
© 2025 The Author(s). Published by the University of Kansas Libraries.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/)

Serican Journal of Medicine
2025, VOL. 2, NO. 2, 23671
https://doi.org/10.17161/sjm.v2i2.23671

Long-Read Sequencing Outperforms Short-Read Sequencing in 
Detecting Most Structural Variations

Xinyue Chen1, Xiaodong Lu2, Xianglin Shi2, Shaojun Yu1, Jonathan Zhao1,3

1Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; 2Department of Urology, Emory 
University School of Medicine, Atlanta, GA 30322, USA; 3Winship Cancer Institute, Emory University School of Medicine, Atlanta, 
GA 30322, USA; * Correspondence author: Jonathan Zhao, MD/MA, Department of Human Genetics, Emory University School 
of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322. Phone: 630-245-3214; E-mail: changsheng.zhao@emory.edu

ABSTRACT
Structural variations (SV) are common in the cancer genome and play critical roles in regu-
lating tumorigenesis. In the past decades, many SVs have been detected through analyses 
of whole-genome sequencing (WGS) data generated mainly by Illumina paired-end short-
read sequencing (SRS). Recent advances in long-read sequencing (LRS) techniques provide 
exciting opportunities for SV detection. However, a comprehensive analysis of the pros and 
cons of LRS and SRS in detecting SVs in a cancer genome is still lacking. Here, we performed 
WGS of the LNCaP prostate cancer cell line through LRS using the Oxford Nanopore Tech-
nology and called main SVs, which were compared to those derived from publicly available 
LNCaP SRS data. Strikingly, LRS is superior in detecting insertions of all sizes and deletions of 
<1000 bp long, whereas SRS is very useful in capturing long deletions, taking advantage of 
its paired-end reads. LRS identified more precise breakpoints of detected SVs. In addition, we 
found that SRS called many duplications and inversions, most of which were not confirmed 
by LRS, likely due to ambiguity in SRS read alignment to repetitive regions, leading to errors 
in SV calling. In conclusion, LRS outperformed SRS in detecting most SVs, except deletions 
longer than LRS read lengths. Our study highlights the advantages of LRS in resolving com-
plex genomic rearrangements and underscores its potential for improving SV detection in 
cancer genomics.
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Introduction
Structural variations (SVs) represent a major 

class of genomic alterations in cancer, encompassing 
deletions, duplications, inversions, and insertions. 
These alterations play a critical role in tumorigene-
sis and disease progression, as seen in many cancers 
such as prostate cancer. Notably, SVs leading to the 
fusion of TMPRSS2 and ERG have been observed in 
approximately 50% of prostate cancer cases [1], while 
amplification of an enhancer upstream of the andro-
gen receptor (AR) has been implicated in metastatic 
prostate cancer progression [2]. 

Previous studies have investigated SVs using 
whole-genome sequencing data (WGS) obtained pri-
marily through paired-end short-read sequencing 
(SRS) by Illumina [3, 4]. However, SRS has intrin-
sic limitations in SV detection due to its short-read 
(typically ~100 bp for each read) nature but also has 
advantages in detecting large structural variations 
by producing paired-end reads [5]. On the contrary, 
long-read sequencing (LRS) produces reads often 

with an average length longer than 10 kb and sub-
stantially improves read alignment within repetitive 
genomic regions, which frequently mediate SV for-
mation [6]. 

Few recent studies have started to compare SRS 
and LRS for SV detection [7, 8]. While SRS has been 
extensively optimized, with well-established SV call-
ing algorithms capable of detecting a substantial pro-
portion of SVs [5], LRS excels at resolving complex 
SVs, particularly those in highly repetitive regions.  
Additionally, LRS is highly effective in detecting long 
insertions, a category of SVs that is particularly chal-
lenging to reconstruct using short-read data. Howev-
er, a comprehensive comparison of LRS and SRS in 
detecting SVs in prostate cancer has not been previ-
ously attempted.  

Previous studies have characterized prostate can-
cer cell lines using SRS-based whole-genome and 
whole-exome sequencing [3, 4]. These efforts have 
successfully identified single nucleotide variations 
(SNVs), copy number variations (CNVs), SVs, and 
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gene fusions. To systematically investigate the dif-
ferences in SV detection between SRS and LRS in 
the LNCaP prostate cancer cell line, we performed 
long-read whole-genome sequencing using Oxford 
Nanopore Technology (ONT). We identified SVs 
from LRS data and compared the detection of differ-
ent SV types with those derived from publicly avail-
able LNCaP SRS data. LRS proved superior in detect-
ing insertions of all sizes and small deletions (<1000 
bp), while SRS was more effective for long deletions 
due to its paired-end reads. Additionally, LRS provid-
ed more precise SV breakpoints, whereas SRS iden-
tified numerous duplications and inversions, many 
of which were not validated by LRS, likely due to 
alignment errors in repetitive regions. Overall, LRS 
outperformed SRS in detecting most SVs, except for 
deletions exceeding LRS read lengths. Our findings 
highlight the advantages of LRS in resolving complex 
genomic rearrangements and its potential for en-
hancing SV detection in cancer genomics.

Results

Pros and cons of LRS and SRS in detecting different 
types of SVs

To obtain WGS data of LNCaP PCa cell lines, we 
performed LRS using the PromethION 2 Solo ONT 

sequencer. We obtained 58,245,198 LRS reads with 
average read lengths of 3,736 bp, leading to an over-
all 32x coverage of the human genome (Table 1). The 
raw LRS data in FAST5 format was base-called using 
Dorado [9], and aligned to the reference genome us-
ing Minimap2 [10] to create SAM files, which were 
converted to BAM files for variant calls (Fig 1). For 
comparison with SV calling with SRS, we obtained 
publicly available WGS data of the LNCaP cell line 
(SRR1977632) from the NCBI Short Read Archive, 
which includes 2,517,372,955 SRS, with average read 
lengths of 90 bp, leading to 63x genome coverage. 
SVs were called using delly [11] and delly long-read 
modules [11] for SRS and LRS, respectively, and the 
results were filtered by BCFtools [12] (Fig 1). 

We next compared SV calling results from the 
LRS and SRS of LNCaP data. Interestingly, we found 
that LRS detected overall many more deletions and 
insertions, while SRS identified a lot more duplica-
tions and inversions (Table 2). Specifically, SRS data 
revealed 3,557 deletions (66.4%), 956 duplications 
(17.6%), 855 inversions (16.0%), and no insertions 
after filtering, whereas LRS data detected 9,072 dele-
tions (35.7%), 99 duplications (0.4%), 96 inversions 
(0.4%), and 16,114 insertions (63.5%). Out of these, 
2,178 deletions (61.2% of SRS-detected and 24.0% 
of LRS-detected deletions), 28 duplications (3.0% of 

Table 1. Summary of sequencing information in two different datasets

Dataset Sequencing Technology Average Read Length (bp) Reads Yield Coverage (X)
NP-0056 ONT 3,736 58,245,198 32
SRR1977632 Illumina 90 2,517,372,955 63

Figure 1. Workflow of data processing for structural variation comparison.
Workflow of data analysis for SV detection and downstream comparison in LRS and SRS. Tools used (on arrows) and format 
changes (in rectangles) are shown for SRS (top panel) and LRS (bottom panel).

Table 2. Summary of detected SVs across two different datasets

Deletion Duplication Inversion Insertion

 SRS-WGS of LNCaP 3,557 945 855 0

 LRS-WGS of LNCaP 9,072 99 96 16,114

Overlapping 2,178 28 49 0
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SRS-detected and 28.3% of LRS-detected duplica-
tions), and 49 inversions (5.7% of SRS-detected and 
51.0% of LRS-detected inversions) overlapped (Table 
2). Therefore, while LRS and SRS detected substan-
tially overlapping SVs, they each have pros and cons 
in identifying specific types of SVs, such as insertions, 
which LRS did well but SRS failed to detect.

LRS, but not SRS, detects insertions
SRS has inherent limitations in detecting inser-

tions because SRS reads from inserted sequences are 
unable to align to the reference genome and thus dis-
carded, whereas read pairs flanking an insertion, al-
beit mappable to the reference genome, won’t reveal 
an insertion in between (Fig 2A). In contrast, the two 
ends of LRS flanking stretches of inserted sequences 
could be mapped to the reference genome and also 
enable the detection and retrieval of the exact in-
serted sequence (Fig 2B). This explains our finding 
that SRS and LRS detected 0 and 16,144 insertions, 
respectively (Table 2). Interestingly, we found that 
most (92%) of the LRS-detected insertions were less 
than 1 kb, with only a few exceeding 5 kb (Fig 2C-
D, with different scales of Y-axes). This is due to the 
limitations that the average read length of our sample 
was 3,736 bp and that LRS provides single-end reads, 
thus unable to reveal SVs beyond the read length. Ad-
ditionally, many of these insertions were at repetitive 
regions of the reference genome, where SRS reads 
often fail to align accurately. For instance, an inser-
tion identified by LRS overlapped a highly repetitive 
region on chromosome 1, where no SRS reads were 
mapped, and no insertions were detected by SRS (Fig 
2E). These findings highlight the advantage of LRS 
in detecting insertions, including those at repetitive 
regions, while SRS is intrinsically unable to capture 
insertions.

LRS captures short deletions with high sensitivity 
and precision, while SRS excels in detecting very long 
deletions

SRS calls deletion when the distance between 
the read pair alignment is much longer than the 
median distance of all paired alignments (Fig 3A), 
whereas LRS detects deletion when the two ends of 
a read are mapped to two discontinuous regions on 
the genome (Fig 3B). Surprisingly, we found that 
SRS missed deletions that were less than 300bp, 
which were successfully detected by LRS (Fig 3C). 
This limitation of SRS may be related to how the 

SV-calling software defines the cut-off distance to 
call a deletion. Interestingly, SRS was as effective 
as LRS in capturing deletions between 300 to 1000 
bp long. Of note, SRS surpassed LRS in detecting 
very long deletions, due to such deletions being lon-
ger than the length of LRS reads and the limitation 
of LRS being a single-end sequencing technology 
(Fig 3D). Moreover, we found that LRS-based SV 
calling identified more deletions and defined the 
breakpoints more precisely in complex chromo-
some regions, such as telomeres and repetitive re-
gions, where SRS often has challenges with sequence 
alignment. For instance, Figure 3E shows one region 
where paired-end SRS suggested a single deletion, 
while LRS resolved two distinct deletions of differ-
ent lengths within the same region with very precise 
breakpoints (Fig 3E). These results indicate that LRS 
provides greater sensitivity and precision in the de-
tection of short deletions, including those in com-
plex genomic regions, where SRS excels in capturing 
very long deletions due to its paired-end nature.

SRS calls many more duplications than LRS
SRS calls duplications when a pair of SRS reads 

forms divergent, rather than converging pairs when 
aligned to the reference genome (Fig 4A). By con-
trast, LRS calls a duplication if two or more re-
gions of one read maps to the same region on the 
reference genome (Fig 4B). Interestingly, we found 
that SRS identified many short duplications of less 
than 1,000bp, but LRS detected no duplications 
in this size range (Fig 4C). SRS also called many 
long duplications of 1000bp to 150Mbp, while LRS 
only captured a few (Fig 4D). This discrepancy in 
duplication may be caused, at least in part, by SRS 
misclassifying insertions as duplications in highly 
repetitive regions of the genome. For duplications, 
39% (370/945) overlap SINE/Alu elements, indicat-
ing that a significant portion occurs in repetitive re-
gions. Since SINE/Alu elements are highly similar 
and widespread, SRS reads may misalign or collapse 
duplications, leading to incorrect structural variant 
calls. This overlap suggests that mapping challenges 
in repetitive regions contribute to discrepancies in 
duplication detection.

LRS Detects Longer Inversions and Resolves SRS 
Misclassifications

SRS calls an inversion when the paired reads are 
oriented in the same direction when aligned to the 
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Figure 2. LRS detected many insertions, which SRS failed to capture.
A-B. Approaches for detecting insertions by SRS and LRS. SRS (A) relies on paired-end reads to infer the type, size, and location 
of the DNA fragment. R1 and R2 from the sample genome (top) that contains an insertion (blue) could be mapped to the refer-
ence genome but won’t reveal an insertion. R3 and R4 will be discarded due to alignment failure. LRS (B) utilizes the alignment 
patterns of long reads to directly identify insertion. 
C-D. Stacked histograms displaying the number (count) of insertions detected by LRS (red) that were ≤ 1000 bp (n= 14872, C) or 
> 1000 bp (n= 1242; D). Note: much smaller Y-axis scale for D than C. 
E-F. An example of an insertion (purple box, zoomed in in F) called by LRS (bottom) that contains AT repeats (yellow highlighted 
region), where SRS (top) reads failed to align.
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Figure 3. LRS calls short deletions with high sensitivity and precision, while SRS excels in detecting very long dele-
tions. 
A-B. Approaches for detecting deletion by SRS and LRS. SRS (A) relies on paired-end reads to infer the type, size, and location 
of deletions. In contrast, LRS (B) utilizes the alignment patterns of long reads to directly identify deletions.
C-D. Stacked histograms display the number of deletions detected by LRS (red) and SRS (blue). C: deletions ≤ 1000 bp and D: 
deletions > 1000 bp. The x-axis represents deletion length, and the y-axis indicates the count (n) of deletions. 
E. An example of a deletion called using SRS (top blue bar) and two deletions called using LRS (the two red bars) in the same 
genomic region. Shown underneath are the paired-end SRS reads (top) and single-end LRS reads (bottom). Black lines anno-
tated by purple numbers indicate the number of deleted base pairs.
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reference genome (Fig 5A). Normally, the two reads 
of an SRS pair should be in opposite directions in a 
converging form. In contrast, LRS calls inversions 
when a segment of a single long read is mapped in 
the opposite direction on the reference genome rel-
ative to the remaining portion of the read (Fig 5B). 
Similar to what we have observed in duplications, we 
found SRS detects far more inversions than LRS (Fig 
5C-D). Only SRS detected short inversions of less 
than 450bp, whereas both methods captured some 
longer inversions.  RepeatMasker results show that 
68% (584/855) of inversions overlap SINE/Alu ele-
ments, which are highly repetitive and prone to mis-
alignment in SRS. Due to their high sequence simi-
larity, SRS reads often fail to map uniquely, leading to 
misoriented alignments and incorrect inversion calls. 
This high overlap strongly suggests that many of the 
discrepancies in inversion detection are due to SRS 
mapping challenges in repetitive regions. A known 

Figure 4. SRS captures many more duplications than LRS.
A-B. Approaches for duplication identification by SRS and LRS. 
C-D. Stacked histograms displaying the number of duplications detected by LRS (red) and SRS (blue), with duplications ≤ 1000 
bp (LRS: n=0; SRS: n=210, C) and duplications > 1000 bp (LRS: n=98; SRS: n=729, D). The x-axis represents duplication length, 
and the y-axis indicates the count (n) of duplications. 

MIPOL1-DGKB gene fusion in LNCaP mediated by 
inversion was also identified in LRS data and visual-
ized using Ribbon [13] (Fig. 5E). This finding further 
demonstrates the capability of LRS to detect complex 
genomic rearrangements.

Discussion
Our study demonstrated substantial differences 

in SV detection between LRS and SRS. These differ-
ences stem from variations in alignment strategies, 
SV calling methodologies, and the ability to detect 
different SV types. Most importantly, SRS is com-
pletely unable to detect insertions, which is an intrin-
sic limitation due to its short-read nature. Rajaby, R. 
et al. developed INSurVeyor [14], a tool specifical-
ly designed for calling insertions. By integrating de 
novo assembly strategies, it enhanced sensitivity and 
specificity in detecting insertions using SRS. How-
ever, LRS still holds a clear advantage in identifying 
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Figure 5. SRS detects many more inversions than LRS.
A-B. Approaches for inversion identification by SRS and LRS.  
C-D. Stacked histograms displaying the number of inversions detected by LRS (red) and SRS (blue) for inversions ≤ 1000 bp (LRS: 
n=7; SRS: n=136, C) and inversions > 1000 bp (LRS: n=88; SRS: n=712; D). The x-axis represents inversion length, and the y-axis 
indicates the count (n) of inversions. 
E. The Ribbon plot illustrated a structural rearrangement between DGKB on chromosome 7 (Chr7:14158271) and MIPOL1 on 
chromosome 14 (Chr14:37516423). The top panel displays gene structures (DGKB in red, MIPOL1 in purple), with breakpoints 
marked by black rectangles. The Ribbon panel shows supporting split-read alignments, where red and purple segments indicate 
read mappings to DGKB and MIPOL1, respectively. The Reference panel provides a genomic alignment reference. The Read panel 
at the bottom visualizes mapped sequencing reads, with colored ribbons connecting homologous sequences at the break-
points, highlighting the inversion-mediated fusion event.
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insertions composed of low-complexity sequences. 
The repetitive nature of these sequences, along with 
technical challenges in accurate read mapping, makes 
their detection particularly difficult with SRS. Fur-
ther, tandem duplications and insertions may exhibit 
similar mapping patterns in SRS, both appearing as 
discordant read pairs with increased local coverage, 
making them difficult to distinguish. Second, SRS 
does not do well at repetitive and low-complexity ge-
nomic regions, frequently causing misalignment er-
rors and resulting in incorrect SV calls. SRS also has 
difficulties in detecting precise breakpoints of SVs, 
being consistent with previous reports [5, 7]. Like-
wise, overlapping or nested SVs present a significant 
challenge, as short reads lack the resolution to distin-
guish closely spaced rearrangements, often leading to 
incomplete or erroneous SV reconstructions. 

By contrast, LRS provides superior resolution for 
complex SVs and long insertions, particularly superi-
or to SRS in repetitive regions. LRS will be extreme-
ly helpful to catalog insertions and short deletions, a 
majority of which have been missed or misclassified 
by SRS.  LRS significantly improves SV detection in 
terms of both reliability and resolution. Moreover, 
long reads can span SV breakpoints with high-con-
fidence alignments, reducing ambiguity and enhanc-
ing breakpoint resolution. Furthermore, studies have 
shown that LRS enables the phasing of junctions 
with nearby somatic and germline variants, offering 
a more precise resolution of complex SV haplotypes 
[15]. This capability provides deeper insights into SV 
mechanisms, functional consequences, and potential 
clinical relevance. Moreover, LRS demonstrates high-
er sensitivity in detecting small somatic SVs (≤10 kb), 
which are often underreported by traditional SRS ap-
proaches [8].

However, LRS could not detect deletions that are 
longer than its average read length, usually 10kb, due 
to its single-read nature. Therefore, integrating both 
technologies will enhance cancer genomic character-
ization, improving mutation annotation and clinical 
translation. Future studies should focus on leveraging 
both approaches to establish a more comprehensive 
and accurate SV landscape for improved diagnostics 
and therapeutic strategies. For example, the inte-
gration of LRS with advanced technologies like sin-
gle-cell template strand sequencing (Strand-seq), a 
short-read sequencing-based strategy that preserves 
DNA strand directionality, has greatly improved the 
resolution of structural variation in the human ge-
nome. This approach enables the precise detection 

of heterozygous and homozygous inversions while 
enhancing the identification of full-length mobile el-
ement insertions (MEIs) [16]. By enabling a system-
atic investigation of MEI origins, distribution, and 
mobilization mechanisms, LRS offers deeper insights 
into complex genomic regions, including transduc-
tions [16]. 

In practice, Illumina is more cost-effective for 
large-scale, high-coverage studies with fragmented 
but accurate assemblies, while Nanopore is advan-
tageous for projects requiring real-time analysis, 
complete metagenome-assembled genomes, and spe-
cies-level resolution, albeit at a higher sequencing 
and computational cost [17]. Nanopore LRS faces 
challenges with degraded DNA, FFPE samples, and 
cfDNA, which can cause reduced throughput and 
flow cell pore blockage due to fragmentation. While 
Illumina SRS tolerates some DNA fragmentation, 
it still suffers from GC bias and uneven coverage. 
In contrast, Nanopore sequencing depends on long 
DNA fragments, making it more sensitive to degra-
dation. Proper DNA extraction, repair, and quality 
control protocols are essential to mitigate these issues 
and improve sequencing results.

Materials and Methods

Oxford Nanopore Long-Read Sequencing
The Nanopore LRS DNA library was prepared as pre-
viously described [18].  Briefly, the genomic DNA of 
LNCaP was extracted using Quick-DNA Miniprep 
Plus Kit (Zymo, D4068) and fragmented to average 
size at 8 kb with g-TUBE™ (Covaris, 520079). The 
DNA libraries were prepared using the Ligation Se-
quencing Kit (ON SQK-LSK110) per the manufac-
turer’s protocol. The sequencing was performed on 
an Oxford Nanopore PromethION 2 Solo sequencer 
with R10.4.1 flow cells. 

Pipeline and Variant Calling
Base-calling of LRS data was performed with Do-

rado (version 0.8.1) using pod5 files as input to con-
vert to fastq files. SRS data of LNCaP (SRR1977632) 
was downloaded from Gene Expression Omnibus. 
Quality control was performed on the FASTQ files 
using MultiQC (version 1.25.2)[19]. SRS and LRS 
data were aligned to the GRCh38.p14 (hg38) refer-
ence genome using BWA (v0.7.17-r1188) for SRS and 
Minimap2 (v2.26-r1175) with default parameters 
and the model dna_r10.4.1_e8.2_400bps_sup@v4.3.0 
for LRS. Samtools (version 1.17) was used to convert 
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SAM files to BAM format and generate sequencing 
statistics. Structural variants (SVs) were identified 
using Delly [11] (version 1.3.1) for SRS and the Del-
ly LR module for LRS, with results stored in VCF 
files. Delly integrates paired-end mapping and split-
read analysis to identify balanced and unbalanced 
SVs with single-nucleotide resolution. It achieves 
high sensitivity and specificity across a wide SV 
size range and supports multiple sequencing librar-
ies with varying insert sizes. SVs shorter than 50 bp 
and those located on random chromosomes were la-
beled as “LowQual” and excluded from downstream 
analysis using BCFtools (version 1.21). The final SV 
datasets were reformatted using the query function in 
BCFtools for further comparison (Fig 1).

SV Comparison Between SRS and LRS
To compare SVs of the same type between SRS 

and LRS, we used the GenomicRanges (version 
1.50.2) and IRanges (version 2.32.0) packages [20] 
in R to match breakpoints within a 50 bp distance 
threshold. Additionally, SVs were further validated 
using the merge function in SURVIVOR [21] and 
manually inspected in IGV (version 2.16.2) [22] to 
confirm read alignments.

Analysis of Repetitive Patterns in Duplications and 
Inversions Identified by SRS

To further explore the repetitive nature of dupli-
cations and inversions detected by SRS, we extract-
ed the corresponding sequences from the reference 
genome using the samtools faidx function, based 
on their start and end coordinates. These sequences 
were saved in a .fa file and analyzed with RepeatMas-
ker (version 4.1.7-p1) with default mode against the 
Dfam database [23] to identify interspersed repeats 
and low-complexity DNA regions. The resulting an-
notation table was filtered with a cutoff of Smith-Wa-
terman (SW) score >1000 (a measure of sequence 
alignment quality) and %divergence (%div) < 10% 
(indicating minimal sequence divergence), to focus 
on duplications and inversions likely containing re-
petitive elements.
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