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ABSTRACT
Third-generation sequencing technologies have revolutionized the study of epigenetic char-
acteristics in human diseases, with Oxford Nanopore Technologies (ONT) at the forefront of 
long-read sequencing. ONT has made rapid improvements in flow cell designs, which greatly 
increased its sequencing accuracy but, at the same time, led to some projects utilizing dif-
ferent flow cell types, mainly R9 vs. R10, across samples. Whether and how the flow cell types 
affect genome-wide DNA methylation detection remains incompletely understood. Here, 
we used both flow cell types to analyze 6 human renal cell carcinoma (RCC) samples and 
compared the results. While there was a highly significant correlation between 5-methylcy-
tosine (5mC) detected by R9 and R10 flow cells, we also observed substantial differences. 
R9 flow cells over-estimated 5mC levels at hypomethylated chromatin regions, mostly at 
promoters, while under-estimated 5mC at hypermethylated chromatin regions, enriched 
at intronic and intergenic regions. Such deviations in detection were likely caused by sub-
stantially lower sequencing accuracy of R9 flow cells, due to its mechanics, especially having 
problems sequencing homopolymeric DNA elements, such as CpG islands, leading to both 
higher false-positive and false-negative detections. Interestingly, such systematic errors were 
largely mitigated by batch-correction software, improving data comparability. In summary, 
our study reports superior performance of R10 flow cells, leading to much higher accuracy in 
base sequencing and DNA methylation detection.  
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Introduction
    DNA methylation, such as 5-methylcytosine (5mC) 
involving the addition of a methyl group to the fifth 
carbon of cytosine, is one of the most extensively 
studied DNA modifications in mammals. It plays a 
crucial role in regulating gene expression and genome 
stability in normal cells. Aberrant DNA methylation, 
by contrast, is a hallmark of cancer, contributing to 
tumor initiation and progression. Studies have shown 
that promoter hypermethylation represses the ex-
pression of tumor-suppressor genes, thereby increas-
ing cell proliferation, while global hypomethylation 
makes the genome unstable, leading to DNA damage 
and promoting malignant transformation[1, 2]. 
   Traditionally, DNA methylation has been analyzed 
using bisulfite-based approaches, such as bisulfite 
sequencing (BS-seq), a technique that first converts 
unmethylated cytosines to uracil to distinguish them 
from methylated cytosines, followed by subsequent 
PCR, microarray hybridization, or next-generation 
sequencing [3]. However, bisulfite treatment causes 

DNA damage, fragmentation, and loss, resulting in 
biased data. To address these pitfalls, enzymatic Meth-
yl-seq (EM-seq) was developed [4]. It first uses TET2 
enzymatic activity to oxidize methylated cytosines, 
including 5mC and hydroxymethylated cytosines 
(5hmC), followed by APOBEC2 to convert unmeth-
ylated cytosines to uracils.  In the subsequent PCR 
amplification, the oxidized and methylated cytosines, 
i.e., 5mC and 5hmC, will generate normal base pairs 
with guanines, whereas the uracils, derived from un-
methylated cytosines, will form base pairs with ad-
enines, resulting in similar DNA sequence profiles 
as that in BS-seq [4]. EM-seq significantly increases 
sequencing accuracy compared to BS-seq, however, 
its ability to detect methylation patterns over long ge-
nomic intervals, discern haplotype-specific methyla-
tion, and analyze 5mC and 5hmC on the same reads 
simultaneously remains largely constrained.
    The advent of third-generation sequencing tech-
nologies, such as Oxford Nanopore long-read se-
quencing (ON-LRS), has revolutionized DNA meth-
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ylation analysis. ON-LRS enables the sequencing of 
native DNA strands as long as over 1 Mb with 10kb 
as average [5]. Additionally, it can directly detect 
multiple DNA modifications, including 5mC and 
5hmC, concurrently without additional chemical or 
enzymatic conversion, and significantly reduces the 
time for sample library preparation [6]. Meanwhile, 
this technology also expands the scope of epigenetic 
studies by enabling haplotype-specific phasing and 
allele-specific methylation analysis. The ON-LRS 
is being rapidly developed with quick implementa-
tion and improved chemicals and flow cells. Recent 
advancements in ON-LRS include improvements in 
flow cell design. The R9 flow cell has been widely used 
but it has low sequencing accuracy at homopolymeric 
DNA regions [7]. The new version of the flow cell, 
R10, addresses these limitations using a dual-reader 
head design with an extended barrel, thereby signifi-
cantly increasing sequencing accuracy at homopoly-
meric regions, and improving overall sequencing fi-
delity. As many labs have been utilizing the R9 flow 
cell and now starting to use the R10 flow cell as the 
R9 flow cell will be discontinued in the future, it is 
necessary to evaluate performance and data repro-
ducibility across the two types of flow cell. A recent 
study took some initial steps to address these issues, 
however, this study only focused on one cell line and 
did not investigate 5mC profiles measured by both 
types of flow cells systemically [8].  
        In this study, we performed NO-LRS in 6 human 
kidney cancer samples using R9 and R10 flow cells 
and systemically evaluated 5mC profiles detected by 
both flow cells. We found substantial inconsistency in 

DNA methylation profiles measured by two versions 
of flow cells, which can be corrected by computation-
al approaches. The difference is primarily caused by 
background noise and ambiguous signals of the R9 
flow cell, leading to respective over-detection and un-
der-detection of 5mC level at hypomethylated- and 
hypermethylated-genomic regions, in comparison to 
the R10 flow cell.  

Results

Systematic differences of R9 and R10 flow cells in 
detecting 5mC  
    To compare the performance of R9 and R10 flow 
cells in measuring DNA methylation (5mC), we iso-
lated genomic DNA from 6 human renal cell carcino-
ma (RCC), with an equal number of African Amer-
ican (AA) vs. white patients and male vs. female 
patients (Table 1). We conducted reduced represen-
tation methylation sequencing (RRMS), targeting 
523 Mb enriching for CpG islands, promoters, and 
prostatic enhancers, of all 6 samples using Nanopore 
GridION (Fig 1A). Each DNA sample was split for 
subsequent sequencing by both R.9 and R10 flow cells 
and the raw data were processed with the Nanopore 
standard pipelines (Fig 1B). We were able to obtain 
5-11 million reads per sample reaching 8x to 24x cov-
erage of target genomic regions. We detected over 23 
million CpG sites in each sample, with methylated 
CpG sites varying between 70% and 81% among pa-
tients. Among the 12 samples, over 13 million CpG 
sites were shared, including 50,770 CpG sites with a 
minimum of 10× coverage, of which 84% with 5mC 

Table1. Clinical and sequence information of RCC samples.

Subject 
ID Gender Race Recurrence R9 Bases aligned R9 CpG sites 

(% methylated)
R9 

Coverage
R10 Base 
aligned

R10 CpG sites 
(% methylated)

R10 
Coverage

AB101 Male Black/AA No 9,773,014,761 27,822,477
(80.3%) 20x 10,394,446,132 28272988

(80.2%) 19x

AB171 Female White Yes 11,075,270,756 39,860,319
(79.6%) 24x 4,640,766,034 23752508

(77.3%) 8x

AB332 Male Black/AA Yes 7,120,467,415 25,264,197
(70.1%) 15x 9,962,040,598 27407766

(73.5%) 18x

AB486 Female Black/AA Yes 10,186,328,053 27,141,978
(81.1%) 21x 6,376,290,751 25112461

(78.7%) 12x

AB582 Male White Yes 8,068,832,231 25,881,081
(80.0%) 17x 9,004,485,941 27182487

(80.8%) 17x

AB730 Female White Yes 7,851,290,817 26,317,188
(80.7%) 16x 4,717,117,029 23335203

(78.9%) 8x
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modifications. First, we performed Pearson correla-
tion analysis of 5mC calls from R9 and R10 flow cells 
of the same sample and observed an overall good cor-
relation (r=0.88, p<2.2e-16) (Fig 1C). However, Prin-
cipal Component Analysis (PCA) of 5mC detected in 
all samples revealed two distinct clusters, separating 
R9 samples from R10 samples (Fig 1D), indicating 
drastic discordance of R9 and R10 flow cells in 5mC 
detection masking any biological differences among 
individual patients. We hypothesized that there were 

systematic differences in DNA methylation detec-
tion by R9 and R10 flow cells. To remove such effects, 
we utilized the Limma package[9] to remove batch 
effects on the 5mC data. Critically, PCA analyses the 
batch-corrected 5mC profiles clustered R9 and R10 
samples of the same patients together (Fig 1E). In con-
clusion, our analysis revealed systematic bias between 
R9 and R10 flow cells in detecting DNA methylation 
that can be corrected using bioinformatics tools.   
 

Figure 1. Systematic differences of R9 and R10 flow cells in detecting 5mC  
A-B. Schematic of the Nanopore long-read sequencing of genomic DNA from RCC patients using R9 and R10 flow 
cells (A), followed by bioinformatic data analysis (B). 
C. Pearson correlation analysis shows the correlation between 5mC detected by the R9 flow cell and that from the 
R10 flow cell. All the CpGs with coverage greater than 10 were included for analysis.  
D-E. PCA plots showing DNA methylation (5mC) in 6 pairs (R9 and R10) RCC samples before (D) and after batch 
correction (E). 
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R10 flow cells more accurately detect DNA 
methylation than R9 flow cells 

To further determine the potential mechanisms 
underlying the systematic biases in 5mC detection 
by R9 and R10 flow cells, we first examined their 
sequence accuracy by comparing sequence reads 
with reference reads, which may affect the accuracy 
in 5mC calling. Consistent with the previous study 
[8], the average sequence accuracy of R10.4 flow cells 
(97.1%) was much higher than that of R9.4.1 flow 
cells (93.1%) (Fig 2A). As repetitive DNA regions in 
the genome, which are the most challenging to se-
quence, are often heavily methylated [10], sequenc-
ing inaccuracy by R9 flow cells may impair its ability 
to accurately capture 5mC. We thus compared 5mC 
detection by R9 and R10 across CpG sites with dif-
ferent methylation levels. Compared with R10 flow 
cells, R9 flow cells detected significantly much less 
5mC at CpG sites that were 100% methylated (Fig 
2B). By contrast, R9 flow cells over-estimate 5mC at 
unmethylated CpGs, likely due to noisy background 
level of methylation. Concordantly, R9 flow cells de-

tected less 5mC than R10 flow cells at 3’UTR, intron 
and intergenic regions that are often highly methylat-
ed, but under-estimated 5mC at 5’UTR, which often 
contains hypomethylated CpG islands (Fig 2C). In 
summary, our data demonstrates that, due to much 
higher sequence accuracy, R10 flow cell predicts 5mC 
much more accurately across the genome, including 
both hyper- and hypo-methylated regions. 

Differentially methylated regions (DMRs) due to flow 
cell types   
    To determine whether the lack of accuracy in 5mC 
calling by R9 can affect the detection of methylated 
regions, we performed differentially methylated re-
gions (DMRs) analysis using the DSS package [11]. 
We defined DMRs with higher methylation in R9 and 
R10 as R9- and R10-specific DMRs, respectively. Only 
7.9% of DMRs are R9-specific and the vast majority 
of DMRs are R10-specific. Interestingly, there were 
substantially more R9-specific DMRs (32%) than 
R10-specific DMRs (2%) at promoters, which often 
contain hypomethylated CpG islands (Fig 3A&3B). 

Figure 2. R10 flow cells more accurately detect DNA methylation than R9 flow cells. 
A. The density distribution plot shows the accuracy of reads compared to the reference genome.  
B. Density plot of DNA methylation level across all CpG sites detected by R9 and R10 flow cells in AB101.  
C. Mean DNA methylation profile of R9 and R10 flow cells at different genomic loci in sample AB101.
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Figure 3. R9.4.1 and R10.4 flow cell-specific DNA methylations   
A-B. Genomic distributions of flow cell-specific DMRs: (A) R9-specific and (B) R10-specific. 
C-D. IGV showing DNA methylation profiles detected by R9 and R10 flow cells at RASSF1 gene locus (C) and 
MYC gene locus (D). The light-yellow shades indicate flow cell-specific DMRs. Green boxes under tracks indi-
cate CpG islands. 
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By contrast, a much higher percentage of R10-specific 
DMRs were found in introns (53%) and intergenic re-
gions (36%) than in R9-specific DMRs (28% and 21%) 
(Fig 3A&3B). These findings are in agreement with 
our earlier observation that R9 over-estimated 5mC 
at promoters and under-estimated 5mC at intergen-
ic regions (Fig 2C). Next, we specifically focused on 
DMRs at promoters, which are known to directly reg-
ulate gene transcription [12]. We found 13,795 DMRs 
at promoter regions, among these DMRs, 62.1% were 
R9-specific, and 37.9% regions were R10-specific, 
again supporting the notion that R9 over-estimated 
5mC at promoters.  For instance, closer examination 
of R9-specific DMR at the promoters of RASSF1 and 
MYC genes, which are known as oncogenes in RCC 
cancer[13, 14], showed that they were generally de-
void of DNA methylation (Fig 3C&3D). However, 
R9 flow cells detected some basal methylation, which 
was likely caused by sequencing noise. In aggregates, 
comparing data from R9 and R10 flow cells might 
lead to artificial DMRs that were caused by sequence 
inaccuracy and noise in 5mC detection by R9. 

Discussion 
    The R10 flow cell has recently gained widespread 
adoption as a reliable and accurate platform for 
nanopore long-read sequencing. However, many 
researchers face the challenge of integrating data-
sets that include samples sequenced using both R9 
and R10 flow cells. This raises major concerns about 
whether the research conclusion was driven by tech-
nical differences between flow cell types or real bio-
logical concepts.  
     In this study, we found a significant inconsisten-
cy of R9 and R10 flow cells in measuring 5mC in 
the same RCC sample. R9 flow cell detected a much 
higher 5mC level at regions of zero or no methyla-
tion, such as promoter CpG islands, which is likely 
due to a high noise-to-signal ratio caused by a lower 
sequencing accuracy. On the other hand, R9 flow cells 
under-estimated 5mC levels in chromatin regions of 
>90% methylated CpGs in the genome, such as intron 
and intergenic regions, which may be caused by the 
poor performance of R9 flow cells at homopolymer-
ic DNA regions. R9 and R10 flow cells have different 
‘readers’; the nanopore of the R9 flow cell only has a 
single reader in the middle of the barrel, whereas the 
R10 flow cell has two readers in the middle and in-
creases the space and accuracy for sequencing. 
   We showed that such systematic differences could 
be largely removed through batch correction using 

the limma function. However, further studies are 
needed to determine whether this approach can cor-
rect all methylation differences arising from flow cell 
variations. We also want to note that our analysis did 
not extend to other epigenetic features, such as 5hmC 
modification, or structural variations, as they are be-
yond this study’s scope. As the intrinsic design of R10 
and R9 flow cells are different, the inconsistency of 
both flow cells in detecting other epigenetic and ge-
nomic features may also be observed.   For best data 
consistency, we suggest researchers use the same type 
of flow cells in one project.  

Materials and Methods

Patient information
    RCC tissue samples were obtained for research 
from patients consented under Emory protocol 
IRB00055316.   Tumor tissue was frozen at -80oC 
freezer until use.  The tumor histology for all patients 
was clear cell renal cell carcinoma at stage T3 or T4.  
Patient samples include:  1) 3 male and 3 female; and 
2) three patients of African ancestry and three pa-
tients of European ancestry.  

Reduced Representation Methylation Sequencing 
(RRMS) library preparation  
    The RRMS libraries were performed using the pro-
tocol from Oxford Nanopore. Briefly, the genomic 
DNA of RCC samples was extracted with Quick-DNA 
Miniprep Plus Kit (Zymo, D4068) and fragmented to 
average size at 8 kb with g-TUBE™ (Covaris, 520079). 
The DNA libraries were prepared using a Ligation 
Sequencing Kit (SQK-LSK110) per the manufactur-
er’s protocol. The sequencing was performed on an 
Oxford Nanopore GridiON MK1 sequencer with 
R9.4.1 flow cells (FLO-MIN106D) or R10.4.1(F-
LO-MIN114) flow cells from Oxford Nanopore. The 
adaptive sampling (AS) method [15] was used for the 
targeted sequencing of regions of interest, enriching 
for CpG islands, shores, shelves, promoter regions, 
and RCC enhancers.  

Base and methylation calling 
    All ONT raw files were converted to pod5 files us-
ing pod5 v0.2.4 “pod5 convert fast5”.
 The Dorado v0.9.0 basecaller command was used to 
basecall and align reads with hg38. The basecall with 
“SUP” models, with config file of “dna_r9.4.1_e8_
sup@v3.3_5mCG_5hmCG@v0” for R9.4.1 and config 
file of “dna_r10.4.1_e8.2_400bps_sup@v4.3.0_5mC-
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G_5hmCG@v1” for R10.4.1.  We specified “modified 
based” as “5mC5hmC” to get modification informa-
tion. 
Example:
dorado basecaller 
--reference “reference fasta” “config file” 
--modified-bases 5mCG_5hmCG “pod5 file directo-
ry” > “output directory”
Bam files generated by Dorado were sorted and 
indexed using samtools v1.17. 
CpG methylation was calculated using Modkit v0.2.4 
from sorted bam files. The Modkit pileup com-
mand was used to create a bedMethyl format file for 
showing methylation status at the reference genom-
ic(hg38) position. We filtered out 5mC with modifi-
cation probability lower than the 10th percentile, and 
only focused methylation at CpG sites.
Example:
modkit pileup --cpg –ref “reference fasta” “input 
sorted bam file” “output bed file”

Differential methylation regions (DMR) analysis 
DMRs were identified using the DSS (v 2.46.0) 

R package as previously reported [12]. Briefly, Bed-
Methyl format files generated by Modkit were used 
as input. The smoothing span of 200bp was used in 
the DML test, and the data sequenced by R9.4.1 flow 
cells was used as a control. The DMRs were identified 
as below: The minimum length of DMRs was set at 
100bp, with at least 5 CpG sites and more than 50% 
of CpG sites in this region being significantly methyl-
ated. For DMRs with lengths shorter than 50bp were 
merged with adjacent DMRs. Significant DMRs were 
defined with methylation change greater than 10%, 
and p-value less than 0.01. Principal component 
analysis (PCA) was generated by biplot from the R 
package PCA tools. Based on previous research, 10x 
coverage is reliable [35856633], and the minimum 
coverage of sequencing depth for PCA analysis, cor-
relation test, density plot, and histography is 10.   
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