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ABSTRACT
Extracellular matrix (ECM) within the tumor microenvironment (TME) of prostate cancer has 
been extensively reported to be associated with the development of androgen-deprivation 
therapy (ADT) resistance in prostate cancer. Recent-year investigations have illustrated that 
the deposition of ECM proteins contributes to this resistance by regulating cell behaviors of 
cancer cells directly or indirectly through modulating immune cells within the TME, thereby 
protecting cancer cells from the tumor-suppressing effects of ADT. Here we review these find-
ings, offering new perspectives on prostate cancer research and highlighting the potential of 
ECM proteins as novel clinical targets for predicting and treating ADT-resistance. 
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Introduction
    Prostate cancer (PC) is the most prevalent male 
cancer and the second leading cause of male can-
cer-related mortality in the UK [1]. Globally, it ranks 
as the second most common cancer in men, with an 
incidence rate increasing by approximately 3% annu-
ally, highlighting its growing significance as a global 
health concern [2]. 
    Androgen-signalling pathway plays a pivotal role in 
the progression of PC. Androgen-deprivation thera-
py (ADT) is a first-line treatment for PC [3, 4]. How-
ever, around one-third of patients undergoing ADT 
develop resistance within three years, progressing to 
Castration-Resistant Prostate Cancer (CRPC) [5, 6]. 
Unlike ADT-sensitive PC, CRPC continues to prog-
ress despite low androgen levels (< 50 ng/dL) and is 
associated with poor prognosis, reducing the five-
year survival rate from 90-100% to approximately 
30% [7]. Therefore, CRPC represents a major chal-
lenge in PC treatment.
    CRPC can further progress to more malignant 
stats. Metastatic CRPC (mCRPC) represents the ter-
minal stage of PC progression and accounts for over 
90% of PC-related mortality [6]. More than 33% of 
non-metastatic CRPC patients can develop mCRPC 
within two years after diagnosis [8]. Approximate-
ly 90% of mCRPC cases are bone metastasis [9]. It 
is frequently associated with skeletal-related events 
(SREs), including fractures, spinal cord compression, 
and severe bone pain [10]. Moreover, bone marrow 
infiltration by tumor cells exacerbates anemia and 
other cytopenia, significantly impacting patients’ life 
quality and expectancy [11]. Although it varies across 
studies, the median overall survival for patients with 
bone mCRPC is approximately 13 months, com-
pared to 20-30 months for those with non-meta-
static CRPC [7]. ADT through AR antagonists (e.g. 
Enzalutamide) is widely used to treat bone mCRPC 
[12]. Nonetheless, patients usually develop ADT re-
sistance within around 11.2 months after initiating 
treatment, limiting available treatment options [13]. 
Thus, elucidating the mechanisms underlying ADT 
resistance is essential for uncovering more effective 
therapeutic targets to impede the malignant develop-
ment of CRPC.
    Mechanisms underlying CRPC development have 
been intensively studied over decades. Mutations re-
sponsible for ADT resistance have been identified. 
For instance, the AR L702H mutation enables AR 
activation by alternative ligands, such as glucocorti-
coids. The presence of constitutively active AR splice 
variation-7 (AR-V7) is also frequently observed in 

CRPC patients [14-19]. Recently, accumulating ev-
idence has demonstrated that components within 
the tumor microenvironment (TME) support cancer 
progression and the development of therapeutic re-
sistance. This review aims to summarise and discuss 
recent advancements in the understanding of extra-
cellular matrix (ECM) in CRPC progression and its 
therapeutic potential.

TME promotes ADT-resistance
    The composition of the TME is context-dependent 
and varies across cancer types. However, it generally 
comprises cancer cells, stromal cells such as fibro-
blasts and immune cells, blood and lymphatic vessels, 
as well as non-cellular components such as ECM, 
which includes proteins like fibronectins, collagens, 
and laminins) [20, 21]. 
    Emerging evidence from PC and CRPC models has 
revealed that ECM deposition is positively correlated 
with cancer progression and the development of ther-
apeutic resistance [22]. For example, overexpressed 
collagens can activate PI3K/Akt pathway in PC cells, 
thereby promoting their proliferation and survival, 
making them resistant to ADT [23, 24]. Similarly, 
fibronectin (FN), another ECM protein commonly 
upregulated during PC progresses, has been shown 
to induce androgen-independent growth in LNCaP 
PC cells [25]. Thus, ECM proteins serve as prognos-
tic markers for PC and have emerged as a crucial po-
tential target for addressing the development of ADT 
resistance in CRPC.  

ECM as a crucial regulator of ADT-resistance in 
CRPC 
    ECM is a non-cellular scaffold that envelops cells, 
providing biochemical and mechanical support [26]. 
While its composition varies across tissues, the ECM 
typically consists of glycoproteins primarily synthe-
sized by fibroblasts, such as fibronectins, collagens, 
laminins, and elastin, along with additional compart-
ments such as polysaccharides, water, and minerals 
[27]. 
    ECM can be categorized into the interstitial matrix 
and the pericellular matrix. The interstitial matrix is 
a loose protein network located between individu-
al cells, mainly composed of collagens, fibronectin, 
elastin, and hyaluronan. It plays important roles in 
buffering mechanical stress, maintaining hydration, 
and restoring epithelial integrity after injury [28-30]. 
The pericellular matrix is a dense, sheet-like mesh 
that directly contacts the basal surface of epithelial 
and endothelial cells [28]. It is enriched in laminins, 
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collagens, and fibronectin, as well as proteoglycans 
like perlecan and nidogen. The pericellular matrix 
is essential in preserving cell polarity, separating tis-
sues, and maintaining tissue rigidity [28, 31]. These 
matrices together establish the 3D structure of ECM, 
facilitating the transmission of biochemical and me-
chanical signals, in turn regulating cell survival, pro-
liferation, differentiation, and migration (Figure 1). 
    ECM undergoes continuous and dynamic remodel-
ing balanced by ECM deposition and degradation via 
ECM-modifying enzymes, such as matrix metallo-
proteinases (MMPs) and collagen cross-linking lysyl 
oxidase (LOX). This process changes the ECM com-
position and mechanosignalling in the local micro-
environment, which is critical for regulating wound 
healing, homeostasis, and driving cancer progression. 
    Integrins are major cell transmembrane receptors 
for ECM proteins and other soluble factors, such 
as VEGF [32]. They also help cells sense mechan-
ical changes during ECM remodeling and activate 
downstream signaling cascades, modulating various 
cellular behaviors, such as adhesion, migration, pro-
liferation, and survival [33-36]. Thus, ECM-integrin 
signaling is critical for regulating cellular function, 
tissue morphogenesis, and homeostasis [37, 38].  
    Collagen is the predominant protein in the ECM, 
constituting nearly 90% of all ECM proteins in hu-
mans [39]. Various collagen types have been report-
ed to play pivotal roles in PC progression, with their 

expression often correlating with poor prognosis 
[40, 41]. The expression of collagen type I (COL-I), 
the most abundant collagen in the body, is elevated 
as PC progresses [42]. Its interactions with integ-
rin receptors activate signaling pathways in cancer 
cells, including the Src-FAK cascade, which induces 
the phosphorylation of β-catenin, and subsequently 
activates the cell-cycle regulator cyclin D1 that pro-
motes proliferation. Concurrently, the PI3K/Akt/
Snail pathway stimulated by COL-I promotes epithe-
lial-mesenchymal transition (EMT), thus enhancing 
the invasiveness of PC cells [40, 42]. COL-I also fa-
cilitates PC bone metastasis by increasing cancer cell 
adaptability to the bone microenvironment through 
RhoC GTPase and other signaling pathways [43, 44]. 
Other collagen types, including COL-XXIII, COL-
IV, and COL-III, activate pathways such as PI3K/
Akt, MAPK/ERK, and Wnt/β-catenin, driving cancer 
progression in various cancer types, including ovar-
ian, colorectal, and pancreatic cancer [45-48]. Given 
these pathways are conservatively activated in PC, 
these collagens may exert similar effects in PC [49]. 
    In CRPC, upregulated COL-I, -III, -IV, and -V 
have been shown to interact with DDR1 and DDR2 
expressed in cancer cells [50, 51]. This suppresses 
MST and LATS, two downstream kinases of the Hip-
po pathway, thus activating the anti-apoptotic YAP/
TAZ signaling axis and protecting cancer cells from 
chemotherapy and immunotherapy [52, 53]. Con-

Figure 1. The structure of ECM and its interactions with cells during ECM remodelling.
ECM consists of pericellular matrix (basement membrane) and interstitial matrix, separating tissues and cells, maintain tissue 
structure. Various cell types (e.g. fibroblasts, immune cells, tumor cells, etc.) secrete ECM proteins and modulating enzymes such 
as MMPs and LOX remodeling ECM. Altered ECM mechanical and biochemical signals are sensed by cell surface receptors, such 
as integrins, mediating cellular behaviors, eventually contribute to ADT resistance.
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sistently, the expression of COL-I, COL-IV, DDR1, 
and DDR2 is positively correlated with PC progres-
sion, with mTOR, NF-kB, and YAP/TAZ pathways 
frequently activated in CRPC [49, 53-55]. Therefore, 
collagens may also promote CRPC through the Hip-
po/YAP/TAZ pathway. 
     Additionally, ECM may induce ADT resistance 
by regulating cancer stem cells (CSCs). CSCs are a 
unique cancer-cell population with the capacity for 
self-renewal and pluripotent differentiation. They 
are regarded as the origin of cancer recurrence and 
therapeutic resistance [56]. Studies have revealed that 
following ADT, PC tumors experience enrichment of 
CSC populations that are inherently ADT-resistant 
due to clonal selection induced by treatment. This en-
richment plays a significant role in the development 
of resistance to ADT such as AR inhibitors [57, 58]. 
Collagens overexpressed in CRPC, such as COL-I, 
can upregulate the expression of CSC biomarkers, in-
cluding CD44, CD133, and integrin α2β1. They are 
essential for maintaining the stemness of CSCs in PC 
[40, 57]. Therefore, collagens may contribute to the 
development of ADT resistance by promoting CSCs 
in PC.
    Finally, overexpressed collagens in PC can lead to 
the hyperactivation of signaling pathways like PI3K/
Akt/mTOR, MAPK/ERK, and FAK/Src which pro-
mote AR activation and subsequent nuclear trans-
location. This process drives AR-downstream gene 
transcription in an androgen-independent manner, 
leading to ADT resistance [40, 47, 59-63]. 
    Fibronectin (FN) is a dimeric glycoprotein that 
plays a critical role in the assembly of ECM proteins 
into an integrated structure, contributing to the mat-
uration of ECM [64]. Although FN is less abundant 
than collagens in ECM, it remains a fundamental 
regulator of cellular processes, including cell adhe-
sion, migration, and proliferation [39]. In PC, FN is a 
promising biomarker for malignancy, contributing to 
cancer cell proliferation, survival, and migration [65]. 
    FN has also been identified as a contributor to ADT 
resistance in PC. Research has found that castration 
promotes the activation of cleaved caspase-3 and 
TNF-α, inducing tumor regression [66-68]. By bind-
ing to its receptors, such as integrin α5β1 and αvβ1, 
FN upregulates anti-apoptotic proteins survivin and 
Bcl2 by stimulating the PI3K/Akt pathway. This pro-
tects cancer cells from ADT-induced apoptosis [69]. 
Exposure to FN has also been shown to upregulate 
miR-125b expression in LNCaP cells, an miRNA that 
targets apoptosis-regulating genes such as BAK1 and 

STAT3, resulting in androgen-independent growth 
[25]. Furthermore, in a recent study from our group, 
Li et al. demonstrated that the FN-integrin α5 axis 
activates Src, inducing resistance to AR inhibitor, 
Enzalutamide, in PC cells [70]. Additionally, FN acti-
vates p38 while suppressing uPAR, in turn inactivat-
ing ERK. This cascade induces cell cycle arrest, there-
fore causing cancer cell quiescence, which contributes 
to tumor therapeutic resistance and recurrence [71, 
72]. This mechanism has been well-documented in 
PC and shown to be responsible for the emergence of 
tumor recurrence following ADT [71]. 
    Furthermore, as an important protein assembles 
the ECM, FN interacts with other ECM proteins, af-
fecting relevant signaling pathways that drive ADT 
resistance. For instance, FN promotes the deposi-
tion of collagens such as COL-I and COL-III which, 
as discussed above, could activate their downstream 
signaling and contribute to ADT resistance [73].
    Laminin is a key component of the basement mem-
brane, a heterotrimer consisting of one α heavy chain 
and two light chains (β and γ) [39]. Laminins have 
long been recognized as important regulators of can-
cer progression. For instance, laminin-511, particu-
larly its α5 chain (Lama5), is upregulated in nearly 
all epithelial cancers, including PC [74, 75], and its 
expression is positively correlated with PC progres-
sion [76, 77]. Another relevant laminin in PC is lami-
nin-332, which binds integrin α6β4 and α3β1, acti-
vating MAPK and MEK/ERK pathways to promote 
cell proliferation and migration [77, 78]. Recent find-
ings have demonstrated that laminin-332 expressed 
in PC is specifically enriched at tumor invasive edge, 
suggesting its potential to facilitate metastasis [79]. 
This distribution may result from cleavage induced 
by MMP-2 secreted by PC cells, particularly at the 
tumor edge where cells have higher invasiveness [80, 
81]. The cleavage of laminin-332 releases EGF-like 
repeats (domain DIII) in its γ2 chain, which activates 
EGFR and downstream PI3K and ERK pathways, 
promoting cell proliferation and invasiveness [78]. 
This MMP-2-mediated degradation may also involve 
other laminins that are suggested to be upregulated 
in PC, such as laminin α4 chain (Lama4), which has 
been reported to induce MMP-2 expression [82].  
    Laminins also act as crucial regulators of cancer 
therapeutic resistance in PC. For example, lami-
nin-511 (composed of laminin α5, β1, and γ1 chains) 
binds to integrin α6β1 expressed on PC cells, sub-
sequently promoting the nuclear translocation of 
HIF-1α in cancer cells. This induces the expression of 
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Bnip3, which assists in the degradation of damaged 
mitochondria through autophagy, protecting PC 
cells from apoptosis induced by the ADT-suppressed 
PI3K-Akt pathway [83, 84]. In contrast, blocking this 
laminin-integrin α6β1-Bnip3 cascade restores the 
sensitivity of PC cells to ADT [83].
    Silencing Lama5 triggers the endoplasmic reticu-
lum (ER) stress signaling pathway In PC cells [85]. It 
activates the PERK/eiF2α/ATF4 cascade, downregu-
lating AR expression and the transcription of AR tar-
get genes in PC cells, influencing the efficacy of ADT 
[86]. However, overexpressed Lama5 has also been 
noticed to exert pro-apoptotic effects by inactivating 
the YAP/TAZ pathway [87-89]. Such controversial 
roles underscore the complexity of laminin functions 
in ADT resistance. Moreover, Zheng et al. illustrat-
ed that reduced Lama4 expression impairs the re-
cruitment and activation of CAFs within the TME 
[90], suggesting that Lama4, which is upregulated 
in PC, may modulate CAF activity. CAFs have been 
accumulatively reported to induce ADT resistance 
through various mechanisms. For example, they se-
crete CAF-derived nerve growth factor-1 (NRG-1), 
which activates the receptor tyrosine kinase HER3 
and its downstream PI3K/Akt pathway, thus sup-
porting PC growth. CAFs also promote glutamine 
production, altering the metabolism of PC cells and 
allowing continued proliferation under ADT [91-94]. 
Therefore, laminins like Lama4 may interact with 
CAFs to induce ADT-resistance in CRPC.
    Like collagens, laminins may also facilitate the de-
velopment of ADT resistance by promoting CSCs. 
Evidence indicates that prostate CSCs (PCSCs) pref-
erentially adhere to laminins, exhibiting greater pro-
liferation potential when co-cultured with laminins 
[95]. In the glioblastoma model, the levels of the α4 
and β1 chains of laminin-411 are positively correlated 
with the expression of CSC markers such as CD133, 
Nanog, and nestin [96]. Given that CD133 and Nanog 
are also key markers of PCSCs, Lama4, and Lamb1 
overexpressed in PC may promote PCSCs, facilitating 
the development of CRPC [97, 98].
    However, the functions of laminins in CRPC de-
velopment remain incompletely understood. Future 
investigations are required to elucidate their roles in 
PC progression and CRPC development. 
    Mechanosignalling is also a crucial factor in regu-
lating cancer progression and therapeutic resistance 
[91]. Enhanced ECM deposition, driven by cancer 
cells and CAFs, leads to increased stiffness of the 
TME, which is commonly observed in cancer and 

regarded as a new cancer hallmark [99]. It has been 
documented that in PC, increased ECM stiffness is 
sensed by integrins on cancer cells, thereby activating 
focal adhesion kinase and downstream PI3K/Akt and 
MAPK/Erk pathways that directly promote their sur-
vival, while inhibiting apoptosis. ECM stiffening also 
stimulates TGF-β-mediated Smad signaling that ac-
tivates AR nuclear translocation and its downstream 
transcription even without androgen. This promotes 
the proliferation, migration, and survival of PC cells, 
driving ADT resistance in an androgen-independent 
manner [22]. Similarly, increased mechanical force 
generated by stiffened ECM can induce androgen-in-
dependent growth in PC cells by stimulating the 
YAP/TAZ pathway [100]. YAP1 can activate AR in-
dependently of androgen binding and this activation 
cannot be inhibited by ADT such as AR inhibitors, 
resulting in the emergence of ADT-resistance [101].
    Furthermore, ECM stiffening drives PC-cell AR-in-
dependent growth via activating the Wnt signaling 
and fibroblast growth factor receptor (FGFR)-me-
diated MAPK pathway. These pathways bypass the 
regulation of AR, and stimulate AR-downstream cas-
cades [22, 102]. Concurrently, increased mechanical 
stress from ECM stiffening activates the RhoA/ROCK 
pathway, which enhances actomyosin contractility in 
surrounding cancer cells [103]. Increased contractil-
ity deforms the nucleus, leading to increased chro-
matin accessibility [104]. This promotes AR nuclear 
entry, thus driving downstream transcription in the 
absence of androgen, causing ADT resistance [105].
    Moreover, elevated ECM stiffness induces hypoxia 
within the TME, stimulating hypoxia-inducible fac-
tor 1 (HIF-1) signaling. HIF-1 confers anti-apoptotic 
functions and supports the survival of PC cells [106, 
107]. High HIF-1 activity also promotes tumor an-
giogenesis, which further enhances TME stiffness 
[108, 109]. This creates a positive feedback loop that 
facilitates the development of ADT resistance. Over-
all, changes in mechanosignalling within the TME 
may serve as another key mechanism underlying 
ADT resistance in CRPC.

Interactions between ECM and immune cells 
    ECM proteins act as important immune-cell me-
diators by presenting various chemokines, cytokines, 
and growth factors [110-113]. They also directly in-
teract with immune cells via integrins, stimulating 
intracellular signaling cascades and modulating im-
mune responses [114]. Furthermore, bioactive ECM 
fragments, also termed matrikines, are generated 
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during ECM turnover and interact with immune 
cells, inducing phenotypic changes [115]. Collective-
ly, changes in ECM proteins significantly influence 
immune cell phenotypes, thus affecting cancer pro-
gression. 
    T cells are well-documented immune cells involved 
in cancer progression. Cytotoxic CD8+ T cells (CTLs) 
are key effectors in cancer cell elimination, inducing 
apoptosis of cancer cells [116-118]. Another ma-
jor T-cell subset, CD4+ T helper 1 (Th1) cells, exert 
anti-tumour effects by producing proinflammatory 
cytokines and activating other proinflammatory im-
mune cells [116, 119]. Increased infiltration of CTLs 
and Th1 cells within the TME correlates with better 
prognosis and enhanced response to ADT, potential-
ly due to increasing immunosurveillance in PC [120, 
121]. In contrast, CD4+ T cells can differentiate into 
T helper 2 (Th2) cells and regulatory T cells (Tregs) 
[119]. They secrete immunoregulatory cytokines, 
such as IL-10 and IL-4, inactivating proinflammatory 
immune cells like CTLs and polarizing tumor-asso-
ciated macrophages (TAMs) towards immunoreg-
ulatory phenotypes, ultimately facilitating immune 
evasion by cancer cells [120, 122-124]. Elevated Treg 
infiltration within the TME is associated with poor 
prognosis in PC and diminishes the anti-tumor ef-
fects of ADT. Conversely, depleting Tregs has been 
shown to improve ADT efficacy [125]. 
    CAFs and ECM proteins in PC modulate T-cell 
functions. CAFs induce CTL death through PD-L2 
and FASL pathways and promote Treg expansion by 
secreting factors such as IL-6 and lactate [126, 127]. 
Specific ECM proteins, like collagens, impair CTL 
cytotoxicity by upregulating the expression of im-
munosuppressive cytokines CCL2, CXCL3, CXCL10, 
and TGFβ, and also by promoting Treg differentia-
tion and activity [128]. Overexpression of collagens 
also induces T-cell exhaustion, a state of dysfunction 
where T cells become highly immunosuppressive, 
through interacting with leukocyte-associated im-
munoglobulin-like receptor-1 (LAIR-1) [129]. High 
levels of T-cell exhaustion have been associated with 
a more immunosuppressive TME that facilitates the 
development of ADT resistance [130].
    COL-IV expression in PC blocks the infiltration of 
CTLs and Th1 cells into TME, thus inhibiting their 
anti-tumor immune responses [131]. Other ECM 
proteins, such as laminin-111 and laminin γ2 chain, 
also inactivate proinflammatory T cells and interfere 
with their infiltration into the TME of PC, respec-
tively [132, 133]. Moreover, increased ECM stiffness 

during PC progression suppresses the viability and 
differentiation of proinflammatory T cells while en-
hancing Treg activity [126]. Together, these overex-
pressed ECM proteins contribute to a more immuno-
regulatory TME, which supports immune evasion by 
PC cells, reducing their sensitivity to ADT. 
    Tumor-associated macrophages (TAM) with-
in the TME represent the most abundant immune 
cell population infiltrating the TME [134, 135]. De-
pending on their phenotypes, TAMs can be classified 
into proinflammatory TAMs and immunoregulatory 
TAMs. Proinflammatory TAMs exhibit phagocytic 
and antigen-presenting abilities, eliminating cancer 
cells and activating proinflammatory T cells [136]. 
However, the majority of TAMs within the TME in 
PC are immunoregulatory, inducing immunoregu-
latory responses that suppress proinflammatory im-
mune cells, including CTLs and Th1 cells, thus en-
abling immune evasion by cancer cells [137, 138]. 
Increased immunoregulatory TAM infiltration is as-
sociated with reduced ADT efficacy [139]. 
    CAFs are important mediators in the phenotypic 
and functional polarisation of TAMs. Through secret-
ing cytokines such as IL-6, IL-8, IL-10, and M-CSF, 
CAFs promote the differentiation of immunoregula-
tory TAMs while inhibiting proinflammatory TAMs 
[138, 140]. Increased ECM stiffness has also been 
found to activate pathways such as Hippo-YAP/TAZ, 
Rho/ROCK-NFκB, MEK/ERK, and LOX/H3K27 
pathways, which drive the phenotypic polarization of 
TAMs towards immunoregulatory phenotypes across 
various cancer types, including PC [141].
    Reciprocally, TAMs modify the ECM to promote PC 
progression and contribute to ADT resistance. TAMs 
secrete proteolytic enzymes such as MMP-2, 7, and 
9, which cleave ECM proteins such as the laminin γ2 
chain, producing matrikines that promote ADT re-
sistance [142]. TAMs also secrete PIGF, EGF, VEGF, 
and other pro-angiogenic factors that stimulate an-
giogenesis and subsequent ECM stiffening, leading to 
the emergence of ADT resistance [143, 144]. 
    Other immune cell types are also significantly reg-
ulated by alterations in ECM proteins. Natural killer 
(NK) cells are important for exerting tumour-sup-
pressing effects [145]. Increased NK-cell infiltration 
and activation are associated with a better prognosis 
in PC [146]. However, ECM proteins in PC models 
have been reported to alter NK-cell infiltration, in-
hibiting their pro-inflammatory functions. For ex-
ample, FN binds to LILRB4/gp49B receptors on NK 
cells and suppresses their anti-tumor cytotoxicity, 
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therefore promoting cancer cell survival [147]. Sim-
ilarly, overexpressed COL-I and COL-III in PC can 
downregulate the cytokine production from NK cells 
through interacting with LAIR-I, leading to inhibited 
proinflammatory responses and promoting cancer 
cell survival [148]. 
    Finally, dendritic cells (DCs) are essential for or-
chestrating anti-tumour immune responses through 
antigen presentation and activation of T cells. An in-
creased DC abundance has been linked to improved 
clinical outcomes in CRPC patients. A study about 
developing DC vaccination has shown that increasing 
the level of DCs in mCRPC patients can significant-
ly enhance their CTL activity [149]. Increased ECM 
stiffness has been reported to inhibit DC migration 
and antigen-presentation, thus protecting the via-
bility of cancer cells from proinflammatory immune 
cells [126, 150]. However, research about ECM-DC 
crosstalk in the PC model remains limited.
    In summary, these findings demonstrate the critical 
roles of immune cells in CRPC progression and high-
light ECM proteins as key regulators of immune cell 
functions. Further research into these interactions 
may reveal novel therapeutic targets to guide the de-
velopment of immunotherapies to treat ADT resis-
tance and improve clinical outcomes for PC patients.

ADT-resistance in mCRPC
    In the context of mCRPC, components uniquely 
present within the TME at the metastatic site contrib-
ute to the emergence of ADT resistance. For instance, 
during bone metastasis, PC cells secrete factors such 
as TGF-β and parathyroid hormone-related protein 
(PTHrP), which activate osteoclasts and osteoblasts, 
establishing a ‘vicious cycle’ [151-153]. This cycle 
disrupts the balance of bone reconstruction, releas-
ing factors like TGF-β and insulin-like growth fac-
tor (IGF)-1 embedded in the bone matrix, thereby 
triggering signaling pathways that promote the sur-
vival and androgen-independent growth of PC cells 
[154]. This vicious cycle also induces osteomimicry 
in PC cells, where they acquire osteoblastic pheno-
types [155], and start expressing osteoblastic proteins 
such as RUNX2, OPN, and Wnt. These proteins and 
their downstream cascades enhance the survival and 
proliferation of PC cells, also inducing resistance to 
AR-inhibition by bypassing the AR-signalling path-
way [156]. Moreover, activated osteoclasts in mCRPC 
bone lesions contribute to angiogenesis within the 
TME [157]. As previously described, promoted an-
giogenesis can increase local stiffness and induce 

hypoxia, which further supports cancer cell survival 
and ultimately contributes to ADT resistance [106-
109]. This evidence indicates that alterations in the 
ECM may serve as a crucial factor in driving ADT 
resistance in bone mCRPC.
    Additionally, immunoregulatory immune cells 
infiltrated into the bone TME play critical roles in 
facilitating the emergence of ADT resistance. For 
instance, monocyte-derived TAMs recruited to met-
astatic lesions in bone metastatic PC models have 
been shown to produce chemokines such as CCL20 
and CCL5. These chemokines drive T-cell exhaustion 
and the self-renewal of PCSCs through activating the 
β-catenin/STAT3 pathway [158, 159]. Given that both 
T-cell exhaustion and the rise of CSCs are associated 
with the emergence of ADT resistance [130, 160], 
these TAMs may play crucial roles in inducing ADT 
resistance in bone mCRPC by secreting chemokines. 
In a more recent study conducted by our group, it 
was demonstrated that TAMs can directly induce re-
sistance to the AR antagonist, Enzalutamide, in bone 
mCRPC by secreting activin A, which activates the 
FN1-ITGA5 axis, subsequently stimulating Src phos-
phorylation. This TAM-induced ADT-resistance was 
also found to be directly associated with alterations 
in many other ECM-integrin interactions, indicating 
the close relationship between ECM remodeling and 
immune cells in the emergence of ADT-resistance in 
bone mCRPC [70].
    Collectively, these findings highlight that, beyond 
localized CRPC, the ECM and its crosstalk with stro-
mal cells within the TME of the metastatic site play 
pivotal roles in driving ADT resistance in mCRPC. 
Targeting these interactions could potentially provide 
therapeutic benefits to CRPC patients by restricting 
malignancy, and significantly improving their life 
quality.

Discussion and future perspective 
    Despite advancements in understanding its under-
lying mechanisms, ADT resistance remains a major 
clinical challenge. Utilizing new techniques and mod-
els, accumulating evidence has demonstrated that the 
ECM within the TME of CRPC is dynamically mod-
ified by cancer cells and cancer-associated non-can-
cerous cells. These modifications affect biochemical 
and mechanical signaling networks within the TME, 
triggering pathways that regulate the proliferation, 
invasiveness, and survival of PC cells, and also allow 
PC cells to bypass the regulation of AR-signalling 
cascade, leading to ADT-resistance. In addition to 
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these direct interactions between ECM proteins and 
PC cells, alterations in ECM proteins contribute to 
ADT resistance indirectly through reshaping the im-
mune cell composition, creating a more immunosup-
pressive TME that favors tumor growth, thus making 
cancer cells less susceptible to the anti-tumor effects 
of ADT. Together, these findings indicate that ECM 
proteins and their associated signaling pathways po-
tentially serve as novel targets for predicting, diag-
nosing, and treating CRPC.
    However, currently, there is no clinically available 
CRPC therapeutic strategy that specifically targets 
ECM. Tasquinimod is a second-generation quino-
line-3-carboxamide compound proven effective in 
treating PC and metastatic CRPC [161]. Although 
its primary targets are S100A and HDAC4, tasquin-
imod also exerts anti-cancer effects through directly 
modulating ECM [162]. It directly upregulates the 
expression of thrombospondin-1 in CRPC cells, an 
ECM protein inhibits pro-angiogenic proteins VEGF 
and HIF-1, thus suppressing tumor angiogenesis that 
drives ADT-resistance and CRPC development, lead-
ing to tumor regression [161]. According to clinical 
studies, tasquinimod is eligible for mCRPC patients 
aged 18 years or older and with 0 or 1 Eastern Coop-
erative Oncology Group (ECOG) performance sta-
tus. Furthermore, oral delivery makes it a convenient 
and cost-effective treatment option [163]. A phase III 
clinical trial (NCT01234311) has demonstrated that 
tasquinimod significantly prolonged progression-free 
survival in bone mCRPC patients. Preclinical studies 
showed that tasquinimod can improve the efficacy 
of other anti-neoplastic drugs [164]. All these find-
ings highlight the clinical potential of tasquinimod 
in CRPC treatment. Adverse effects of tasquinimod 
discovered so far are generally mild and dose-depen-
dent. However, elderly patients treated with tasquin-
imod tend to experience more severe adverse effects 

and lower tolerability. Considering the majority of 
PC patients are aged 70-74, carefully managing the 
side effects of tasquinimod remains an important 
task before its clinical application [161].
    Repurposing existing drugs targeting CAFs and 
ECM proteins that were originally developed for oth-
er diseases may provide valuable insights into devel-
oping new CRPC treatments. For example, pirfeni-
done is an anti-fibrosis drug clinically approved for 
treating lung fibrosis by downregulating COL-I and 
FN expression [165]. Recent preclinical studies have 
unveiled its potential in treating CRPC. It induces 
cell-cycle arrest in CAFs and cancer cells, inhibiting 
the production of ECM proteins and suppressing PC 
cell proliferation and growth in both androgen-sen-
sitive and androgen-insensitive PC models [166]. 
These findings indicate the possibility of repurposing 
ECM-targeting drugs for CRPC treatment. Addition-
ally, many of these drugs, including pirfenidone, are 
primarily administrated orally, making them conve-
nient for patients and integrated into other CRPC 
treatment regimens without further affecting their 
life quality, thereby highlighting the advantages of re-
purposing ECM-targeting drugs. Table 1 summarises 
several candidate drugs. Their therapeutic potential 
in CRPC should be verified in future studies. 

However, there are potential limitations to using 
these ECM-targeting anti-fibrosis drugs in CRPC 
treatments. Firstly, they may induce adverse effects, 
causing unwanted outcomes. For example, pirfeni-
done-treated patients commonly experience adverse 
effects such as rash, nausea, diarrhea, and fatigue 
[167]. These adverse effects can progress to more se-
rious and life-threatening conditions, including gas-
trointestinal bleeding, liver damage, and photosensi-
tivity, especially when treatment is prolonged [165]. 
Due to the lack of established dosing guidelines for 
CRPC, the safety and tolerability of these drugs in 

Table 1. Drugs targeting ECM can be repurposed for treating ADT-resistance

Drug Mechanism Disease Model
Clostridium Histolyticum [169] Degrade COL-I and COL-III Peyronie's Disease
Losartan [170] Reduce COL-I synthesis Pancreatic cancer

Halofuginone [171] Reduce COL-I and hyaluronic acid 
synthesis Scleroderma, coccidia, cryptosporidiosis

Navitoclax [172] Induce apoptosis in CAFs Small cell lung cancers, acute lympho-
cytic leukemia

Marimastat [173] Broad spectrum MMP inhibitor Pancreatic cancer, gastric cancer

LXG6403 [174, 175] Lox inhibitor Gastric cancer, triple-negative breast 
cancer
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CRPC patients must be evaluated when repurposing 
them for this indication. Another potential challenge 
for repurposing anti-fibrosis drugs is patient eligibil-
ity. For instance, one of the drugs bucillamine is not 
recommended for elderly patients, which restricts its 
suitability to the majority of CRPC patients [168]. 
Thus, patient stratification must be considered when 
using these drugs in CRPC treatments.
    Furthermore, bioactive peptide fragments derived 
from cleaved ECM proteins, known as matrikines, 
have emerged as potential therapeutic agents due to 
their direct involvement in cancer progression and 
immune-cell regulation. As natural products of ECM 
turnover, matrikines exhibit higher biocompatibility 
compared to conventional chemotherapeutic agents 
[176]. Their small size, reduced likelihood of side 
effects and high potency make matrikines attractive 
candidates for developing therapeutic agents [176]. 
These advantages indicate that using synthetic or 
modified matrikines could provide a novel approach 
to treating CRPC in the future. Table 2 outlines sev-
eral matrikines that could serve as therapeutic targets 
for different cancer types. Their potential applications 
in PC are worth further investigation.

In conclusion, research into ADT resistance in 
CRPC has uncovered novel mechanisms underlying 
the disease. However, the interactions among ECM 
proteins, cancer cells, and cancer-associated immune 
cells within the TME require further investigation. 
Shedding light on ECM signaling will expand our 
understanding of ADT resistance, providing new op-
portunities to tackle this incurable disease.
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