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ABSTRACT
Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a 
powerful technology for studying genetic and epigenetic regulation. However, ChIP-seq 
data can be heavily affected by variations in chromatin amount and composition, ChIP 
enrichment, library preparation, and sequencing depth, affecting its overall reproducibility 
across biological replicates. Here, we evaluated four ChIP-seq normalization methods utilizing 
triplicate Foxa1 ChIP-seq data performed in prostate cancer tissues from three mice. We found 
that count-per-million (CPM) normalization, although not affecting peak calling in individual 
samples, is very useful for visualization and comparison of peak distribution and intensity 
across samples. By contrast, equal-read normalization improves both peak identification 
and intensity comparison. Moreover, spike-in normalization took advantage of spike-in 
chromatin ChIP to correct technical variations in ChIP-seq, including ChIP enrichment, sample 
preparation, and sequencing. Lastly, input-adjusted spike-in normalization further accounts 
for differences in input chromatin amount across samples, which is especially crucial for 
tissue ChIP-seq that often starts with different amounts of input chromatin. Overall, our study 
demonstrated that appropriate normalization is essential to improve the reproducibility and 
comparability of ChIP-seq experiments and highlighted the importance of input-adjusted 
spike-in normalization for tissue ChIP-seq. 

ARTICLE HISTORY
Received:  March 9, 2025 
Revised:   April 7, 2025 
Accepted:  April 8, 2025

KEYWORDS
Reproducibility, Chromatin-
immunoprecipitation, 
tissue sample

Introduction
Chromatin immunoprecipitation coupled with 

next-generation sequencing (ChIP-seq) is a powerful 
technique for identifying genome-wide localization 
of transcription factors and histone modifications 
[1, 2]. It is common practice to compare ChIP-seq 
data across different experimental conditions, such 
as control vs. knockdown cells, to determine how 
transcription factor binding sites and epigenetic bio-
markers are regulated [3]. However, such compari-
sons are often affected by variations in ChIP-seq ex-
periments, including the quality and specificity of the 
antibody, the extent of ChIP enrichment, ChIP-seq 
library complexity, sequencing depth, and individual 
sample variations [4]. Data normalization is, there-
fore, essential to minimize technical biases and allow 
biologically meaningful discoveries. 

The simplest and most commonly used normal-
ization methods for ChIP-seq data are read-depth 

normalization, such as count-per-million (CPM) 
normalization and equal-read normalization. CPM 
normalization scales signals to a standard reference 
of one million reads, which is frequently utilized in 
heatmaps and average intensity plots to compare the 
intensity of ChIP-seq binding sites identified in var-
ious conditions. Equal-read normalization is used to 
bring all ChIP-seq samples in a comparing group to 
the same number of total reads, usually the lowest in 
the group, before peak discovery and intensity com-
parison. As both ChIP-seq peak number and inten-
sity are positively correlated to the total number of 
reads before saturation, these normalization methods 
are useful to control for differences caused by differ-
ent sequence depths.  

In addition, different ChIP-seq experiments could 
have varying efficiency in ChIP enrichment, notori-
ously known for H3K27me3 ChIP-seq in control and 
inhibited cells [5]. To address such variations, spike-
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in normalization has been developed, which adds a 
known amount of exogenous spike-in chromatin, e.g. 
drosophila, to the sample chromatin, which was sub-
jected to ChIP by a control spike-in antibody along 
with the experimental antibody, followed by con-
current sequencing [6]. During the subsequent data 
analyses, spike-in normalization will be used to scale 
reads of all samples by equalizing the spike-in reads. 
This method addresses common technical variations 
in ChIP-seq experiments, such as ChIP enrichment, 
PCR, library preparation, and sequencing. 

The fundamental assumption of spike-in normal-
ization is that the ratio between the amount of spike-
in reads and sample reads remains constant across all 
samples based on the fact that an equal amount of 
spike-in chromatin was added to each sample chro-
matin during the experimentation. However, there 
are circumstances when the input DNA for a group 
of samples is different, due to variations in organ/
tissue sizes, cell numbers/sizes, chromatin extraction 
efficiency, and other factors. It thus may be necessary 
to control for such input concentration differences by 
equalizing the ratio between spike-in DNA and sam-
ple DNA [7]. Input-adjusted spike-in normalization 
has been shown to improve the accuracy of detecting 
genome-wide differential modifications compared 
to equal-read normalizations and standard spike-in 
normalization [8]. Despite these advancements, the 
performance of different normalization strategies in 
tissue ChIP-seq has not been comprehensively eval-
uated.

In this study, we compared ChIP-seq normaliza-
tion methods by analyzing triplicate Foxa1 ChIP-seq 
data from prostate cancer tissues derived from three 
mice. We evaluated how the different normalization 
methods affect peak calling and ChIP-seq intensi-
ty comparisons. Our findings highlight the superior 
performance of spike-in normalization and the im-
portance of input adjustment in tissue ChIP-seq. 

Results

Spike-in normalization out-performed CPM and 
equal-read normalization. 

To evaluate the reproducibility of tissue ChIP-seq 
experiments, we dissected the whole prostates from 
three mice with prostate cancer, which have quite 
different prostate sizes and weights and thus varying 
total chromatin amounts (Table 1). Triplicate Foxa1 
ChIP-seq experiments were performed using these 
three mouse prostate cancer tissues. To control for 

ChIP efficiency, we added an equal amount of spike-
in DNA to each experiment. ChIP-seq revealed much 
fewer sample reads (4M) in replicate 1 (Rep 1), com-
pared to the 24 and 23M unique sample reads for rep-
licates 2 (Rep 2) and 3 (Rep 3), suggesting substantial 
differences among ChIP-seq experiments performed 
in tissues derived from different mice.  

 To enable a fair comparison among the 
ChIP-seq experiments, we tested various normaliza-
tion methods. We first identified Foxa1 binding peaks 
using the original sample read counts without any 
normalization (Fig. 1A). Surprisingly, we found Rep 
1 and Rep 3 of 4M and 23M sample reads, respective-
ly, yielded similar amounts (11-12k) of peaks, where-
as substantially more peaks (>40k) were found in Rep 
2, which had 24M sample reads. These data suggest 
that peak numbers were not only determined by the 
number of reads but by many other factors, even with 
the same antibody using the same protocol, indicat-
ing the complexity of tissue ChIP-seq. Further, Rep 
1 and 3 peaks have the best (>60%) overlap, whereas 
Rep 2 has many peaks that were not reproduced in 
Rep 1 and 3, suggesting a high false-positive rate in 
Rep 2, likely due to poor ChIP-seq enrichment. 

Next, to evaluate the potential effects of read 
counts on peak identification, we downsized all sam-
ples to the lowest read counts (4M of Rep 1), termed 
equal-read normalization (Fig. 1B). As expected, 
downsizing the read amount substantially reduced 
the number of peaks identified in Rep 2 and Rep 3, 
being consistent with the known correlation between 
read and peak numbers before saturation. There were 
much fewer overlapping peaks (2,317) after downsiz-
ing, suggesting false negatives, largely due to a huge 
loss of peaks in Rep 3. Almost all Rep 3 peaks were 
also detected in Rep 1 and Rep 2. This data suggests 
that Rep 3 has reasonable ChIP enrichment, which, 
however, has a weak overall signal and needs deep se-
quencing for peak discovery.  

Due to such differential ChIP enrichment across 
the triplicates, we further attempted to use spike-in 
normalization to control for technical variations in-
troduced during ChIP steps (Fig. 1C). As an equal 
amount of drosophila chromatin was added to each 
ChIP-seq experiment, we expect to see an equal 
proportion of drosophila reads relative to sample 
reads, which is the assumption used for spike-in nor-
malization. Overall, spike-in normalization led to a 
down-sizing of Rep 2 and Rep 3, and thus fewer peaks 
were detected compared to those without normaliza-
tion (Fig. 1A). On the other hand, it did not over-cor-
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Table 1. Triplicate Foxa1 ChIP-seq in 3 independent mouse prostate cancer tissues. 

M1661 (replicate 1)  M1672 (replicate 2)  M1666 (replicate 3) 

Input DNA concentration (ng/μL)  29.6  17.3  35.6 

Total input volume(μL) 20 20 20

Foxa1 antibody(µg) 2 2 2

Spike-in chromatin(ng) 62.5 62.5 62.5

Spike-in antibody(µg) 1 1 1

Total reads 23,323,662 35,733,071 37,907,791

Mapped reads 15,548,415 32,547,665 34,078,616

unique sample reads # 4,190,041  23,728,210  22,990,981 

unique spike-in reads # 142,086  268,064  319,773 

# sample reads with CPM normalization* 4,190,041  23,728,210  22,990,981 

# sample reads after equal-read normalization             4,190,041             4,190,490             4,191,212 

# sample reads after Spike-in normalization             4,190,041          12,576,184          10,217,507 

# sample reads after Input-adjusted Spike-in 
normalization             4,190,041             4,639,325          11,376,353 

# Peak with CPM normalization* 12,477  39,429  10,933 

# Peak after equal-read normalization 12,477  12,993  2,582 

# Peak after Spike-in normalization 12,477  30,093  6,025 

# Peak after Input-adjusted Spike-in normal-
ization 12,477  14,858  7,240 

*CPM normalization only affects peak intensity in visualization

rect the data as equal-read normalization. There were 
thus more comparable numbers of peaks across rep-
licates by spike-in normalization. Further, a signifi-
cantly higher percentage of Rep 3 peaks were also de-
tected by Rep 1 and 2 compared to no normalization, 
and significantly more Rep 1 peaks were reproduced 
by Rep 2 compared to equal-read normalization, sup-
porting that spike-in normalization is superior to no 
normalization or equal-read normalization in repro-
ducible peak identification. 

Now that we have compared the impacts of the 
different normalizations on peak identification, we 
attempted to further investigate the peak intensity. 

We compared signal enrichment for all peaks iden-
tified in the three biological replicates using heat-
maps, intensity plots, and scatterplots (Fig. 1D and 
1E). For the peaks identified without normalization, 
CPM was utilized to normalize their read intensity 
during visualization, such as heatmaps and scatter-
plots. We observed an overall strong positive correla-
tion among the samples – peaks with a strong signal 
in one sample also showed a strong signal in the other 
two samples, regardless of the normalization method 
(Fig. 1E). However, there was a systematic shift with 
Rep 3 peaks consistently having stronger enrichment 
than Rep 2 peaks, which was not corrected by any of 
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Figure 1. Traditional ChIP-seq normalization methods failed to correct systematic differences across 
biological replicates
A-C. Venn diagrams showing the overlap of Foxa1 binding events among three biological replicates using 
the indicated normalization methods.
D. Intensity plots and heatmap showing signal intensity of Foxa1binding events across three biological 
replicates. Signals are visualized within ±2 kb of the peak centers, with enrichment intensity represented by 
the color scale on the right. Peak clusters were defined as in A-C.
E. Scatterplots of log-normalized peak signals across three biological replicates normalized by the indicated 
methods. The x- and y-axes represent the signal enrichment in Rep 2 and Rep 3, respectively, while Rep 1 is 
represented on the color scale.
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the above normalization methods. The heatmaps and 
intensity plots further confirmed that, across all three 
normalization methods, peaks in Replicate 3 consis-
tently showed stronger signal intensities than those in 
Replicate 2. However, the enrichment levels between 
replicates varied depending on the normalization 
method. Replicates 1 and 3 showed comparable en-
richment following CPM and equal-read normaliza-
tion, whereas Replicates 2 and 3 appeared more sim-
ilar only when spike-in normalization was applied. 
This inconsistency suggests that different normaliza-
tion strategies can lead to differing interpretations of 
signal similarity across samples (Fig. 1D).

Input adjustment is required for ChIP-seq com-
parison across tissue samples 

We suspect that the systematic differences in 
ChIP-seq signals between Rep 2 and 3 were related to 
the difference in prostate sizes and, thus, total chro-
matin amounts in the two mice. To account for this 
difference, we developed an input-adjusted spike-
in normalization method. The assumption for this 
method is that the ratio of sample DNA to spike-in 
DNA should be equal to the ratio of sample reads to 
spike-in reads for each experiment. The normalized 
reads for each sample will be adjusted using a normal-
ization factor (NF) as defined in the method section. 
First of all, peak identification algorithms detected 
a total of 5,120 overlapping Foxa1 binding events in 
triplicates, with much fewer Rep 2-only binding sites, 
indicating a better control of false positives caused by 
poor enrichment in Rep 2 (Fig. 2A). By comparing 
the consensus peaks in triplicates across CPM and 
traditional spike-in, the majority of consensus peaks 
called by input-adjusted spike-in normalization are 
also detected by either CPM or spike-in normaliza-
tion with only 34 unique false-positive peaks, further 
supporting control of false positive (Fig. 2B). This 
performance is superior to CPM, equal-read, and 
spike-in normalization described earlier. Remark-
ably, scatter plot analyses revealed that input-adjusted 
spike-in normalization corrected the systematic dif-
ferences in peak intensities such that the peaks were 
tightly distributed around the diagonal (Fig. 2C). 

To further evaluate the ability and accuracy of in-
put-adjusted spike-in normalization in distinguish-
ing consistent Foxa1 peaks from ambiguous peaks 
caused by biological variance, (Fig. 2D). Analysis 
of peak cluster intensities revealed that the cluster 
of common peaks shared across all three replicates 

exhibited the highest intensity, indicating the most 
consistent and reliable Foxa1 peaks. In contrast, the 
replicate-specific peak clusters exhibited the lowest 
intensity, suggesting that these peaks represent bio-
logically variable signals. Rep 2 has the most binding 
peaks, with a high number not captured by Rep 1 and 
3, indicating potential false positives, which were lim-
ited to the smallest numbers by input-adjusted spike-
in normalization. We identified these false-positive 
peaks as non-reproducible peaks that appeared only 
in Rep 2 and were called without any normalization. 
(Fig. S1A) (R2. Q5). By contrast, Rep 3 has specific 
but weak enrichment, and with this normalization 
method, it was able to capture a majority of the sites 
detected by Rep 1 and 2. These findings indicate that 
input-adjusted spike-in normalization effectively 
detected the reproducible Foxa1 binding sites and 
corrected systematic deviations in peak enrichment, 
thereby enhancing reproducibility and comparability 
across biological replicates.

Discussion
Comparisons across ChIP-seq experiments done 

in different biological conditions are essential tools 
for studying genetic and epigenetic regulation. How-
ever, ChIP-seq experiments are inherently vulnerable 
to variations in chromatin amount and composition, 
ChIP enrichment, library preparation, sequenc-
ing depth, and technical variation. It is thus crucial 
to normalize ChIP-seq experiments to account for 
as many technical variabilities as possible before 
cross-sample comparisons for biological inferences. 
This is of utmost importance when comparing ChIP-
seq experiments across tissue samples from different 
individuals. 

In this study, we utilized triplicate Foxa1 ChIP-
seq experiments in prostates derived from three mice 
with prostate cancer to evaluate four normalization 
approaches under conditions of significant techni-
cal variances. For example, Replicate 1 had marked-
ly fewer uniquely mapped reads while the raw read 
count (23 M) and the amount of ChIP DNA (37 ng) 
appeared appropriate. A large number of unmapped 
reads (8 M) aligned to the salmon genome suggest-
ed contamination from magnetic beads blocked with 
sonicated salmon sperm DNA [9]. Additionally, poor 
antibody enrichment likely further contributed, as 
Replicate 1 yielded low amounts of immunoprecipi-
tated chromatin and produced duplicate reads (11 M) 
reducing library complexity (R2.Q2, R1.Q2). CPM 
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Figure 2. Input-adjusted spike-in normalization corrected systematic peak signal bias while improving reproducibility 
across biological replicates
A. Venn diagrams showing the overlap of Foxa1 binding sites among three biological replicates using input-adjusted spike-in 
normalization.
B. Venn diagrams showing the overlap of consensus Foxa1 binding sites that are shared by three biological replicates among 
three normalization methods.
C. Scatterplots of log-normalized peak signals across three biological replicates. The x- and y-axes represent the signal enrichment 
in Rep 2 and Rep 3, respectively, while Rep 1 is represented on the color scale.
D. Heatmap showing signal intensity for shared and unique Foxa1 binding events across three biological replicates. Signals are 
visualized within ±2 kb of the peak centers, with enrichment intensity represented by the color scale on the right. Peak clusters 
were defined as in A. 
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normalization, while not affecting peak identification 
in each sample, is extremely useful for the visualiza-
tion of multiple samples by scatter plots, heatmaps, 
and intensity plots to compare their ChIP-seq en-
richment intensity. Equal-read normalization is not 
only useful for visualization but also calls peaks uti-
lizing an equal number of reads for each sample in 
a comparing group, thus correcting for the positive 
impact of total read numbers on the number of ChIP-
seq peaks and making peaks more comparable across 
samples [10]. Spike-in normalization took another 
step forward by rectifying sample ChIP enrichment 
efficiency using spike-in ChIP, further improving the 
reproducibility across replicate experiments. 

However, none of the above normalization meth-
ods were able to account for systematic biases when 
input chromatin amount and complexity were differ-
ent across samples. Standard spike-in normalization 
assumed that an equal amount of sample chromatin 
was utilized across experiments and thus added an 
equal amount of spike-in chromatin for each experi-
ment. The subsequent data analyses were thus based 
on the assumption that the ratio between spike-in 
DNA and sample DNA remains constant across all 
samples, which, however, is often violated in tissue 
ChIP-seq experiments when chromatin amounts 
across individuals may vary significantly [11]. To 
this end, input-adjusted spike-in normalization in-
troduced an additional correction by accounting for 
the variability in the ratio of spike-in DNA to sample 
input DNA, scaling the raw reads to equalize these 
ratios across samples[7]. We found that this approach 
enhanced peak-calling reproducibility and accurately 
corrected global signal variation. 

In summary, our study compared the different 
ChIP-seq normalization methods and underscores 
the importance of applying appropriate normaliza-
tion strategies in ChIP-seq data analysis. We found 
spike-in normalization superior to other methods 
when the input chromatin amount is the same across 
samples. In the event of varying input chromatin 
amounts, we found input-adjusted spike-in normal-
ization very useful to account for differences in input 
concentrations across samples. Further, we recom-
mend appropriate ChIP-seq data normalization be-
fore conducting downstream analyses, such as ChIP-
seq peak calling and differential peak enrichment 
using consensus peaks identified across multiple bi-
ological replicates.

Materials and Method

ChIP-seq of mouse prostate tumors
ChIP-seq was performed following the previ-

ously described protocol (Lu et al., 2022). Briefly, 
40mg of flash frozen 18wk timepoint prostate tumors 
were utilized for the Foxa1 ChIP experiments. Tis-
sues were ground using an agate mortar and pestle 
and homogenized using the BeadBug benchtop ho-
mogenizer. Tissues were then double cross-linked 
with 2mM DSG for 10min, followed by 1% formal-
dehyde for 10min, at room temperature. Crosslink-
ing was quenched with 0.125 M glycine for 5min at 
room temperature. Chromatin was fragmented using 
an E220 focused ultrasonicator (Covaris), 62.5 ng of 
Drosophila chromatin was added to each sample as 
spike-in DNA, and samples were pre-cleared with 
protein A agarose beads (Millipore) for 1hr. Then 
samples were incubated with the following antibod-
ies overnight at 4C with rotation: 2 μg Foxa1 (Abcam, 
Cat#ab23738). 1 μg drosophila H3 antibody (Active 
motif, Cat# 61686) was also added per sample. Then, 
protein A agarose beads were added and incubated 
for 2h at 4C, followed by washing the beads with 
1×dialysis buffer (2mM EDTA, 50mM Tris-Cl, pH 
8.0) twice, and IP wash buffer (100mM Tris-Cl, pH 
9.0, 500mM LiCl, 1% NP40, 1% deoxycholate) four 
times. Finally, protein-DNA complexes were elut-
ed (50mM NaHCO3, 1% SDS), crosslinks were re-
versed, and DNA was purified using DNA Clean & 
Concentrator-5 kit (ZYMO Research). A total of 10 
ng ChIP DNA was used to prepare libraries for ChIP-
seq (NEB E7645L).

ChIP-seq data analysis
For read quality filtering, duplicate reads were 

identified and removed by Picard (v3.0.0) and the 
adaptor reads removal process was performed with 
Trimmomatic V0.39. The reads were aligned against 
the mouse reference genome mm10 genome and 
D.melanogaster reference genome Dmel A4.10 re-
spectively by Bowtie2 (v2.5.1).  CPM normaliza-
tion was performed with deepTools (v3.5.4) bam-
Coverage by calculating the read counts within 20 
bp windows as signal values, dividing by the total 
number of reads, and scaling the result to one mil-
lion. Equal-read normalization was performed by 
downsampling the samples with the calculated nor-
malization factor (NF) to the lowest reads sample 
with samtools (v1.17). The NF was calculated as 
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, where  is 
the sample reads and  is the sample with 
the lowest reads.  The NF represents the  propor-
tion  of reads that were randomly selected and re-
tained from the input reads. The retained reads were 
counted within 20 bp windows as signal values by 
deepTools. Spike-in normalization was performed 
by counting D.melanogaster reads in each sample to 
calculate the down-sample normalization factor as 

 
 
where  is D.melanogaster reads and min(S) is 
the sample with the lowest D.melanogaster reads. 
Down-sampling by NF was performed using  sam-
tools as previously described and reads within 20 bp 
windows were counted as signal values with deep-
Tools. Input-adjusted spike-in normalization was 
performed by calculating the normalization factor as  
 

,  
where  is input DNA concentration and 

 is Drosophila spike-in chromatin con-
centration,  is the sample read number and  is the 
drosophila read number for sample i. Samples were 
down sampled with samtools as previously described, 
and the signal values were calculated by counting 
reads in 20 bp windows with deepTools.

Tag directories were generated by HOMER 
(v4.11) from normalized reads for easier downstream 
peak calling and peak enrichment quantification. 
HOMER findPeaks was used for Foxa1 ChIP-seq 
narrow peak calling with default cutoff. Overlap of 
Foxa1 ChIP-seq peaks was determined with HOMER 
default setting, and Venn diagrams were generated 
with R script.

 Bigwig files were generated with deepTools bam-
Coverage with no additional normalization except 
for CPM normalization. Heatmaps were made with 
deepTools computeMatrix and plotHeatmap with the 
peaks clustered from previous peak overlap analysis. 
To evaluate the enrichment of the peaks, normalized 
signal around 1000bp peak center was quantified us-
ing HOMER annotatePeaks without additional nor-
malization. The R package ggplot2 was used to gen-
erate Scatter plots.
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Figure S1. Poor ChIP-seq enrichment induced false-positive Foxa1 binding sites, Related to Figure 1.
A Genome browser tracks showing false-positive Foxa1 binding site (highlighted in yellow) and true-positive Foxa1 bind-
ing site (highlighted in red)


