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ABSTRACT
Lin28, a conserved RNA-binding protein, promotes cancer stem cell features, epitheli-
al-to-mesenchymal transition, and treatment resistance. Lin28 operates through canonical 
and non-canonical pathways, contributing to its diverse biological functions. In the canonical 
pathway, Lin28 binds directly to pre-Let-7 microRNA, blocking its maturation and promoting 
its degradation. This Let-7-dependent pathway influences cellular processes by regulating 
Let-7 target mRNAs, which are involved in proliferation, differentiation, and metabolism. In 
contrast, the non-canonical pathway is Let-7-independent and involves Lin28 interacting 
directly with specific DNA regions, mRNAs, or proteins. Through these interactions, Lin28 
regulates translation, RNA stability, and other cellular processes, often contributing to tumor 
progression and treatment resistance. These distinct pathways highlight the complexity of 
Lin28 in cancer biology and its potential as a therapeutic target. We highlight computational 
drug discovery advances targeting Lin28 utilizing virtual screening and machine learning. 
Generative artificial intelligence provides an opportunity to develop inhibitors for chal-
lenging targets like Lin28 by designing novel molecules tailored to such unconventional 
targets. This work integrates current knowledge and technology to demonstrate the ther-
apeutic potential of Lin28 and outline future techniques to overcome RNA-binding protein 
targeting challenges.
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Introduction
Cancer has high cellular heterogeneity; hence, tu-

mor subpopulations respond differently to treatment. 
This variety at genomic, transcriptome, and RNA 
processing levels helps produce therapy-resistant 
tumor cells with co-existing phenotypes. Designing 
effective medicines is difficult due to tumor heteroge-
neity. Lin28, an RNA-binding protein that regulates 
cellular processes, drives cancer stem cell (CSC) phe-
notypes, epithelial-to-mesenchymal transition, tu-
mor growth and resistance [1]. Lin28 inhibits Let-7, 
promoting tumor cell plasticity, which enables cells 
to adapt to therapy-induced stress, increasing their 
aggressiveness and resistance, as observed in prostate 
cancer [2]. In addition to controlling Let-7, Lin28 has 
been demonstrated to directly interact with mRNAs 
to promote translation and regulate gene expression 
independently of Let-7. These additional methods, 
though not yet fully understood, may provide insight 
into the role of Lin28 in cancer biology. 

This review examines Lin28’s roles in cancer pro-
gression, focuses on its traditional pathway through 

Let-7 control and its emergent, less well-character-
ized functions. We address how Lin28 drives prostate 
cancer stemness, metastasis, and therapy resistance, 
and current breakthroughs in targeting Lin28 with 
small compounds to suppress CSC characteristics 
and overcome treatment resistance. RNA-binding 
proteins (RBPs) are notoriously difficultly target-
ed, making Lin28 targeting become a challenge. 
Small-molecule inhibitors and computational drug 
design are promising but need refining to increase 
potency and specificity, and to decrease off-target ef-
fects. Lin28 is an appealing therapeutic target because 
of its pivotal involvement in tumor plasticity and de-
velopment. Understanding its complete spectrum of 
actions could lead to the development of more effec-
tive cancer treatments.

Biological Roles of Lin28
Lin28 is a conserved RNA-binding protein, ex-

isting as two isoforms, Lin28A and Lin28B, that reg-
ulate gene expression through canonical or non-ca-
nonical pathways [3]. While its canonical function 
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is to regulate Let-7 microRNA (miRNA) maturation 
and degradation, Lin28 also plays diverse roles in reg-
ulating mRNA translation, stress responses, and long 
non-coding RNAs [4]. These functions have signifi-
cant implications for stem cell biology, development, 
and diseases, particularly cancer.

Canonical Pathways: Regulation of Let-7 miRNA 
Biogenesis

The canonical Lin28 function involves the sup-
pression of Let-7 miRNA maturation, a mechanism 
essential for its control of pluripotency and carcino-
genic pathways. Within the nucleus, Lin28B associ-
ates with pri-Let-7, inhibiting its processing by the 
Drosha/DGCR8 complex, thereby impeding the early 
phase of Let-7 development. Within the cytoplasm, 
Lin28A and Lin28B associate with pre-Let-7 and en-
list the Tutase4/7 enzyme, which polyuridylates pre-
Let-7, signaling it for breakdown by exonucleases 

such as Dis3l2 [5–9]. Thus, Lin28 inhibits Let-7 by 
either blocking its biogenesis or promoting its deg-
radation, disrupting the regulatory functions of Let-
7 and leading to the derepression of key oncogenes 
such as Myc, Ras, and HMGA2 [7]. This results in 
enhanced cell proliferation, survival, tumorigenesis, 
and the maintenance of stem-like characteristics [8, 
9]. In contrast, Let-7 miRNAs act as tumor suppres-
sors and are essential regulators of differentiation by 
downregulating pluripotency-associated proteins like 
Sox2, Oct4, and Lin28 [1]. The interaction between 
Lin28 and Let-7 forms a tightly controlled feedback 
loop that regulates cell fate, stemness, and oncogenic 
potential (Figure 1A).

Previous research highlights the critical role of 
the Lin28/Let-7 axis in the development of CSC phe-
notypes, particularly through mechanisms involving 
oncogene upregulation and treatment resistance [11–
14]. Low levels of Let-7 promote the upregulation of 

Figure 1: Lin28 biological pathways [10]. A) Lin28 canonical pathway (Let-7 dependent). This pathway is Let-7 dependent and 
illustrates how Lin28 binds to pri-Let-7 and pre-Let-7 microRNA, blocking its maturation and promoting its degradation. The in-
hibition of Let-7 leads to downstream effects on its target genes, regulating processes such as proliferation, differentiation, and 
metabolism. B) Lin28 non-canonical pathway (Let-7 independent). This pathway is Let-7 independent, highlighting the direct 
interactions of Lin28 with mRNAs and proteins. These interactions influence various cellular processes, including translation and 
metabolic regulation, independent of Let-7. TUT: TUTase; RISC: RNA-induced silencing complex; m6A: N6-Methyladenosine; Me: 
Methylation.
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key oncogenes such as HMGA2 and RAS, enhancing 
self-renewal and suppressing differentiation in breast 
and pancreatic cancers [14]. Similarly, the suppres-
sion of Let-7 has been linked to increased expression 
of pluripotency genes (e.g., Sox2, Oct4, Nanog), con-
tributing to therapy resistance and metastasis [12]. 
Additionally, aberrant regulation of several signaling 
pathways, including Wnt/β-catenin, NOTCH/hedge-
hog, and STAT3/NFκB, has been associated with the 
Lin28/Let-7 axis in promoting CSC phenotypes and 
metastatic potential [11]. In breast cancer, for exam-
ple, Let-7-induced suppression of the Wnt pathway 
reduces CSC renewal and resistance to therapies 
like tamoxifen [15]. In lung and esophageal cancers, 
Let-7-mediated inhibition of these pathways has sim-
ilarly suppressed EMT and enhanced re-sensitization 
to chemotherapy [16, 17]. Overall, the Lin28/Let-7 
axis plays a key role in regulating CSC biology and 
could serve as a valuable target for addressing therapy 
resistance and metastatic progression in cancer.

Non-Canonical Pathways: Let-7-Independent Roles of 
Lin28

While Lin28 primarily regulates Let-7 microR-
NA production, growing data underscore its exten-
sive roles in other physiological processes, including 
mRNA translation, RNA stability, stress response, 
and metabolic regulation. These non-canonical func-
tions are essential for proper development, cellular 
differentiation, and cancer progression.

Lin28 directly interacts with mRNAs, including 
OCT4, to recruit RNA helicase A, thereby augment-
ing translation and preserving pluripotency in em-
bryonic stem cells [18]. In response to stress, Lin28 
assembles stress granules with G3BP1 and YB-1 to 
stabilize mRNAs and inhibit superfluous translation, 
thus promoting cell survival [19, 20]. In P-bodies, 
Lin28 facilitates RNA breakdown, thereby enhancing 
its influence on RNA metabolism [21]. Furthermore, 
LIN28 regulates mRNA methylation at m6A sites, af-
fecting stability, splicing, and translation to control 
gene expression [22].

In addition to RNA metabolism, Lin28 facili-
tates fatty acid production and tumor proliferation 
by augmenting the translation of SREBP-1 and SCAP 
mRNA in hepatic cancer cells [23]. It also engages 
with the IGF2-mTOR pathway, binding mRNAs such 
as IGF1R and AKT to modulate cell survival, growth, 
and differentiation [24]. Additionally, Lin28 affects 
cell cycle progression by regulating genes like CDK2 
and Cyclin B, which are crucial for both normal and 

cancerous cell growth [25]. It also influences alter-
native splicing via splicing factors such as TIA-1 and 
hnRNPF, independent of Let-7 regulation [26].

Despite RNA-related functions, Lin28b acts as 
a DNA-binding protein by interacting with the pro-
moter region of miR-181d, thereby enhancing its ex-
pression. This subsequently inhibits PDCD4 by tar-
geting its 3’ UTR, thus promoting the proliferation 
of chronic myeloid leukemia cells [27]. These diverse 
roles position Lin28 as a crucial regulator of gene ex-
pression, connecting development, metabolism, and 
illness. Its considerable effect highlights its impor-
tance beyond Let-7 control (Figure 1B).

Challenges in Targeting RNA-Binding Proteins
RBPs, including Lin28, are challenging drug 

targets due to their structural and functional char-
acteristics [28]. Unlike enzymes or receptors with 
well-defined binding pockets, RBPs typically feature 
shallow, dynamic, and disordered RNA-binding sur-
faces [29]. These dynamic interactions, spread over 
broad regions, lack the deep, pocket-like geometries 
suitable for small-molecule binding, complicating 
virtual screening (VS) and drug design [29]. Addi-
tionally, RBPs typically interact with diverse RNA 
sequences and structures, making selective targeting 
difficult and further increasing the risk of off-target 
effects [28].

Computer-Aided Drug Development and Artificial 
Intelligence (AI) for Lin28 Targeting

Despite these difficulties, Lin28 has been con-
sensually validated as a therapeutic target with the 
potential to block Lin28-RNA interactions for tu-
mor suppression [30–32]. Over the past decades, 
drug discovery campaigns targeting Lin28 and other 
RNA-binding proteins have heavily relied on tradi-
tional computer-aided drug design (CADD) tech-
niques, such as VS [33, 34]. Molecular docking, a 
cornerstone of structure-based VS, offers a compu-
tationally efficient alternative to labor-intensive wet 
lab screening for libraries containing millions of mol-
ecules and has been consistently applied to Lin28 in-
hibitor screening in multiple studies [31, 32]. 

Although traditional in-silico methods have 
played a crucial role in the early-stage exploration of 
RBPs, particularly through the screening of existing 
chemical libraries, these approaches are inherently 
limited by the size and diversity of available datasets, 
making brute-force screening impractical [1, 31, 32].
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Applications of AI in Drug Development
Machine learning (ML), in particular, has 

emerged as a valuable tool across various stages of 
drug discovery, offering the capability to efficiently 
process and analyze vast datasets [35–37]. For exam-
ple, Deep Docking, a deep neural network enhanced 
with active learning, was utilized to identify inhibi-
tors of Lin28 [32, 38]. An active learning algorithm 
of Deep Docking allowed screening of a billion-scale 
library with enhanced training of a model on bet-
ter-docked compounds and eliminating predicted 
poor binders. In a recent study, graph neural net-
works (GNNs) were applied for virtual screening of 
a chemical library against another RNA target [39]. 

ML offers a transformative solution by reducing 
the computational burden of exhaustive screening, 
but its effectiveness still remains tied to the limita-
tions of the pre-existing datasets it analyzes [40]. In 
contrast, generative AI approaches represent a rev-
olutionary advance in VS. Generative AI refers to 
AI systems that create new data (de novo), such as 
molecular structures, by learning patterns from ex-
isting datasets [40]. Generative AI models are ini-
tially trained on collections of compounds and their 
known biological properties, enabling them to gen-
erate novel molecular candidates that align with spe-
cific pharmacological profiles (Figure 2). Contrary to 
traditional VS methods, generative AI efficiently ex-
plores chemical space while simultaneously optimiz-

ing compound properties and minimizing the time 
and costs associated with traditional experimental 
screening. This is particularly crucial when working 
with unconventional or difficult-to-screen targets 
[40, 41]. Instead of searching vast datasets for specific 
types of molecules, generative AI delivers molecules 
tailored to desired characteristics, enabling a more 
targeted and efficient approach to drug discovery [40, 
41]. As a result, generative AI significantly accelerates 
and democratizes the drug discovery process. The 
application of AI in targeting RBPs is increasingly in 
demand, particularly as traditional drug discovery 
methods often struggle with these challenging targets 
[41], as de novo design offers a highly efficient solu-
tion when conventional approaches fail. Unlike tra-
ditional techniques that rely on predefined datasets 
or well-defined binding pockets, generative AI excels 
in designing novel molecules tailored to complex or 
unconventional targets, such as the shallow and dy-
namic surfaces typical of RBPs [42].

Success Stories and Recent Advances
In recent years, the use of generative AI with di-

verse molecular representations, architectures, and 
applications for addressing target design challenges 
has grown exponentially [43]. De novo drug design 
has emerged as a powerful approach for generating 
novel chemical structures with desired molecular 
profiles, such as specific biological activities. Among 

Figure 2. De novo AI generation pipeline illustrating a generalized approach for using generative AI in conditional neural 
networks. A molecular representation is input into the neural network, which is optimized using a scoring function. The neural 
network then generates de novo molecules based on the input template, with the process enhanced by the scoring function.
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models to accurately predict and design small mole-
cules that modulate these interactions [48]. 

To address these issues, hybrid AI models inte-
grating structural and sequence-based information, 
alongside molecular dynamics simulations, could 
improve the prediction accuracy for RBP-targeted 
small molecules [48]. Multi-objective optimization 
and transfer learning approaches can enhance spec-
ificity and reduce off-target effects [48]. Finally, AI 
predictions must be validated through iterative feed-
back with high-throughput screening and real-time 
experimental testing to refine models [48]. 

To tackle the challenges of targeting RBPs, such 
as Lin28, AI-driven optimization should prioritize 
specific objectives, such as increasing binding affinity 
to Lin28 and improving pharmacokinetic properties, 
guided by experimental data from lead compounds. 
Emerging de novo design approaches, such as diffu-
sion models, offer the potential to design molecules 
directly within target binding sites, expanding the 
capabilities of de novo drug design for complicated 
targets [49]. Additionally, experimental validation 
of AI-generated candidates remains a critical step to 
ensure the practical applicability and effectiveness of 
these innovative methodologies [48].
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