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ABSTRACT
Circular RNAs (circRNAs) are a unique class of closed-loop RNA molecules formed through 
back-splicing of precursor mRNAs that exhibit diverse biological functions. Recent evidence 
highlights their emerging roles as protein-coding entities, particularly in cancer biology. 
This review explores the cap-independent translation mechanisms of circRNAs, focusing on 
internal ribosome entry sites and N6-methyladenosine modifications. We further summa-
rize the biological roles of circRNA-encoded proteins and their relevance to human diseases. 
Additionally, the review addresses key challenges in circRNA research and provides perspec-
tives on their promising potential in disease diagnosis and therapeutic applications.
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1. Introduction
Circular RNAs (circRNAs) are a unique class 

of closed-loop RNA molecules formed through 
back-splicing of precursor mRNAs, lacking 5’ caps 
and 3’ polyadenine tails, which confer enhanced sta-
bility and prolonged cellular retention [1, 2]. Initially 
dismissed as splicing errors, circRNAs are now recog-
nized as key regulators of gene expression, interact-
ing with microRNAs, proteins, and RNA polymeras-
es to modulate transcription and signaling pathways 
[3-6]. Recent advancements, such as the discovery 
of circRNA translation into functional peptides and 
proteins [7-9], have expanded their biological signif-
icance, particularly in cancer, where circRNA-encod-
ed proteins influence tumor progression and therapy 
response [10-12]. This review explores circRNA bio-
genesis, translation mechanisms, and their potential 
clinical applications.

The biogenesis of circRNAs involves a distinc-
tive back-splicing mechanism of precursor mRNAs 
[13], producing a closed-loop structure regulated 
by intracellular factors and external signals. Unlike 

linear mRNAs, circRNAs are classified into three 
main types: exon circRNAs (entirely exons), circular 
intron RNAs (entirely introns), and exon-intron cir-
cRNAs (comprising both exons and introns) [2, 14, 
15]. Inverted repeat sequences play a pivotal role in 
their formation by facilitating splice site proximity 
and enhancing splicing efficiency, often through in-
teractions with splicing factors like SR proteins and 
hnRNPs [11, 16, 17]. Furthermore, the number and 
position of inverted repeat sequences significantly 
impact the abundance and stability of circRNAs and 
may play a role in the development of human diseases 
[13, 16]. Regulatory proteins such as QKI, RBM20, 
and CELF further modulate back-splicing under spe-
cific conditions, influencing circRNA diversity and 
abundance [18, 19]. This intricate regulation under-
scores the complexity of circRNA generation and its 
potential implications in health and disease.

2. Translation Mechanisms of circRNAs
CircRNAs were long considered none pro-

tein-coding due to their lack of canonical translation 
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features, including a 5’ cap and 3’ poly-A tail that 
are deemed essential for cap-dependent translation. 
They were initially misclassified as splicing errors 
or byproducts of mRNA processing and believed to 
lack open reading frames (ORFs), a deemed prereq-
uisite for translation. However, with advancements 
in next-generation sequencing technology, bioinfor-
matics, and experimental techniques, the ability of 
circRNAs to encode proteins via cap-independent 
mechanisms, such as internal ribosome entry sites 
(IRES) or m6A modifications, has come to light.

2.1 IRES-Mediated Translation Initiation
Ribosome recruitment to RNA is a crucial step 

for translation. In eukaryotes, while cap-dependent 
initiation is the primary pathway, translation can 
also proceed via cap-independent mechanisms in-
volving IRESs. A systematic approach for identifying 
IRES elements had been proposed, which uncovers 
thousands of IRES-active sequences in human cells 
[20]. These functional sequences are broadly catego-
rized into two types: one driven by short sequence 
motifs that confer localized sensitivity and the other 
by complex secondary structures that facilitate global 
sensitivity to ribosome binding [21]. For circRNAs, 
which inherently lack the canonical 5’ cap structure, 
IRES-mediated initiation is the predominant mecha-
nism for translation.

IRES elements regulate translation initiation 
through interactions with RNA-binding proteins 
(RBPs) and typically contain intricate secondary 
structures that serve as docking sites for ribosomes. 
These structures enable ribosome guidance via 
RNA-protein interactions, bypassing the need for the 
5’ cap [22, 23]. For instance, during viral infections 
the Sam68 protein undergoes methylation to translo-
cate to the cytoplasm, where it enhances IRES-depen-
dent translation [24]. Specifically, Sam68 recognizes 
stem-loops IV and V of the EV71 IRES and interacts 
with PCBP2 and PABP to increase translation effica-
cy [25-27]. Other RBPs such as FBP1, FBP2, G3BP1, 
hnRNPA1, CSDE1, and GARS, interact with IRES el-
ements to form dynamic RNA-protein networks [28-
33]. These protein-RNA networks respond to cellular 
stress and environmental changes to modulate trans-
lation initiation, thereby fine-tuning protein synthe-
sis adapting to various cellular conditions.

2.2 N6-methyladenosine (m6A)-Mediated 
Translation

M6A is a prevalent RNA modification that plays 
a critical role in the regulation of gene expression, 

particularly in translation [34]. This modification 
regulates translation efficacy by recruiting specif-
ic RBPs known as reader” proteins. Among these, 
YTH domain family proteins (YTHDFs) are key 
players. YTHDF1 enhances translation by binding to 
m6A-modified RNA and interacting with translation 
initiation factors such as eIF3[35-38]. YTHDF2 pro-
motes mRNA degradation by directing m6A-modi-
fied mRNA to processing bodies[39, 40]. YTHDF3 
cooperates with YTHDF1 and YTHDF2, sharing 
RNA targets to modulate both translation and decay 
of methylated RNA (Figure 1)[41-45]. M6A mod-
ifications present in the 5’ untranslated region of 
mRNAs support cap-independent translation , and 
its levels dynamically change in response to cellular 
stress, causing significantly impacts to the translation 
of specific transcription factors [35-38]. For instance, 
during heat shock stress m6A modifications in the 5’ 
untranslated region facilitate the translation of ATF4, 
which is a stress-responsive transcription factor to 
regulate a complex protein network associated with 
stress-induced translation [37, 46-48]. Moreover, 
m6A is also involved in the regulation of viral RNA 
replication and expression. Studies have shown that 
the replication of viruses, such as HIV and SV40, is 
positively regulated by m6A [49, 50]. Notably, m6A 
not only influences the translation of linear RNAs but 
also plays a role in the translation regulation of cir-
cRNAs [51-56]. It had been demonstrated by several 
studies that the translation of circRNAs, such as circ-
MDK, is modulated by m6A modifications, thereby 
responsible for circRNA directed protein synthesis. 
In summary, these studies highlight the capability 

Figure 1. Mechanisms of m6A Reader Proteins in circRNA 
Translation and Decay
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for m6A to mediated cap-independent translation of 
both mRNAs and circRNAs.

2.3 Alternative Mechanisms of circRNA Translation 
Initiation

Evidence indicates that circRNAs can initiate 
translation through splice-dependent mechanisms, 
notably mediated by the Exon Junction Complex 
(EJC)[7, 57-61]. The EJC bound to circRNAs acts 
as a molecular scaffold, recruiting eIF4A3, the eIF3 
complex, and the 40S ribosome, thereby facilitating 
translation initiation. Furthermore, eIF4A3 exhibits 
an intrinsic ability to initiate internal translation in 
an eIF3-dependent manner.

Similar to mRNA, circRNAs can also initi-
ate translation at Non-AUG Codons. For example, 
CircE7, identified in papillomavirus, translates effi-
ciently despite lacking an ATG start codon. Similarly, 
Circ-PAPOLA, which lacks annotated AUG start co-
dons, has been shown to support translation. These 
findings underscore the unique mechanisms under-
lying circRNA translation, expanding the current un-
derstanding of their regulatory roles and functional 
significance[62, 63].

2.4 Types of circRNA Translation
The translation enabled by the closed-loop archi-

tecture of circRNAs can be classified into two distinct 
types: conventional translation (Type A) and special 
translation (Types B and C), each with different out-
comes depending on the presence of stop codons and 
nucleotide sequences. Figure 2 shows a graphic sum-
mary of these three types of circRNA translations. 

2.5 Conventional Translation (Type A)
In the conventional translation of circRNAs, the 

ORFs follow a typical translation process similar to 
mRNA. When the ORFs in circRNAs[64-66]encoun-
ter a stop codon during the initial translation cycle, 
the translation process will terminate in a manner 

similar to the traditional translation process. It will 
result in the production of a peptide, and the trans-
lation process ceases once the stop codon is encoun-
tered. This type of translation follows the classical 
mRNA translation, producing a single peptide. 

2.6 Special Translations
When the translation of circRNAs does not en-

counter a stop codon during the first cycle, special 
translation mechanisms become activated, which will 
result in the translation to proceed beyond the first 
cycle, leading to the possibility of two different types 
of special translation processes:

Non-Triplet Nucleotide Count (Type B): When 
the circRNA sequences do not consist of a nucleotide 
count that is a multiple of three, translation proceeds 
into the second cycle with a ribosomal frameshift. 
This will alter the reading frame, producing a pep-
tide sequence that differs from the initial cycle’s pep-
tide[67, 68]. This ribosomal frameshift can continue 
for several cycles, usually not exceeding three, until 
a stop codon is eventually encountered. This mech-
anism introduces additional diversity of the peptide 
products that are not observed in proteins encoded 
by classically mRNA.

Multiple of Three Nucleotide Count (Type C): 
If the circRNA’s nucleotide count is a multiple of 
three, translation theoretically continues indefinitely, 
producing the same peptide sequence repeatedly in 
a continuous loop. Under such conditions [69-71], 
translation will eventually be terminated by ribosom-
al programmed frameshifts and production of stop 
codons to pause translation. 

3. Functional Diversity of circRNA-Encoded 
Proteins and Peptides

A thorough understanding of circRNAs in dis-
eases, especially cancers, necessitates a functional 
classification. We categorize circRNAs encoding pro-
teins based on their biological functions into tumor 

Figure 2. Three types of protein translation mechanism mediated by circRNAs.
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circRNA Cellular Local-
ization

Initiation 
Mode Length Translation  

Type
Involved  
Diseases Ref.

circFAM53B Cytoplasm IRES 219aa Type A Breast cancer [64]
circDdb1 Cytoplasm IRES 867aa Type C Muscle Atrophy [69]

circSPECC1 Nucleus/
Cytoplasm IRES 415aa Type A Glioblastoma [65]

circFOXP1 Cytoplasm IRES 231aa Type B Intrahepatic
cholangiocarcinoma [73]

circ-SLC9A6 Cytoplasm m6A 126aa Type B Nonalcoholic fatty
liver disease [102]

circCOPA Cytoplasm IRES 99a Type A Glioblastoma [72]
circCAPG Cytoplasm IRES 171aa Type B Breast cancer [81]
circTmeff1 Cytoplasm IRES 339aa Type C Muscle Atrophy [70]

circMAP3K4 Cytoplasm m6A 455aa Type B Hepatocarcinoma [75]

circEIF6 Cytoplasm IRES 224aa Type A Breast cancer [82]
circGSPT1 Cytoplasm IRES 238aa Type A Gastric carcinoma [76]
circSEMA4B Cytoplasm IRES 211aa Type A Breast cancer [83]
circATG4B Cytoplasm IRES 222aa Type A Colorectal cancer [77]
circDIDO1 Nucleus Unverified 529aa Type A Gastric carcinoma [74]
circAXIN1 Cytoplasm IRES 295aa Type A Gastric carcinoma [103]

circE-Cad Secreted/
Membrane IRES 254aa Type B Glioblastoma [67]

circEGFR Secreted/
Membrane Unverified - Type C Glioblastoma [71]

circMAPK14 Cytoplasm IRES 175aa Type A Colorectal cancer [104]
circSMO Cytoplasm IRES 193aa Type A Glioblastoma [84]
circMAPK1 Cytoplasm IRES 109aa Type A Gastric carcinoma [105]
circPLCE1 Cytoplasm IRES 411aa Type A Colorectal cancer [66]
circCHEK1 Cytoplasm IRES 246aa Unverified Myeloma [85]
circFNDC3B Cytoplasm IRES 218aa Type B Colon cancer [68]
circHER2 Cytoplasm IRES 103aa Type A Breast cancer [78]
circPPP1R12A Cytoplasm Unverified 73aa Type A Colon cancer [80]
circβ-catenin Cytoplasm IRES 370aa Type A Liver cancer [106]
circAKT3 Cytoplasm IRES 174aa Type A Glioblastoma [107]
circSHPRH Cytoplasm IRES 146aa Type A Glioblastoma [87]
circGprc5a Cytoplasm Unverified - Unverified Bladder cancer [79]
circPINTexon2 Nucleus IRES 87aa Type A Glioblastoma [86]
circFBXW7 Nucleus IRES 185 Type A Glioblastoma [108]

Table 1.
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targeting apoptosis. By further investigations on cir-
cRNAs, novel anticancer therapies may be developed 
to utilize these encoded proteins to regulate apoptosis 
to effectively inhibit tumor growth.

3.3 Regulation of Autophagy
Autophagy is a cellular degradation and recycling 

mechanism that plays dual pro- and anti-tumor roles 
in cancers. CircRNAs can regulate autophagy by en-
coding proteins, exemplified by circGSPT1, which 
encodes GSPT1-238aa to damage gastric cancer cells 
by inhibiting autophagy [76]. This protein reduces 
autophagy-related proteins such as LC3-II, prevents 
autophagosome maturation by binding to vimentin 
and blocks the fusion with lysosomes. In contrast, 
circATG4B encodes a protein that activates auto-
phagic pathways by increasing LC3-II and Beclin-1 
levels to enhance tumor cell resistance to chemother-
apy in colorectal cancers [77]. Similarly, circCOPA in 
glioblastoma destabilizes the NONO-SFPQ complex, 
increasing the cancer cells’ sensitivity to TMZ by 
compromising their DNA repair mechanisms [72]. 
These findings highlight that circRNAs play complex 
roles in cancer progression by either inhibiting or 
promoting autophagy. 

3.4 Modulating Drug Sensitivity
In addition to circCOPA encoded protein that 

sensitizes therapy-induced DNA damage and cir-
cATG4B encoded protein that activates autophagy, 
the protein encoded by circSPECC1, SPECC1-415aa, 
enhances glioblastoma sensitivity to TMZ through 
inhibiting MGMT and DNA repair machinery [65]. 
Furthermore, HER2-103, encoded by circHER2, pro-
motes tumor malignancy by sustaining AKT signal-
ing through EGFR-HER3 dimerization [78]. HER2-
103 shares high similarity with the CR1 domain of 
HER2, allowing pertuzumab to bind to HER2-103 
and block its activity. These findings provide new av-
enues for developing more effective anticancer strat-
egies and contribute significantly to precision medi-
cine in cancer treatment.

3.5 Regulation of EMT and Tumor Invasion
CircRNA-encoded proteins were reported to 

regulate EMT, a critical process in which tumor cells 
acquire migratory and invasive properties, enabling 
them to metastasize. For instance, circFNDC3B en-
codes a protein that reduces Snail levels, inhibiting 
its transcriptional activity and suppressing EMT in 
colon cancer cells [68]. CircGprc5a encodes a pep-

immunity, apoptosis regulation, autophagy, drug 
sensitivity modulation, epithelial-mesenchymal tran-
sition (EMT), tumor invasion, and specific signaling 
pathways. In each category, circRNA-encoded prod-
ucts have been demonstrated to exert key cellular ac-
tivities that can be potentially utilized as biomarkers 
and therapeutic targets as summarized in Table 1.

3.1 Tumor Immunity
CircFAM53B was demonstrated to enhance an-

ti-tumor immunity through encoding peptides that 
bind to MHC I and MHC II molecules, as well as T 
cell surface receptors [64]. It enables the encoded pep-
tides to be presented to dendritic cells, leading to the 
activation of CD4+ and CD8+ T cells into effector T 
cells to exert effective cytotoxicity against tumor cells 
expressing these peptides. CircFAM53B-based vac-
cines have demonstrated strong tumor-suppressive 
effects in animal models, positioning circFAM53B 
as a promising candidate for cancer immunotherapy 
and the development of novel anti-tumor vaccines.

3.2 Regulation of Apoptosis
Protein coding circRNAs were reported to be 

pro-apoptotic to suppress tumor progression. Circ-
COPA encodes a protein that destabilizes the NO-
NO-SFPQ complex, resulting in defects of RNA 
splicing and DNA repair in cancer cells. The peptide 
renders glioblastoma cells more vulnerable to chemo-
therapeutic agent such as temozolomide (TMZ) [72]. 
Similarly, circFOXP1 enhances ferroptosis in intra-
hepatic cholangiocarcinoma cells by modulating iron 
metabolism, leading to increased reactive oxygen spe-
cies (ROS) accumulation and subsequent cell death 
[73]. CircDIDO1 encoding a protein DIDO1-529aa 
that can destabilize the antioxidant, PRDX2, promot-
ing apoptosis in gastric cancer cells exposed to oxi-
dative stress [74]. In contrast, other circRNAs were 
demonstrated to be anti-apoptotic to facilitate tumor 
cell survival and promoting tumor progression. For 
example, circMAP3K4 modulated by m6A encodes a 
peptide that inhibits the Bax/Bcl-2 ratio that led to re-
duced mitochondrial outer membrane permeability 
and suppression of apoptotic signaling in hepatocel-
lular carcinoma [75]. Thus, circMAP3K4 helps tumor 
cells evade cell death mechanisms and survive un-
der adverse conditions, contributing to liver cancer 
progression. The distinct roles of these circRNAs in 
apoptosis regulation provide important insights into 
the complex mechanisms of tumor progression and 
offer new directions for cancer treatment strategies 
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tide that activates the ERK/MAPK and PI3K/AKT 
signaling pathways, enhancing bladder cancer cell in-
vasion and metastasis [79]. Similarly, circPPP1R12A 
promotes YAP nuclear translocation, driving inva-
sion and metastasis in colon cancer [80]. CAPG-
171aa activates pathways like PI3K/AKT and Focal 
Adhesion, enhancing tumor growth and invasion in 
triple-negative breast cancer [81]. These findings em-
phasize the key roles of circRNAs in regulating EMT 
and tumor metastasis, providing insights into cancer 
progression and potential therapeutic targets.   

3.6 Regulation of Specific Signaling Pathways
CircRNA encoded proteins also regulate several 

signaling pathways such as Wnt, AKT, Hippo-YAP, 
and Hedgehog, to influence cancer cell proliferation 
and invasion. CircEIF6 encodes EIF6-224aa to sta-
bilize MYH9 and activate the Wnt/β-catenin signal-
ing, which in turn promoting triple-negative breast 
tumors [82]. CircMAPK1 inhibits MAPK signaling 
to suppress gastric cancer cell growth [83], while 
circSEMA4B encodes SEMA4B-211aa to reduce 
AKT activation and limit breast cancer proliferation. 
In glioblastoma, circSMO enhances Smoothened 
activity in the Hedgehog pathway, driving tumor 
progression [84]. CircAKT3 inhibits the AKT path-
way to reduce glioblastoma cell proliferation, and 
circPPP1R12A activates the Hippo-YAP pathway, 
promoting colon cancer metastasis [80]. Additional-
ly, circPLCE1 regulates NF-kB to suppress colorectal 
cancer progression, and circGprc5a enhances blad-
der cancer metastasis by activating ERK/MAPK and 
PI3K/AKT pathways[79]. CircCAPG and circE-Cad 
promote tumor growth and invasion in triple-neg-
ative breast cancer and glioblastoma by activating 
multiple signaling pathways [67, 81]. Together, these 
finding offer new insights into cancer biology and po-
tential targets for therapy.

3.7 Other Functions
Two other functions of circRNA encoding pro-

teins are ferroptosis and chromosomal stability. 
CircFOXP1 promotes ferroptosis by enhancing iron 
accumulation and lipid peroxidation, increasing 
tumor sensitivity to oxidative stress, and reducing 
cholangiocarcinoma recurrence [73]. CircCHEK1 
encodes CHEK1-246aa, which induces chromosom-
al instability by disrupting chromosome segregation, 
accelerating multiple myeloma progression [85]. Cir-
cLINC encodes a peptide that suppresses oncogenic 
transcriptional elongation in glioblastoma by inter-

acting with RNA polymerase II, inhibiting tumor cell 
proliferation and invasion [86]. Additionally, circSH-
PRH encodes a protein that enhances DNA repair, re-
ducing glioma formation by promoting homologous 
recombination and non-homologous end joining 
[87]. These circRNAs reveal the complexity of cancer 
biology and highlight their potential for therapeutic 
targeting.

4. Current Challenges and Future Perspectives
The investigation on circRNA-encoded proteins 

faces challenges due to their high diversity, tissue 
specificity, and complex roles in biological processes 
[1, 88]. Traditional CRISPR methods struggle with 
targeting circRNAs due to overlap with their linear 
mRNA counterparts, complicating functional vali-
dation [89]. Despite these hurdles, circRNA-encoded 
proteins hold significant promise for cancer therapy, 
offering new avenues for targeted treatments by in-
fluencing cellular signaling, autophagy, and metas-
tasis [90]. Integrating advanced tools like long-read 
sequencing, high-resolution imaging, and CRIS-
PR-Cas13 will help uncover the precise roles of these 
proteins in diseases [91]. Their stability and specific-
ity make circRNAs potential targets for therapeutic 
interventions by using antisense oligonucleotides, 
small-molecule inhibitors, and cancer vaccines [92]. 
Moreover, the roles of circRNA-encoded proteins in 
non-cancer diseases like neurodegenerative and car-
diovascular conditions warrant further exploration. 
These studies will facilitate the translation of circRNA 
research into clinical applications, advancing both di-
agnostic and therapeutic strategies [93].

Circular RNAs (circRNAs) are emerging as a 
promising platform for next-generation RNA vac-
cines due to their stability, ease of storage, low immu-
nogenicity, and safety profile, as they do not integrate 
into the host genome. In 2022, circRNA vaccines made 
significant strides in COVID-19 prevention. Synthet-
ic SARS-CoV-2 circRNA vaccines encoding the spike 
protein binding domain activated antigen-presenting 
cells, eliciting a strong immune response [94-96]. A 
circRNA vaccine designed with Zika virus envelope 
domain III (EDIII) and IgG1 Fc successfully trig-
gered immune responses in mice, offering protection 
against Zika infection[97]. Beyond viral applications, 
circRNA vaccines have shown promise in cancer im-
munotherapy. A synthetic circRNA vaccine encoding 
chicken ovalbumin (OVA) demonstrated strong im-
mune activation in melanoma [98-100]. Addition-
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ally, in vitro-amplified endogenous circRNAs can 
induce potent anti-tumor responses. For example, 
circFAM53B-encoded peptides activate both CD4+ 
and CD8+ T cells, enhancing anti-tumor immuni-
ty[64]. Furthermore, circRNA vaccines derived from 
immunogenic peptides encoded by lncRNA-H19 
have proven effective against gliomas [101]. Despite 
these advances, circRNA vaccine research is still in 
early stages, with challenges remaining in improving 
circRNA cyclization efficiency, antigen yield, vaccine 
purity, and delivery methods.

5. Conclusion
CircRNA-encoded proteins play crucial roles in 

cancer and other diseases by influencing key bio-
logical processes such as cellular signaling, autoph-
agy, and apoptosis. Unlike traditional non-coding 
RNAs, circRNAs encoded proteins to impact cancer 
initiation, progression, and treatment response. As 
research progresses, circRNA-encoded proteins are 
emerging as potential therapeutic targets for diseas-
es like cancer. Advancements in experimental tech-
niques, gene editing, and bioinformatics will enhance 
our understanding of their mechanisms, offering new 
insights for diagnosis and treatment. 
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