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ABSTRACT
Background: Oxidative stress contributes to the development of prostate adenocarcinoma 
(PRAD). However, the prognosis prediction and therapy response predicted based on oxi-
dative stress-associated genes lacked comprehensive study. Herein, an integrated bioinfor-
matics approach was adopted to identify the prognosis-associated oxidative stress genes for 
prostate cancer.
Methods: From Gene-Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases, the transcriptomic data and clinical data were collected. Genes related to oxida-
tive stress were retrieved from oxidative stress pathway “GOBP_RESPONSE_TO_OXIDATIVE_
STRESS” in the MsigDB. A risk model was constructed based on the hub genes selected by 
both WGCNA and LASSO analysis. RT-qPCR analysis and CCK-8 were carried out to validate 
the results. GEO cohort was used for verifying the model robustness. By running CIBER-
SORT and ESTIMATE algorithm, immune cell infiltration was quantified. TIDE algorithm and 
Spearman correlation analysis were used for evaluating the immunotherapy response and 
drug sensitivity. 
Results: We established oxidative stress-related gene signature (NUDT7, NTRK3, MAP3K12, 
DRD5, C3orf18, and B3GALT2) as an independent factor for the prognostic survival of pros-
tate cancer. In virto experiments showed that MAP3K12 had a higher expression in prostate 
cancer cell lines, and knockdown of MAP3K12 inhibited PC3 cell viability. The risk score was 
positively linked with T_ cells_ regulatory_ Tregs and Macrophages_ M2 and negatively linked 
with Plasma_cells. High-risk patients showed higher expressions of PDCD1, CD274, CTLA4, 
LAG3, PDCDILG2, BTLA, HAVCR2, TIGIT, and higher myeloid-derived suppressor (MDSC) score. 
Docetaxel, Cisplatin, and Bicalutamide could benefit low-risk patients more. Calibration 
curves and DCA showed an accurate prediction by the nomogram.
Conclusion: We established a novel and reliable prognostic model for prostate cancer 
patients.
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Introduction
Prostate cancer is a heterogeneous cancer [1] that 

ranks the most frequently diagnosed male cancer in 
most countries [2, 3]. The latest statistical showed 
that prostate cancer (PCa) is the fourth most frequent 
malignancy and the eighth major cancer-correlated 
death cause, with more than 1,466,680 new cases and 
396,792 deaths in 2022 [4-6]. Prostate adenocarci-
noma (PRAD) as the most common subtype of PCa 
is usually diagnosed at an advanced stage. However, 
treatment of prostate cancer is difficult because we 
lack clear early clinical symptoms of prostate cancer, 
which often results in a late diagnosis and excludes 
the chance for taking surgery on one hand, at the 

same time, the use of prostate-specific antigen is the 
most frequently applied indicator for the diagnosis 
and prognosis of prostate cancer but its application 
was limited by its poor specificity [7]. Other thera-
peutic strategies, such as radiotherapy, chemothera-
py, androgenic suppression, or immunotherapy may 
provide survival benefit for patients with advanced 
prostate cancer [8-10], but personalized therapy re-
mained a major challenge. Hence, it is helpful to 
identify multiple biomarkers to more accurately pre-
dict the prognosis for patients with prostate cancer.

The occurrence and development of cancer are 
closely related to oxidative stress. The initiation and 
developed of human cancers involves the critical role 
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of oxidative stress [11-14], which refers to the im-
balance of the generation of reactive oxygen species 
(ROS) that disrupts endogenous antioxidant defense 
mechanisms against reactive intermediates and af-
fects the repair of damages to the organs and cellu-
lar systems [15]. Increased ROS can lead to proteins, 
DNA, membrane lipids damage, and dysfunctions to 
signal transduction pathways, normal cellular func-
tion, and cell death [16]. Oxidative stress also con-
tributes to the prostate cancer development [17]. Spe-
cifically, prostate cancer is predominant among older 
men and age-associated functional loss is related to 
the accumulation of oxidative damages resulted from 
ROS [18]. In addition, previous studies have shown 
that oxidative stress-targeted therapy can effectively 
inhibit the survival of cancer cells [19]. In comparison, 
research on global genes faces numerous difficulties. 
Key information is easily obscured by the vast number 
of genes, making it hard to identify effective targets. 
Therefore, focusing on oxidative stress-related genes is 
helpful for the prognostic prediction of prostate cancer 
and promotes personalized treatment.

Against the backdrop of in-depth exploration 
of the diagnosis and treatment dilemmas of prostate 
cancer, clarifying the close connection between ox-
idative stress and the occurrence and development 
of cancer has pointed out the direction for research. 
Studies found that multiple prognostic genes identi-
fied by recent bioinformatics analyses were integrat-
ed into a single prognosis model, which can predict 
the prognosis and improve treatment response [20]. 
Thus, this study was designed to screen prognostic 
genes based on oxidative stress for prostate cancer 
patients and establish a prognostic model to further 
improve prediction accuracy. To determine the hub 
genes from TCGA-PRAD cohort, WGCNA and LAS-
SO Cox regression analysis were employed. A risk 
model was developed based on risk score and its ro-
bustness was verified in a GEO cohort. The two risk 
types were analyzed in terms of gene mutation char-
acteristics, pathway characteristics, immune micro-
environment, and immunotherapy response. Finally, 
we probed into the connection between the risk score 
and drug sensitivity.

Material and methods

Data collection and processing
The RNA-sequencing analysis was performed ac-

cording to the clinical data and gene expression pro-
files of prostate cancer patients downloaded from the 

TCGA-PRAD (https://portal.gdc.cancer.gov/) proj-
ect using Genomic Data Commons Application Pro-
gramming Interface. A total of 459 primary prostate 
cancer samples were obtained. Among these, patients 
without clinical status or follow-up data were deleted, 
keeping those with survival time longer than 30 days. 
Gene symbol IDs were converted from ensembl gene 
IDs. The gene expression profiles of GSE70769 [21] 
containing 92 prostate cancer samples was obtained 
from GEO (https://www.ncbi.nlm.nih.gov/geo/) da-
tabase and used as a validation cohort. Further, based 
on the annotation information, probes were mapped 
to the gene and those matched to multiple genes were 
excluded. The median value of a gene matching to 
multiple probes was taken. The “limma” package [22] 
in R software was employed to process and normalize 
the raw data from the above data. 

Oxidative stress-related genes were collected from 
“GOBP_RESPONSE_TO_ OXIDATIVE_STRESS” in 
the Molecular Signatures Database (MsigDB, https://
www.gsea-msigdb.org/gsea/msigdb).

Development of a risk model and verification
For identification of oxidative stress related mod-

ules, “WGCNA” package [23] in R was employed to 
conduct WGCNA analysis. The soft-thresholding 
powers β = 7 was selected. Thereafter, average-link-
age hierarchical clustering was performed to trans-
form adjacency matrix into a topological overlap ma-
trix. Cluster analysis was performed using, with each 
module containing a minimum number of 30 genes. 
Then, the eigengenes were calculated, and close mod-
ules with deepSplit = 2, height = 0.25, and minMod-
uleSize = 30 were merged into a new one. The WGC-
NA package was employed to setect the modules 
with high correlation coefficients for the connection 
between modules and oxidative stress score. Subse-
quently, the hub gene in the “oxidative stress-asso-
ciated module” with |cor| > 0.4 and p < 0.05 were 
identified, and genes with the greatest prognostic 
significance were considered as candidates related to 
oxidative stress. Furthermore, the range of genes was 
reduced by LASSO regression analysis using “glmnet” 
package [24] in R to identify the most crucial prog-
nostic genes.

The formula of the risk score was:
, 

where “β” and “i” refer to the Cox regression coef-
ficient value and the value of gene expression, re-
spectively. According to the threshold value “0”, 
TCGA-PRAD patients were stratified into low- and 
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high-risk score subgroups. KM analysis and log-rank 
test were applied to plot survival curve and to assess 
difference significance, respectively. The validation 
set was similarly analyzed as the TCGA-PRAD co-
hort to validate the robustness of the risk model. The 
packages “timeROC” [25] was also employed to ana-
lyze the prediction accuracy.

Cell culture and transfection
RWPE-1 and 3 prostate cancer cell lines (PC3, 

DU145, C4-2B) as well as nonneoplastic and immor-
talized adult human prostatic epithelial cells were 
purchased from ATCC (USA). Those cells were cul-
tured in 5% CO2 at 37°C. The cells were transfected 
with small intern RNA (siRNA) synthesized by Ge-
nePharma (Suzhou, China) applying Lipofectamine 
2000 (Invitrogen, USA).

Quantitative real-time (qRT-PCR) analysis
Total RNA was isolated with RNAiso plus (Ta-

kara, Japan). PrimeScript RT reagent Kit (Takara, 
Japan) was employed to performed reverse transcrip-
tion, and quantitative PCR (q-PCR) was carried out 
with SYBR Premix Ex Taq (Takara, Japan) on a ther-
mal cycler (CFX96, Bio-rad, USA). The relative ex-
pression of mRNA was determined using β-actin as 
the loading control by 2−ΔΔCt method. See Table 1 for 
the primers used. 

vival and oxidative stress score. T Stage is common-
ly used to describe the local situation of the primary 
tumor. T0 indicates no evidence of a primary tumor. 
T1 to T4 represent progressively increasing tumor 
sizes. N Stage is used to describe whether the can-
cer has spread to nearby lymph nodes. N0 indicates 
no lymph node involvement. N1 indicates regional 
lymph node metastasis. The overall survival (OS) was 
evaluated using the “Survminer 0.4.9” packages [27] 
in R to perform the Kaplan-Meier (KM) analysis.

Enrichment analysis
The “fgsea” package [28] in R was used to identify 

biological processes pathways involved. Here, all the 
candidate gene sets in KEGG database were used for 
GSEA between the two risk groups. The “clusterPro-
filer” package [29] in R was employed for function 
annotation. The correlation heatmap between path-
way enrichment score and risk score was generated 
by “ggcorrplot” package [30].

Gene mutation features between the two risk 
score groups

To assess genomic changes between the two risk 
score groups in the TCGA-PRAD cohort, the molec-
ular features of TCGA-PRAD were collected from 
a previous pan cancer study [31]. The correlation 
among the risk score in the TCGA-PRAD cohort and 
genomic changes were also analyzed by Spearman 
correlation analysis using “cor.test” method in R. Dif-
ference in somatic mutation between the two groups 
was compared employing Chi square test.

Assessment of immune cell infiltration
The relative abundance of 22 types of immune 

cells in prostate cancer was measured by the CIBER-
SORT algorithm (https://cibersort.stanford.edu/)
[32]. Meanwhile, immune infiltration was computed 
applying the ESTIMATE algorithm [33]. A total of 29 
gene signatures associated with immune infiltration 
were extracted from a past study [34]. The scores of 
29 gene signatures were computed for each patient 
by performing ssGSEA analysis in “GSVA” package 
[26]. The oncogenic activities of cell-specific signal-
ing pathways such as p53, MAPK, EGFR, VEGF, and 
PI3K was calculated using The “PROGENy” algo-
rithm [35].

Immunotherapy response prediction
Based on gene expression profiling, immune 

checkpoint blockade (ICB) could be evaluated by 

Table 1. primers of genes
Genes Forward Reverse
MAP3K12 GTACTCTCCACACCCCAGGA GGCTCTCTCCAGCTTCCTTT
b-actin ACCCAGAAGACTGTGGATGG CACATTGGGGGTAGGAACAC

Cell viability assay
The transfected cells were planted into a 96-well 

plate. After cell incubation for 24 hours (h), 10 μL of 
CCK-8 solution (DOJINDO, Kumamoto, Japan) was 
added to further incubate the cells at 37 °C for 3 h. 
Finally, the absorbance in the 96-well plates was mea-
sured at 450 nm.

The relationship between clinical characteristics, 
risk score, and oxidative stress score classification 
in prostate cancer

Each sample in the TCGA-PRAD cohort was 
calculatedd with an oxidative stress score using the 
ssGSEA in “GSVA” package [26] in R. The clinical 
significance of oxidative stress score in prostate can-
cer patients was assessed compared according to the 
associations of clinicopathological characteristics (T 
Stage, N stage, age and Gleason score), patients’ sur-
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running TIDE algorithm (http://tide.dfci.harvard.
edu/) [36]. Clinical responsiveness of patients to ICI 
therapy was estimated by running TIDE algorithm.

Correlation analysis between the drug sensitivity 
and risk score

The sensitivity of prostate cancer patients to 
chemotherapy drugs was analyzed based on GDSC 
(https://www.cancerrxgene.org/). The connection 
between drug sensitivity and risk score with |Rs| > 0.2 
was subjected to the Spearman correlation analysis, 
with adjusted FDR < 0.05 as a significant correlation. 
Then, the “pRRophetic” package [37] in R was em-
ployed to calculate IC50.

Development of a nomogram
Independent predictors for the prognosis of 

prostate cancer cells were selected by performing 
univariate and multivariate Cox regression analysis. 
Using “RMS” package [38] in R. The risk score and 
clinicopathological features were combined to build a 
nomogram. Calibration plots and DCA were used to 
assess the reliability of the model. 

Statistical analysis
The R version 4.1.2 was employed in all the sta-

tistical analyses. The Wilcoxon rank-sum test or 
Kruskal–Wallis test was used to analyze continuous 
variables. The Chi-square test was used to analyze the 
categorical variables, specifically to compare the dif-
ference in somatic mutation between the two groups. 

Spearman correlation analysis was applied to analyze 
the correlation between the risk score in the TC-
GA-PRAD cohort and genomic changes as well as to 
evaluate the immunotherapy response and drug sen-
sitivity. And p < 0.05 was considering as a statistical 
significance.

Results

WGCNA identifies key gene modules related to 
oxidative stress

Cluster analysis was performed to screen coex-
pression modules. The soft-threshold power β = 7 was 
applied to ensure a scale-free network (Fig S1A-B). 
WGCNA sectioned 37 modules (Fig S1C), and the 
grey module could not be merged with other mod-
ules. Gene number in each module was presented in 
Fig S1D. Correlation analysis between the oxidative 
stress score and of the modules showed a significantly 
positive association between the brown module and 
oxidative stress (r = 0.69, p < 1e-5) (Fig 1A). More-
over, the brown module showed highly positively 
correlated with module membership (MM) and gene 
significance (GS) (r = 0.9, p < 1e-5) (Fig 1B). There-
fore, the brown module was selected as an important 
gene module related to oxidative stress for further 
analysis.

Development of risk model and validation
Under the threshold value of |Cor| > 0.4 and p < 

0.05, COX regression analysis determined 78 genes 

Fig. 1. Performance of oxidative stress score in TCGA-PRAD cohort. A oxidative stress response in TCGA samples. B The associa-
tion between clinicopathological features (Gleason score, T Stage, N Stage, and age) and oxidative stress score. C Overall survival 
differences between low-risk and high-risk groups. D Differences of oxidative stress score between clinicopathological charac-
teristics (T Stage, N Stage, Gleason score and age). P < 0.05 was considered statistically significant.
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(6 risk and 72 protective genes) that significantly 
affected the prognosis of prostate cancer (p < 0.05) 
from a total of 680 hub genes in the brown module 
(Supplementary Table 1). LASSO Cox regression 
analysis showed a steady increase of lambda with in-
creased number of independent variable coefficients 
close to zero (Fig 2A). 10-fold cross-validation was 
performed and Figure 2B displayed the confidence 
interval under each lambda. We determined 10 genes 
as the target genes for further analysis when lamb-
da=0.0296. Finally, 6 prognostic genes were defined 
as the prognostic genes for prostate cancer applying 
StepAIC (Fig 2C).

The risk score formula was: risk 
s c o r e = - 0 . 4 6 4 * B 3 G A LT 2 + 0 . 5 8 7 * C 3 o r f 1 8 -
1.906*DRD5+1.174*MAP3K12-0.766*NTRK3-
0.595*NUDT7.

Our signature identified 6 prognostic genes, 
among which MAP3K12 was the only variable that 
showed statistical significance in the multivariate 
COX regression analysis (Figure 4C). As MAP3K12 
showed the most prominent Hazard Ratios, RT-qPCR 
was performed to measure mRNA level of MAP3K12 
in prostate cancer cell lines and a non-tumor human 

prostate epithelial cell line (RWPE-1). It was ob-
served that the mRNA level of MAP3K12 in prostate 
cancer cell lines was higher than that in RWPE-1 (Fig 
2D). Then, we successfully knocked down MAP3K12 
using siRNA in prostate cancer (PCa) cells (Fig. 2E). 
Moreover, knockdown of MAP3K12 reduced PCa 
cell viability (Fig. 2F). Those data indicated that 
MAP3K12 may be involved in prostate cancer pro-
gression while it also acted as a cancer-promoting 
gene in the prognostic risk model.

Next, zero-mean normalization was conducted 
for risk score. It was observed that patients with high-
er risk scores had more unfavorable prognostic out-
comes (Fig 3A). The ROC curve (AUC) values of the 
prognostic model were 0.81, 0.77, and 0.71 for 1 year, 
3 years and 5 years, respectively (Fig 3B). Low-risk 
patients showed a greater survival chance than high-
risk patients (p < 0.0001) (Fig 3C). The AUC value of 
the prognostic model was 0.70 and 0.80 for 5 years 
and 7 years, respectively (Fig 3D) in the validation 
cohort, and the survival of patients with higher risk 
was more unfavorable than those with a low risk (p = 
0.017) (Fig 3E).

Fig. 2. Oxidative stress related modules identification. A Cluster analysis of oxidative stress related genes. B-C Network topology 
analysis with different soft-thresholding powers. D Gene cluster dendrogram and the color of modules. E, Number of genes in 
every module. F Correlation analysis between module eigengenes and oxidative stress score. G Scatter diagram in the brown 
module for gene significance vs. module membership. Statistically significant was defined when p < 0.05.
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Fig. 3. Function enrichment analysis on the brown module. A The results of KEGG pathway enrichment analysis on the brown 
module. B-D GO functional enrichment results.
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The relationship between prostate cancer and 
oxidative stress scores

An analysis was conducted on the differences in 
the oxidative stress responses between prostate can-
cer samples and adjacent normal tissue samples in 
the TCGA-PRAD cohort. The results showed that 
the response of prostate cancer samples to oxidative 
stress was significantly lower than that of the adjacent 
normal tissues (Fig 4A, P < 2.22e-16). The correlation 
analysis revealed no significant correlation between 
clinicopathological characteristics (age, T Stage and 
N Stage, gleason score) and oxidative stress score 
(Fig 4B). The tumor samples in TCGA-PRAD were 
classified into high- and low- oxidative stress score 
groups, with the low-score group having a worse 
survival than those with a high oxidative stress score 

(Fig 4C). There were also no significant differences in 
ssGSEA scores between different clinicopathological 
characteristics (T stage, N stage, gleason score, and 
age) (Fig 4D).

Patients with more advanced clinical grades 
(gleason score, T stage, N stage, and age) had a higher 
risk score (Fig 5A). Besides, the risk score was high-
er in patients with low oxidative stress score those 
showing high oxidative stress score (p = 1.1e-05) (Fig 
5A). High-risk patients had higher clinical grade and 
most low-risk patients had higher oxidative stress 
score (Fig 5B). Comparison on the prognosis differ-
ence between risk score types showed a high reliabil-
ity among different clinicalpathological groups (Fig 
5C).

Fig. 4. Risk model development and verification. A Independent variable coefficients changed with the increase of lambda. 
B Confidence interval under each lambda. C Forest plot of hub genes related to oxidative stress. D Distributions of the gene 
expression, survival status and the risk score. E ROC curve and AUC of the prognostic model in evaluating survival for 1 year, 3 
and 5 years, F Kaplan-Meier curve for the two risk groups of patients in TCGA-PRAD cohort. G-H Survival analysis in GEO cohort. 
Statistically significant was defined when p < 0.05.
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Fig. 5. Association between the clinicopathological features and oxidative stress score and risk score of prostate cancer. A 
Differences in risk score between clinicopathological characteristics as well as oxidative stress score groups. B Distribution of 
683 clinicopathological characteristics between high- and low-risk patients. The upper part is statistically significant -log10 (p 
value), the lower part is the proportion. C Kaplan-Meier curve for high- and low-risk patients with different clinicopathological 
characteristics in TCGA-PRAD cohort. P < 0.05 was considered statistically significant.
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Enrichment analysis
Functional enrichment analysis in brown module 

was performed (Supplementary Table 2). 58 path-
ways (FDR < 0.05) were enriched through KEGG en-
richment analysis, and Fig 6A displayed top20 path-
ways mainly including PI3K-Akt signaling pathway, 
Focal adhesion, Vascular smooth muscle contraction, 
ECM-receptor interaction, Calcium signaling path-
way, which were correlated with the tumor initiation 
and progression. The three terms of the GO function-
al enrichment analysis were analyzed (Fig 6B-D). The 
top GO-BP enriched pathways were listed in Fig 6B. 
The genes in brown module were largely enriched in 
the cell matrix-related pathway.

The high-risk group had some enriched path-
ways related to cell cycle and cell matrix, including 
KEGG_SPLICEOSOME, KEGG_CELL_CYCLE, 
and KEGG_ECM_RECEPTOR_INTERACTION. 
Moreover, several immune-related pathways such as 
KEGG_ TOLL_ LIKE_ RECEPTOR_ SIGNALING_ 

PATHWAY, KEGG_ INTESTINAL_ IMMUNE_ 
NETWORK_ FOR_ IGA_ PRODUCTION, KEGG_ 
CYTOKINE_ CYTOKINE_ RECEPTOR_ INTER-
ACTION, KEGG_ PRIMARY_ IMMUNODEFI-
CIENCY, KEGG_ CHEMOKINE_ SIGNALING_ 
PATHWAY, KEGG_ NOD_ LIKE_ RECEPTOR_ 
SIGNALING_ PATHWAY were greatly enriched in 
patients showing a high risk (Fig 7A).

Meanwhile, GSEA analysis was performed with 
all candidate gene sets in Hallmark database [39] 
(Fig 7B). Furthermore, a total of 19 differentially 
expressed biological pathways among different risk 
types. Pathways related to cell cycle and metabolism 
were significantly enriched in high-risk and low-risk 
groups, respectively (Fig 7C). Risk score was re-
markably negatively correlated with some metabolic 
pathways, such as XENOBIOTIC_METABOLISM, 
FATTY_ACID_METABOLISM, and BILE_ACID_
METABOLISM, while it had significant positive cor-
relation with cell cycle-related pathways (Fig 7D).

Fig. 6. Gene mutation characteristics analysis between high- and low-risk groups in TCGA-PRAD cohort. A Distributions of gene 
mutation-related features between the two risk types. B Correlation analysis between risk score and gene mutation-related 
features. C The top 20 mutated genes in the two risk groups. Statistically significant was defined when p < 0.05.
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Fig. 7. Pathway enrichment analyses between two risk types in TCGA-PRAD cohort. A GSEA analysis with all the KEGG gene sets 
in different risk types. B Heatmap of ssGSEA score. C Differential pathways between two risk types. D Correlation analysis was 
performed on the connections between differential pathways and the risk score. ***p <0.001, and ****p <0.0001.
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Gene mutation characteristics analysis in patients
Further, we explored the differences in genomic 

changes between the two risk groups in the TCGA 
cohort. It was observed that the high-risk group had 
higheraneuploidy score (p = 7.7e-14), tumor muta-
tion burden (TMB) (p = 4.2e-08), homologous re-
combination defects (p < 2.22e-16), intratumor het-
erogeneity (p = 1.1e-07), loss of heterozygosity (p < 
2.22e-16), and purity (p = 0.0048) (Fig 8A). Fig 8B 
depicted that risk score showed a significant positive 

correlation with TMB (p = 3.7e-13, ρs = 0.33), aneu-
ploidy score (p = 4.24e-14, ρs = 0.35), homologous 
recombination defects (p = 7.42e-29, ρs = 0.50), in-
tratumor heterogeneity (p = 4.29e-10, ρs = 0.29), loss 
of heterozygosity (p = 1.01e-25, ρs = 0.47), and purity 
(p = 3.45e-05, ρs = 0.20). Analysis on somatic muta-
tion differences between high- and low- risk groups 
showed significantly different mutation frequencies 
of several genes such as SPOP, TTN, and TP53 be-
tween the two groups (Fig 8C).

Fig. 8. Distinct TME characteristics of prostate cancer patients. A Differences in ESTIMATE scores in two risk types. B Boxplots of 
22 infiltrating immune cell types. C Correlation analysis between 22 infiltrating immune cells and the risk score. D Distributions 
of 29 TME-related gene signatures. E PROGEN was used to measure the relative signaling pathway activity scores in the tumor 
cells, and the results were visualized into boxplots. *p < 0.05, **p <0.01, ***p <0.001, and ****p <0.0001.
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Different tumor microenvironment (TME) charac-
teristics of patients

The results of ESTIMATE analysis demonstrated 
that high-risk patients had a lower TumorPurity but 
higher ESTIMATEScore, StromalScore, Immune-
Score (Fig 9A). Additionally, the CIBERSORT results 
showed that the Mast_ cells_ resting, Plasma_ cells, 
and T_ cells_ CD8 were remarkably enriched in low-
risk patients, while high-risk patients had abundant 
T_ cells_ regulatory_ Tregs and Macrophages_ M2 

(Fig 9B). It showed a significant positive correlation 
between Macrophages_ M2 and T_ cells_ regulatory_ 
Tregs and the risk score, whereas risk score and Plas-
ma_cells were significantly negatively related. (Fig 
9C)

The ssGSEA analysis demonstrated that high-
risk patients had significantly enriched matrix com-
ponents such as matrix and matrix remodeling and 
cancer-associated fibroblasts. In addition, high-risk 
patients had the highest tumor proliferation rate 

Fig. 9. Sensitivity of prostate cancer patients with two risk types to antitumor therapy. A Difference in “T cell inflamed GEP score” 
between two risk types. B Difference in “Th1/IFNγ gene signature” between two risk types. C Difference in “Cytolytic activity” 
between two risk types. D Differential expression patterns of several immune checkpoint genes between two risk types. E Respon-
siveness to ICI therapy between two risk types. F The association between risk score types and drug responses in cancer cell lines. 
G The box plots of the estimated IC50 for Cisplatin, Bicalutamide, and Docetaxel in TCGA-PRAD. *p < 0.05, **p <0.01, ***p <0.001, 
and ****p <0.0001.
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Fig. 10. The prognosis of PRAD patients predicted a nomogram. A-B The prognostic significance of clinicopathological features 
and the risk score tested by univariate and multivariate Cox regression analysis. C The 1-, 3-, and 5-year OS of prostate cancer 
patients was evaluated with the nomogram. D Validation on the prediction by the nomogram reflected in calibration curves. 
E-F The 1-, 3-, and 5-year OS of prostate cancer patients predicted by the nomogram was tested by decision curve analysis. *p < 
0.05, **p <0.01, 724 and ***p <0.001.
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score (Fig 9D). Besides, various pathways including 
EGFR, hypoxia, JAK-STAT, MAPK, NF-κB, TGFb, 
and TNFα were activated in high-risk patients (Fig 9E).

Sensitivity prediction of patients to antitumor 
therapy with different risk scores

“T-cell-inflated GEP score” was used to test the 
potential response of patients with two risk types 
to immunotherapy. “T-cellinflated GEP score” in 
the high-risk group was significantly increased (Fig 
10A). Considering IFN-γ is a cytokine that fulfills a 
key role in anti-cancer immunity and immune reg-
ulation, we obtained Th1/IFNγ gene signature from 
the previous study [40] and calculated the ssGSEA 
score for the Th1/IFNγ gene signature. It was found 
that low-risk patients had a higher Th1/IFNγ score 
(Fig 10B), while high-risk patients showed a higher 
cytolytic activity (CYT) score (Fig 10C). We evalu-
ated some representative immune checkpoint genes 
and observed that high risk score group had signifi-
cantly high-expressed key immune checkpoint genes, 
such as PDCD1, CD274, CTLA4, LAG3, PDCDILG2, 
BTLA, TIGIT, and HAVCR2 (Fig 10D).

No significant differences in TIDE score between 
the two risk types were observed but high-risk pa-
tients had a higher MDSC score (Fig 10E). Analysis 

on the association between risk score types and drug 
responses in cancer cell lines revealed three pairs in 
GDSC database showing that drug sensitivity was 
related to the risk score (Fig 10F). Low-risk patients 
in TCGA-PRAD had higher sensitivities to the tradi-
tional chemotherapy drugs (Bicalutamide, Cisplatin, 
and Docetaxel) (Fig 10G).

A nomogram for the prognostic prediction
Whether the risk score and several clinicopatho-

logical features were independent prognostic factors 
for prostate cancer patients was evaluated by per-
forming univariate and multivariate Cox regression 
analyses, the results of which verified that the risk 
score was an independent factor for prostate cancer 
prognosis (Fig 11A-B). A nomogram integrating the 
clinicopathological features (T stage, N stage, gleason 
score, and age) and the risk score was built to estimate 
1-, 3-, and 5-year OS, and the risk score showed the 
greatest impact on OS of prostate cancer patients (Fig 
11C). The observed and predicted calibration curves 
of the nomogram was highly consistent (Fig 11D). 
Further DCA analysis also confirmed that both the 
risk score and the nomogram had the most powerful 
influence on the prognostic prediction for prostate 
cancer (Fig 11E-F).

Fig. 11. The prognosis of PRAD patients predicted a nomogram. A-B, Prognostic significance of clinicopathological features and 
the risk score tested by univariate and multivariate Cox regression analysis. C, 1-, 3-, and 5-year OS of PRAD patients was evalu-
ated with the nomogram. D, Validation on the prediction by the nomogram reflected in calibration curves. E-F, 1-, 3-, and 5-year 
OS of PRAD patients predicted by the nomogram was tested by DCA. *p < 0.05, **p <0.01, and ***p <0.001.
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Discussion
Redox homeostasis plays pivotal role in the 

maintenance of normal physiological functions. Ox-
idative stress is the excessive production of ROS re-
sulting from the imbalance between antioxidants and 
oxidants in tumor cells, and increased oxidative stress 
promotes tumor growth, survival and progression 
[41]. Accumulating studies revealed that oxidative 
stress contribute to antitumor immune response, sug-
gesting oxidative stress can be used as a new target for 
anticancer therapy [42]. Currently, we lacked a com-
prehensive analysis on the roles of oxidative stress-re-
lated gene signature in the prognostic prediction and 
its therapeutic importance in prostate cancer. There-
fore, this study used the ssGSEA algorithm to com-
pute oxidative stress score for TCGA-PRAD samples, 
and we found that higher ssGSEA score for oxida-
tive stress predicted prolonged OS in prostate can-
cer patients. WGCNA classified 37 modules related 
to oxidative stress and 680 hub genes were screened 
from the key module, that is, the brown module. Af-
terwards, 6 hub genes (NUDT7, NTRK3, MAP3K12, 
DRD5, C3orf18, and B3GALT2) were identified af-
ter COX regression and LASSO analysis. Further risk 
model was developed using the 6 prognostic genes, 
with patients with a higher risk score having worse 
prognosis. Cox analysis confirmed the risk score as 
an independent factor for prostate cancer progno-
sis. The current nomogram together with calibration 
curves and DCA analysis all confirmed the powerful 
in predicting the prognosis.

This study established six oxidative stress-relat-
ed gene signatures (NUDT7, NTRK3, MAP3K12, 
DRD5, C3orf18, and B3GALT2) as an independent 
factor for the prognostic survival of prostate can-
cer. NUDT7, a Nudix domain-containing protein, 
encodes a peroxisomal nudix hydrolase specific for 
coenzyme A and its derivatives. It has been reported 
that knockdown of NUDT7 in arabidopsis increas-
es susceptibility to paraquat-induced oxidative stress 
[43]. In addition, NUDT7 serves as a potent tumor 
suppressor to inhibit the progression of KrasG12D col-
orectal cancer [44]. The elevated expression of fu-
sion gene ETV6-NTRK3 triggers the expression of 
cystine/glutamate antiporter xCT and promotes on-
cogenic RAS transformation via preserving intracel-
lular redox homeostasis [45]. AK005401/MAP3K12 
pathway is crucial in oxidative stress-associated hip-
pocampal injury, and application of celastrol can po-
tentially attenuate the neuronal injury through inhib-
iting AK005401/MAP3K12 pathway [46]. A previous 

study has confirmed that activating DRD5 promotes 
the production of ROS, inhibits the MTOR pathway, 
and enhances macroautophagy/ autophagy, which 
results in cell death in tumor cells [47]. Dopamine 
aggravates esophageal cancer cell proliferation and 
growth through the DRD5-mediated pathway in vitro 
and in vivo [48]. C3orf18 is a differentially expressed 
gene associated with the anti-oxidative stress ability 
of rho kinase inhibitors on trabecular meshwork cells 
[49]. B3GALT2 belongs to β-1, 3-galactosyltransfer-
ase family, and has an inhibitory effect on ischemia/
reperfusion-induced neuron apoptosis and oxidative 
stress [50]. The cellular experiments showed that 
knockdown MAP3K12 inhibited PCa cell viability. 
Collectively, these findings suggested that the prog-
nostic genes in the current gene signature may be 
crucial in oxidative stress response during prostate 
cancer development and progression.

Gene mutation plays a prominent role in the 
initiation and development of malignant cancers 
[51]. The increased TMB status and mutated driv-
er genes are highly associated with a higher risk of 
African prostate cancer [52]. Frequent mutation of 
TP53, PTEN, and RB1 can predict a poor prognosis 
not only at early stage but advanced stage for pros-
tate cancer patients and guide prospective treatments 
[53]. It has been proven that mutated genes partici-
pate in the disrupted redox homeostasis for prostate 
cancer, and that SPOP was the most mutated in the 
low-risk patients, while TP53 was the driver gene 
with the greatest mutation in the high-risk patients 
[54]. Meanwhile, spontaneous single TTN mutation 
represents an elevated TMB [55]. This study found 
that the risk score was significantly correlated posi-
tively with TMB, and that the mutation frequency of 
several genes such as SPOP, TTN, and TP53 was sig-
nificantly different between the two risk groups. Our 
findings indicated that the risk model can predict the 
gene mutation status for prostate cancer patients.

It is known that anti-cancer therapy such 
as radiotherapy affects the TME and better 
understanding the immune response may contribute 
to the optimization of therapy. Inflammatory cells 
including M2 macrophages and Tregs are reported 
to be implicated in cancer progression through 
suppressing the anti-tumor immune response [56]. 
A previous study has demonstrated that increased 
numbers of M2 macrophages in TME of the prostate 
cancer patients lead to increased mortality rate, 
and that M2 macrophages together with Tregs may 
promote an immunosuppressive environment [57]. 



16  B. XU ET AL.

On the contrast, the plasma cells are positively 
involved in antitumor immune response, and 
hormone receptor-negative breast cancer patients 
with increased numbers of plasma cells exhibit a 
favorable outcome, indicating that enhancement of 
plasma cell responses can be considered as a target 
for tumor therapy [58]. Our findings suggested 
that the risk score was positively correlated with 
T_cells_ regulatory_Tregs and Macrophages_M2 
but negatively correlated with Plasma_cells. It has 
been shown that patients with various malignancies 
will benefit from ICI therapy. CTLA4, PDCD1 (PD-
1), CD274 (PD-L1) are common targets for ICI 
therapy. Recently, novel potential molecules as well 
as their ligands are considered for ICB therapy, such 
as LAG3, BTLA, TIGIT, PDCDILG2, and HAVCR2 
[59, 60].   In this study, we also evaluated some 
representative immune checkpoint genes, and found 
that PDCD1, TLA4, LAG3, CD274, CPDCDILG2, 
HAVCR2, TIGIT, and BTLA were high-expressed in 
high-risk patients. These findings showed that our 
oxidative stress-based risk model could serve as a 
specific predictive approach for immunotherapy in 
prostate cancer patients. Timely identification and 
intervention of key immunosuppressive promotors 
in the TME, such as MDSC, may be promising 
approaches to the improvement of ICI therapy 
[61]. In current study, the two risk types showed 
no significant difference in TIDE score, but high-
risk patients had a higher MDSC score. Therefore, 
prostate cancer patients may benefit from the therapy 
targeting MDSC, and further studies are needed to 
confirm our results. Additionally, low-risk patients 
had higher sensitivity to conventional chemotherapy 
drugs, especially Bicalutamide and Cisplatin, 
suggesting that oxidative stress-based risk scores may 
accurately predict the anti-tumor immune responses 
and facilitate the development of individualized 
therapeutic strategy.

The present study had some limitations. Firstly, 
this study analyzed the data from public database 
TCGA as a training data set and GEO database as 
a validation data, and these retrospective data were 
restricted by selection bias that could affect the reli-
ability of our results. Thus, prospective studies with 
more samples are encouraged to further verify our 
retrospective results. Secondly, except for the data on 
gleason score, age, T Stage, N Stage in the public data-
base, more clinicopathological characteristics should 
be included. Thirdly, the accuracy of our risk model 

has been verified in this study, but its applicability for 
long-term clinical use should be tested.

Conclusion
To conclude, the integrated bioinformatics anal-

ysis identified 6 genes related to oxidative stress for 
prostate cancer patients. The oxidative stress gene 
signature was significantly related to OS, clinicopath-
ological characteristics, and the TME of prostate can-
cer patients. The risk model also showed an accurate 
prediction for therapeutic responses. The current 
findings validated the clinical importance of the ox-
idative stress score in the prognosis prediction and 
personalized anti-tumor therapies.
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