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Commentary
    Prostate cancer (PCa) typically progresses from an 
androgen-dependent state to a more aggressive form 
known as castration-resistant prostate cancer (CRPC) 
following androgen deprivation therapy (ADT). 
ADT, which includes surgical or medical castration, 
initially reduces tumor burden by inhibiting andro-
gen receptor (AR) signaling, a critical driver of pros-
tate cancer growth [1, 2]. However, CRPC eventually 
develops due to several mechanisms that restore or 
bypass AR signaling. These mechanisms include AR 
gene amplification, AR mutations, expression of con-
stitutively active AR splice variants, and intratumoral 
androgen synthesis [1-3]. The molecular mechanisms 
underlying this transition involve genetic, epigenetic, 
and hormonal changes that promote cellular plastici-
ty. Key genetic alterations include the loss of tumor 
suppressor genes such as RB1, TP53, and PTEN, and 
changes in epigenetic regulators like EZH2, which 
facilitate the lineage switch from prostate adenocar-
cinoma to NEPC [4, 5].  Additionally, transcription 
factors such as ASCL1 and SOX2 play crucial roles 
in driving neuroendocrine differentiation and main-
taining the NE phenotype [6, 7]. The development 
of NEPC often follows extensive androgen receptor 
pathway inhibitors, antiandrogen resistance, and a 
loss of androgen receptor expression. Despite cas-
trate levels of circulating androgens, these adapta-
tions allow continued AR activity, driving tumor pro-
gression [1, 2]. A subset of CRPC tumors, however, 
can become independent of AR signaling and adopt 
neuroendocrine features, leading to neuroendocrine 
prostate cancer (NEPC). The emergence of NEPC is 
associated with resistance to conventional therapies 
and poor prognosis. NEPC is characterized by the 
loss of AR expression and the gain of neuroendocrine 
markers, such as chromogranin A and synaptophysin 
[4]. This transition is often driven by genetic and 
epigenetic changes, including the loss of tumor sup-
pressors like TP53 and RB1, the activation of lineage 

plasticity pathways, with 
concomitant upregulation 
of cell cycle drivers includ-
ing MYCN, PLK1, Cyclin 
D1, and Aurora kinase A 
(AURKA) [8-10]. 
    AURKA is a serine/
threonine kinase that 
controls the timing of 
mitotic entry and spindle formation and promotes 
cell division. AURKA expression is increased in PCa, 
and its level is associated with tumor aggressiveness 
[11-14]. Early genetic studies of Aurora A mutants 
consistently revealed defects in the formation and 
regulation of the bipolar spindle during mitosis. 
A more in-depth examination of Aurora A’s 
expression, activation, and phosphorylation targets 
has further clarified its role in a series of earlier cell 
cycle events that set the stage for proper mitotic 
progression [15]. Aurora A governs several key 
processes, including centrosome maturation and 
separation, bipolar spindle assembly, mitotic entry 
initiation, chromosome alignment in metaphase, 
and cytokinesis/abscission. Additionally, the 
proteolytic degradation of Aurora-A is essential for 
cells to transition into G1 [15]. AURKA is frequently 
overexpressed in NEPC and CRPC, contributing to 
the aggressive nature of these cancers. In patients 
who developed treatment-induced neuroendocrine 
PCa, the AURKA gene is amplified in 65% of 
primary tumors and 86% of metastatic tumors [16, 
17]. Increased AURKA not only promotes mitotic 
spindle formation and cell cycle progression but also 
interacts with other oncogenic pathways, including 
those involving MYCN and AR variants [16, 18]. The 
reciprocal regulation between AURKA and tumor 
suppressors like NKX3.1 further underscores its role 
in NEPC pathogenesis [18]. 
    AURKA phosphorylates p53 at specific sites, lead-
ing to its destabilization and degradation.  For in-
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stance, AURKA phosphorylates p53 at Ser315, which 
facilitates its ubiquitination by Mdm2 and subse-
quent proteolysis.  This degradation of [19] reduces 
its tumor suppressor functions, including cell cycle 
arrest and apoptosis, thereby allowing cancer cells to 
proliferate despite the presence of functional p53.
    Additionally, AURKA can phosphorylate p53 at 
Ser215, which abrogates p53’s DNA binding and 
transactivation activity, further impairing its ability 
to induce the expression of downstream target genes 
such as p21 and PTEN [20]. This inhibition of p53’s 
transcriptional activity contributes to the survival 
and proliferation of cancer cells under therapeutic 
pressure.
    Moreover, AURKA disrupts the interaction be-
tween p53 and its coactivators, such as hnRNPK, by 
phosphorylating hnRNPK, which further diminishes 
p53’s transcriptional activity [21]. This multifaceted 
inhibition of p53 by AURKA allows cancer cells to 
bypass p53-mediated growth suppression and apop-
tosis, contributing to drug resistance.
    In the context of NEPC, AURKA overexpression is 
often observed and is associated with the aggressive 
behavior of these tumors. The ability of AURKA to 
inactivate p53 through multiple mechanisms under-
scores its role in overcoming drug resistance and pro-
moting NEPC progression [22, 23].
    In a recent study, Gritsina et al. reported that 
C-X-C chemokine receptor type 7 (CXCR7) is upreg-
ulated in NEPC [24], following up their earlier study 
demonstrating a causative role of CXCR7 in driving 
enzalutamide-resistant PCa and thus, CRPC progres-
sion [25]. They showed that CXCR7 promotes tumor 
growth and proliferation by activating downstream 
signaling pathways, such as AURKA [24]. Specifi-
cally, CXCR7 recruits β-arrestin (ARRB2) and forms 
a complex that activates AURKA, a key regulator of 
mitosis. They confirmed in PCa patient datasets that 
AURKA signal transduction is positively correlated 
with CXCR7 expression. Further, the study tested 
the AURKA inhibitor alisertib and revealed that al-
isertib abolishes CXCR7-driven PCa growth in cell 
lines as well as animal models [24]. The authors thus 
proposed AURKA as a critical therapeutic target for 
CXCR7-high CRPC and NEPC patients. However, a 
Phase II clinical trial of alisertib in CRPC/NEPC pa-
tients failed to meet its primary endpoint due to drug 
toxicity and patient variability despite significant 
clinical benefits in a small subset of four patients with 
high AURKA expression [26]. Further evaluation of 
the drug might benefit from molecular biomarkers 

to preselect patients with AURKA activation and/
or drug combinations to lower the dose and reduce 
toxicity. Alternative AURKA inhibitors are currently 
being investigated. Some of these include the evalu-
ation of AL8326 in ≥2nd line small cell lung cancer, 
a study of Tinengotinib (TT-00420) in combination 
with standard treatments in people with prostate 
cancer, and JAB-2485 activity in adult patients with 
advanced solid tumors [27-29]. Notably, inhibiting 
AURKA is synthetically lethal with the loss of RB1 
or p53 tumor suppressor genes due to AURKA’s vital 
role in driving the cell cycle in these tumors [30, 31]. 
Likewise, cells harboring a high mutational burden, 
as often seen in tumors with defective homologous 
recombination (HR), might become increasingly re-
liant on AURKA activity (Figure 1). In these cells, 
AURKA might help bypass cell cycle checkpoints, 
thereby enabling continued replication and tumor 
growth despite DNA damage [32]. As such, AURKA 
activity has been closely linked to tumorigenesis and 
the expression of genes associated with metastasis 
[33]. Inhibition of AURKA activity has been shown 
to cause delayed mitotic progression, mitotic failure, 
and ultimately, cell death [33]. These findings suggest 
that AURKA could serve as a promising therapeutic 
target, particularly in tumors with AURKA amplifi-
cation or up-regulation, such as CRPC and NEPC. 
Furthermore, AURKA overexpression may contrib-
ute to resistance to therapies that target DNA repair 
pathways, such as PARP inhibitors like Olaparib, as 
well as resistance to androgen receptor pathway in-
hibitors (ARPi) and chemotherapy [34].  AURKA 
may be essential for driving cell cycle progression 
in PCa cells exposed to DNA-damaging therapeu-
tics, including PARPi, ARPi, and chemotherapeutic 
agents [34]. To this end, it will be essential to eval-
uate the frequency of genomic alterations, including 
AURKA amplification or overexpression, RB1 loss 
and HR gene mutations in CRPC and NEPC tumors, 
and their association with therapeutic (PARPi, ARPi, 
and Chemotherapy) responses. If positive correla-
tions were discovered, it would support targeting 
AURKA to overcome therapeutic resistance and im-
prove treatment outcomes for these aggressive and 
treatment-refractory cancers.
    In summary, prostate cancer progresses to CRPC 
through mechanisms that sustain AR signaling de-
spite androgen deprivation. A subset of CRPC tu-
mors further evolves into NEPC, characterized by AR 
independence and neuroendocrine differentiation, 
driven by genetic and epigenetic alterations [1, 4, 35]. 
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In prostate cancer and CRPC with neuroendocrine 
traits, CXCR7 activates AURKA, promoting NEPC 
growth. Targeting AURKA, either directly or through 
its upstream regulators like CXCR7, represents a 
promising therapeutic strategy for managing NEPC. 
AURKA is overexpressed in PCa, particularly in 
CRPC and NEPC, where it promotes cell division, tu-
mor aggressiveness, and metastasis. Targeting AUR-
KA may provide a promising therapeutic strategy, 
especially in combination with PARPi like Olaparib, 
to improve outcomes in HR-deficient PCa, including 
cases with mutations beyond BRCA1/2.  Similarly, 
AURKA inhibition in patients with wild-type HR 
genes could be utilized, as it has been shown to regu-
late the stability of Myc proteins, which in turn influ-
ence the expression of HR-related genes. This strategy 
could enhance the effectiveness of PARPi in HR-pro-
ficient PCa, particularly in tumors with high Myc ex-
pression, by inducing vulnerabilities similar to those 
seen in BRCA-mutant cancers. Last, AURKA inhib-
itors might improve outcomes of standard-of-care 
of metastatic PCa that uses AR pathway inhibitors, 
such as Enzalutamide, by intensifying AR inhibition, 
increasing DNA-damage-related cell death, and pre-
venting the development of escape mechanisms, such 
as AR variants. 
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