves as a critical substrate for numer-
ous biosynthetic pathways, including the production 
of sterols, hexosamines, and ketones. Acetate also 
contributes significantly to fatty acid synthesis, a pro-
cess involving three enzymatic steps: the formation 
of acetyl-CoA by acetyl-CoA synthetase 2 (ACSS2), 
the carboxylation of acetyl-CoA by acetyl-CoA car-
boxylase-α (ACCα, also known as ACC1), and the 
condensation of acetyl-CoA and/or malonyl-CoA 
by fatty acid synthase (FASN) [5] (Figure 1). Beyond 
its metabolic functions, acetyl-CoA acts as a central 
intermediate linking catabolic and anabolic path-
ways and serves as a second messenger influencing 
cell fate and function [16]. Specifically, it is the sole 
donor of acetyl groups for protein acetylation, a key 
post-translational modification that regulates protein 
activity and drives crucial cellular processes [17-20] 
(Figure 1).

A study utilizing functional genomics, compar-
ative metabolomics, and lipidomics highlights ace-
tate’s pivotal role in driving lipid biomass production 
within the complex prostate tumor microenviron-

Xiong Figure 1

Figure 1. Overview of Intracellular Pathways of Acetate Metabolism in Mammalian 
Cells. Acetate and its derivative, acetyl-CoA, play a critical role in maintaining cellular 
homeostasis and regulating functions across various pathways within the cell, including 
those in the mitochondrion, cytosol, and nucleus. Abbreviations: Ac, acetylation; ACLY, 
ATP Citrate Lyase; ACSS1, Acyl-CoA Synthetase Short-Chain Family Member 1; ACSS2, 
Acyl-CoA Synthetase Short-Chain Family Member 2; FASN, Fatty Acid Synthase; HMGCS, 
3-Hydroxy-3-Methylglutaryl-CoA Synthase; KAT, Lysine Acetyltransferase; KDAC, Lysine 
Deacetylase; (S)MCT, (sodium-coupled) monocarboxylate transporter.
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ment [21]. Additionally, recent findings reveal the 
essential involvement of acetate metabolism in neu-
roendocrine differentiation-mediated castration-re-
sistant prostate cancer [22]. Together, these studies 
suggest that acetate metabolism plays a critical role 
in fostering tumor aggressiveness and metastasis 
in prostate cancer tissues and cell lines. In contrast, 
the process of epithelial-to-mesenchymal transition 
(EMT) - where polarized epithelial cells lose their 
epithelial characteristics and adopt a mesenchymal, 
spindle-like phenotype - is strongly linked to chemo-
therapy resistance and metastasis in prostate cancer 
[23,24]. Our recent studies, along with others, show 
that acetate significantly inhibits EMT and endothe-
lial-to-mesenchymal transition (EndoMT, a specific 
form of EMT), while also enhancing T-cell survival 
and effector function [25-31]. This potentiates anti-
tumor immunity in various cancers, suggesting that 
acetate’s role in prostate cancer aggressiveness may be 

context-dependent, with implications for therapeutic 
strategies.

Acetate also serves as a ligand for a family of G 
protein-coupled receptors known as free fatty acid 
receptors (FFARs) [5,32]. Among these, FFAR2 and 
FFAR3 are activated by SCFAs, with FFAR2 being 
particularly sensitive to acetate [32]. A screening of 
transforming genes in surgically resected gallbladder 
cancer indicated that FFAR2 may play an oncogenic 
role [33]. Interestingly, resistance to cisplatin, a key 
chemotherapeutic agent for metastatic bladder can-
cer, is often driven by elevated levels of glucose-de-
rived endogenous acetate and its key enzyme, ace-
tyl-CoA synthetase 2 [34]. These factors contribute 
to cisplatin resistance in bladder cancer cells, high-
lighting the potential role of acetate in cancer therapy 
resistance.

On the other hand, acetate has been shown to 
alleviate cisplatin-induced kidney injury [35]. Ace-

Xiong Figure 2
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Figure 2. A Comprehensive Review of Acetate Metabolism in Urological Health and Disease. (A) 
Role of Acetate as a Signaling Molecule in Urological Health and Pathology: Acetate plays a critical 
role in cellular processes, including lipid biosynthesis, protein acetylation, and immune response 
modulation, with significant implications for cancer progression and resistance to therapy. (B) 
Urinary Acetate in Urological Health and Disease: Acetate holds promise as a biomarker for renal 
function, therapeutic monitoring, and disease management. It also demonstrates protective ef-
fects against chemotherapy-induced toxicities and kidney injuries. (C) Acetate Bio-tracers in PET 
Imaging for Urological Oncology and Noncancer Functional Assessment: The diagnostic utility of 
[11C]-acetate lies in imaging metabolic activity in prostate, bladder, and renal cancers, while also 
serving in the assessment of kidney function and ischemic nephropathies.
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tate, or vinegar (which is metabolized to acetate by 
gut microbiota), also reduces hyperoxaluria-induced 
kidney damage and improves gut microbiota and 
metabolomic profiles by inhibiting macrophage in-
filtration via the miR-493-3p/MIF axis [36,37]. Ad-
ditionally, acetate mitigates sepsis-induced acute kid-
ney injury through the inhibition of NADPH oxidase 
signaling in T cells [38] and reduces kidney fibrosis 
in an oxidative stress-dependent manner [39]. Ac-
etate metabolism has also been shown to serve as a 
reno-protective agent following kidney ischemia and 
in hypothermically perfused kidneys [40,41]. Supple-
menting acetate, either directly or through dietary fi-
ber and nutritional therapies that support SCFA-pro-
ducing bacteria, may positively influence chronic 
renal failure management and help mitigate renal 
disorders associated with conditions such as poly-
cystic ovary syndrome, nicotine-induced cardiorenal 
dysmetabolism, and high-fructose insulin-resistant 
pregnancy [42-45]. Notably, acetate has also been 
found to correct metabolic acidosis in premature in-
fants, whose renal function is immature [46,47].

In addition to its renal benefits, acetate has 
emerged as a promising intervention for mitigating 
lead-induced sexual dysfunction. This effect is at-
tributed to its ability to enhance testosterone-driven 
eNOS/NO/cGMP signaling and activate the Nrf2/
HO-1 pathways [48]. Research indicates that sodium 
acetate treatment effectively lowers lead accumu-
lation in penile tissue, as well as reduces oxidative 
stress markers, including malondialdehyde, oxidized 
glutathione levels, and acetylcholinesterase activity. 
Furthermore, acetate treatment restores sexual func-
tion by improving key parameters such as amount, 
intromission, ejaculation latencies, and frequency, 
effectively reversing the detrimental effects of lead 
exposure [48].

Urinary Acetate in Urological Health and Disease

Acetate plays a vital role not only in addressing 
sexual dysfunction but also in managing medical 
toxicities, particularly through urine alkalinization 
[49,50]. A prime example is methotrexate, an anti-
folate commonly used in treating urological cancers, 
which often induces toxicity. This toxicity can be mit-
igated by urine alkalinization, a process in which so-
dium acetate is particularly effective. By alkalinizing 
urine in patients receiving high doses of methotrex-
ate, sodium acetate helps reduce these adverse effects 
[46]. Additionally, acetate has been shown to inhibit 

urothelial cell proliferation, offering potential thera-
peutic benefits for augmentation cystoplasty [51-53].

Urinary acetate levels can be measured using ad-
vanced techniques such as gas chromatography-mass 
spectrometry or ion chromatography [54,55]. Nonin-
vasive monitoring of acetate concentrations in urine 
serves as a valuable biomarker for various clinical ap-
plications (Figure 2B). These include assessing expo-
sure to ischemic reperfusion injury, predicting renal 
changes following cold ischemia and transplantation, 
and tracking alcohol oxidation [56-58]. These find-
ings highlight the broader clinical utility of acetate in 
urological health, paving the way for further explora-
tion of diagnostic and therapeutic applications.

Acetate Bio-tracers in PET Imaging for Urological 
Oncology and Noncancer Functional Assessment

Building on acetate’s role in urinary toxicities 
and as a biomarker, its use as a bio-tracer in PET 
imaging offers valuable insights into both urologi-
cal oncology and noncancer functional assessments. 
[18F]-Fluorodeoxyglucose ([18F]-FDG) remains the 
most widely used bio-tracer in clinical PET imaging, 
primarily due to its effectiveness in providing meta-
bolic activity readouts. It has proven highly effective 
in identifying rapidly proliferating tumors with high 
glucose uptake [59, 60]. However, [18F]-FDG has lim-
itations: many tumors do not exhibit elevated glucose 
consumption, and some face restricted glucose avail-
ability due to abnormal vasculature [5,61]. As an al-
ternative, [11C]-acetate shows significant promise in 
addressing these gaps [62]. This tracer has proven es-
pecially effective in prostate cancer imaging, assisting 
with tumor localization, detecting early recurrence, 
guiding adaptive radiotherapy, and visualizing bone 
metastases in advanced cases [63-74]. Additional-
ly, [11C]-acetate has demonstrated value in imaging 
bladder and renal cancers [75-81]. Its applications 
across urological oncology underscore its utility for 
non-invasive, dynamic assessments of functional and 
metabolic parameters.

In healthy individuals, [11C]-acetate PET im-
aging enables direct measurement of renal oxygen 
consumption and tissue perfusion across a range 
of perfusion levels, providing valuable insights into 
kidney function. While this technique has yet to be 
validated in patients with chronic kidney disease, it 
holds promise for evaluating ischemic nephropathies 
in individuals considered for revascularization [82]. 
Beyond clinical applications, [11C]-acetate is also a 
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powerful tool for in vivo metabolic research. Recent 
studies in mouse prostate cancer models demonstrate 
that late-phase [11C]-acetate PET-imaging offers en-
hanced contrast, with tracer accumulation in lipid 
fractions that reveal insights into acetate-dependent 
lipogenesis [83]. This versatility underscores [11C]-ac-
etate’s potential to enhance our understanding of uro-
logical cancers, metabolic diseases in urology, and re-
lated conditions (Figure 2C).

Prospective Directions for Future Research

This review outlines acetate’s complex roles in 
urological health, disease treatment, and diagnostics. 
However, numerous gaps remain to be addressed to 
fully harness acetate’s therapeutic and diagnostic po-
tential. Below are several prospective research direc-
tions that could significantly advance this field:

Molecular Mechanisms of Acetate in the Tumor 
Microenvironment and Therapy Resistance: Future 
studies should explore the molecular mechanisms 
through which acetate influences tumor metabolism, 
particularly in prostate and bladder cancers. Under-
standing how acetate impacts pathways such as EMT, 
immune modulation, and chemoresistance could 
shed light on its dual role in both tumor progression 
and therapy resistance. Investigating the context-de-
pendent effects of acetate on cancer aggressiveness 
and metastasis may enable the development of target-
ed strategies that inhibit pro-cancerous actions while 
enhancing immune function and reducing drug re-
sistance associated with EMT. Recent research has 
emphasized the critical role of acetate in tumor cell 
interactions, particularly in nutrient-limited environ-
ments, where tumor cells capture acetate as a carbon 
source to meet both catabolic and anabolic demands 
[19,21,84-86]. This highlights the potential metabol-
ic vulnerabilities within tumors, suggesting that the 
intracellular mechanisms involved in generating and 
shuttling acetate between cells could serve as promis-
ing targets for pharmacologic therapies. 

Acetate as a Biomarker in Urological Diseases: 
Additional studies are needed to validate urinary 
acetate as a non-invasive biomarker for early detec-
tion and progression of urological conditions, such 
as bladder cancer and kidney disease. Research could 
focus on establishing threshold values for urinary ac-
etate that correlate with disease severity and response 
to treatment. Longitudinal studies assessing acetate 
levels in various patient populations would help re-
fine its clinical utility as a biomarker and guide thera-
peutic interventions.

Potential Targets of Acetate Metabolism in Uro-
logical Health and Disease: Acetate metabolism pres-
ents therapeutic opportunities in urological diseases. 
In prostate cancer, inhibiting ACSS2 may disrupt 
tumor aggressiveness and lipid production, while 
modulating acetate levels could counteract EMT and 
EndoMT to reduce chemotherapy resistance and 
enhance antitumor immunity. In bladder cancer, 
targeting acetate-driven resistance pathways, includ-
ing those involving ACSS2, could improve cisplatin 
efficacy. Acetate’s reno-protective effects, such as re-
ducing kidney injury and oxidative stress, further 
underscore its potential to minimize treatment side 
effects. Additionally, acetate’s role as an FFAR2 ligand 
offers pathways to modulate oncogenesis. Dietary or 
microbiota-based approaches to boost acetate levels 
may also benefit chronic kidney diseases and related 
metabolic disorders.

Expanding Applications of Acetate PET Imaging: 
[11C]-acetate PET imaging shows promise for track-
ing metabolic changes in prostate, bladder, and kid-
ney cancers, yet more research is needed to expand 
its clinical applications. Studies could focus on the 
utility of [11C]-acetate PET imaging in monitoring 
therapeutic responses and progression in urological 
cancers, potentially providing a non-invasive alterna-
tive to traditional biopsies. Additionally, evaluating 
the sensitivity and specificity of [11C]-acetate PET 
imaging in non-cancer conditions, such as ischemic 
nephropathies and renal perfusion disorders, could 
broaden its clinical relevance.

Interplay Between Gut Microbiota and Urologi-
cal Health: The role of microbiota-derived acetate in 
urological health and disease remains underexplored. 
Future studies could investigate how dietary interven-
tions, probiotics, and prebiotics that enhance acetate 
production impact urological health. Research in this 
area could establish a link between gut-derived ace-
tate and its protective or detrimental effects on renal, 
prostate, and bladder tissues, providing new insights 
into diet-based preventive strategies and therapies for 
urological diseases.

Exploring Acetate’s Role in Sexual Dysfunction 
and Renal Toxicities: Further studies should delve 
into acetate’s mechanisms in mitigating toxicities, 
such as methotrexate-induced kidney injury and 
lead-induced sexual dysfunction. Understanding 
how acetate contributes to these protective effects on 
a cellular level could open avenues for therapeutic ap-
plications across broader urological conditions, par-
ticularly in addressing renal toxicities associated with 
common urological treatments.
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Preclinical and Clinical Trials for Acetate Supple-
mentation: Clinical trials assessing the impact of ace-
tate supplementation in various urological conditions 
are warranted. This includes evaluating the benefits 
of dietary acetate or SCFA-producing bacteria in pa-
tients with chronic renal failure, prostate cancer, or 
chemotherapy. The findings from these trials could 
establish acetate supplementation as a feasible, ad-
junctive strategy for managing urological diseases 
and enhancing patient outcomes.

Advancing knowledge in these areas will help 
unravel the complexities of acetate metabolism and 
its applications in urological health and disease, with 
the goal of translating findings into actionable thera-
pies and diagnostics.
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