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BIOSTRATIGRAPHY AND
THE FOSSIL RECORD OF THE
HEMICHORDATA

It is now accepted that the Hemichordata
are likely to have originated during the late
Precambrian to early Cambrian (Fig. 1),
given that the fossil record indicates a pres-
ence of pterobranchs as early as the Fortu-
nian (basal Cambrian), with the possible
thabdopleurid Sokoloviina costata (Kirjanov,
1968) discovered in the Ukraine (MALETZ,
2019). However, early Cambrian records of
Pterobranchia are rare, and it isn’t until the
upper Cambrian (Series 2, Stage 4) and the
Miaolingian (Wuliuan) (Fig. 1) that a better
fossil record became available, following the
discovery of the first Enteropneusta fossils
in the Burgess Shale in Canada (CaroN,
CoNwAY MoRRis, & CAMERON, 2013).

The fossil record of the Enteropneusta
is limited to very few specimens and few
localities in the Palaeozoic to Mesozoic. The
described fossil taxa have been incorporated
into the taxonomic scheme and, in part, are
referred to extant groups (CAMERON, 2018).
The early genera Oesia WaLcoTT, 1911 and
Spartobranchus CARON, CONWAY MORRIS,
& CAMERON, 2013 are included in a stem
group.

The Cambrian record of the Pterobranchia
is of interest largely for taxonomy and evolu-
tionary studies, but the planktic Grapto-
lithina represent one of the most important
fossil groups of the Paleozoic for biostrati-
graphical dating of rock sequences. Their
origin close to the base of the Ordovician

System (CoOPER, NOWLAN, & WILLIAMS,
2001; WaANG & others, 2019) can be
regarded as one of the major evolutionary
events in the history of life on planet Earth
and marks the onset of the evolution of
planktic macro-organisms. The extinction
of the planktic graptoloids during the early
Devonian was a slow process. The reason for
this remains unexplored but may be related
to the emergence of plankton feeders in the
world’s oceans (MALETZ, 2017). This chapter
focuses on the interval of biostratigraphical
use of the Graptolithina and does not discuss
the sparse younger fossil record of the Hemi-
chordata.

GRAPTOLITE
BIOSTRATIGRAPHY

As early as 1850, HALL estimated that
graptolites, although at that time poorly
known, were valuable for identifying certain
geological periods. Thus, HaLL’s 1850 study
might be regarded as the starting point of
graptolite biostratigraphy, even though at
the time few graprolite species had been
described, and a precise biostratigraphical
use was not yet possible. In the same year,
BARRANDE (1850) indicated the practical
biostratigraphic use of the Silurian graptolite
faunas in the Barrandean region. NicHOLsSON
(1868) provided the first chart showing
the distribution in time (biostratigraphic
distribution, in modern terms) of graptolite
faunas in Britain. It was, however, the impact
of LapwoRrTH’s (1878) influential study on
the Moffat Series that established graprolites
as a prime fossil group for biostratigraphy
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F1G. 1. The Cambrian fossil record of the Enteropneusta and Pterobranchia (Hemichordata) (adapted from Maletz,
2019, fig. 3).

and relative dating of rock sequences of the
Paleozoic (FORTEY, 1993).

Inevitably, mistakes are made in science,
and it has occurred in the interpretation
of graptolite biostratigraphy. One of the
most glaring examples may be the record
of supposed Ordovician graptolites on a
small island in the South Orkney Island
complex of Antarctica (DaLzIEL, 1979).
Fossil material from the island, now called
Graprolite Island, was initially identified as
Ordovician graptolites by GERTRUDE ELLES
and published by PiriE (1905), leading to
considerable problems for the interpretation
of the geology of the region. The fossils were
later identified as possible Carboniferous
plant material (STRACHAN in ADIE, 1957, p.
22), but the name of the island still exists
and is present today on Google Earth. The
geological map of the South Orkney Islands
shows a Carboniferous to Triassic age of the
Greywacke Shale Formation, but paleonto-
logical data are poor, and the dating is based
on Triassic radiolarians from the Weddell
Islands to the northwest (FLOWERDEW, RILEY,
& HASELWIMMER, 2011). This example shows

how important precise identification of fossil
material is.

Currently used graptolite biozones are
often quite different from those first devel-
oped during the late 19th and early 20th
centuries. Scientists most commonly use
the concept of the First Appearance Datum
(FAD) to define the base of a fossil biozone,
which in general is a local level and may not
represent the worldwide first appearance
of a taxon. This is especially noticable in
the definitions of chronostratigraphic units
based on graptolites. There are now 13 out
of 16 stage boundary levels from the base
of the Ordovician System to the base of the
Devonian System that are defined by the
level of the FAD of a particular graptolite
species in a certain section (OGG, OGa, &
GRADSTEIN, 2016). Absolute dates for the
following charts (Fig. 2-7) are generally
taken from GRADSTEIN and others, 2020,
which represents the latest available infor-
mation. Dates have changed considerably
over the years as a result of new information.
Details are available from the website of the
International Commission on Stratigraphy
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(hteps://stratigraphy.org), The website also
includes uncertainty intervals of radiometric
dates.

Numerous biostratigraphic range charts
have been published over the years, many of
them providing local biozones, but general
overviews are rare. ELLES and Woob (1914)
tabulated the biostratigraphic ranges of
all graprolites known at the time from
Britain in 36 graptolite zones, preceded
only by the succession of LApwoRrTH (1880),
which counted 20 zones. This initially local
(British) ELLES and WooD biozonation
became a worldwide standard and was used
unchanged for more than 60 years until
RickARDS (1976) and later ZALASIEWICZ and
others (2009) revised the British standard
biozonation and counted 60 biozones and
subzones leading up to the middle Ludlow.
Younger graptolite zones were not recog-
nized in Britain. Burman (1955, fig. 5)
provided a chart in 7reatise, Part V showing
the stratigraphic distribution of the main
groups of graptolites and later added grap-
tolite biozonal schemes for Britain and
Australia as a guideline to the graptolite
biostratigraphy in the second edition of
Treatise, Part V (BuLMAN, 1970). Unified
international biostratigraphies are difficult
to construct due to the biogeographic differ-
entiation of many faunas (e.g., GOLDMAN
& others, 2013), but a generalized grap-
tolite zonal sequence for the Silurian was
proposed by JAEGER (1991) and KOREN’ and
others (1995, 1996). A standard graptolite
biozonation may also be used for the Lower
Devonian, as the faunas of this time interval
are fairly monotonous (JAEGER, 1978, 1988;
LENz, 2013).

A number system was introduced in
Germany by EiseL (1899), based on the
succession of LAPWORTH (1880, table 11-12),
but slightly different index species were
employed (EISEL, 1903). This scheme was
still used by MUNCH (1952) in his overview
on Silurian graptolites of Germany, but
JAEGER (1991) used and adjusted the succes-
sion of ELLES and WooD (1914) for the
German Silurian and indicated a number

of intervals not covered in their scheme.
MaLETZ (2001) suggested abandoning the
number system in Germany, following Rick-
ARDS (1995, p. 133) and advocated using
only index species for the biozonation.

The graptolite biozonation presented here
is largely based on the excellent compila-
tion of LoyDELL (2012), including addi-
tional references in his figure captions. New
information needing to be incorporated is
reflected herein.

ORDOVICIAN

According to GOLDMAN, SADLER, and LESLIE
(2020), the Ordovician System (LAPWORTH,
1879) is approximately 43.78 Ma long
(486.85-443.07 Ma), including three series,
the Lower Ordovician (15.59 Ma), the Middle
Ordovician (13.08 Ma), and the Upper Ordo-
vician (15.11 Ma), of which the middle one
is somewhat shorter. The three series include
seven stages, highly uneven in length. The
Darriwilian Stage (458.18-469.42 Ma) is the
longest stage at approximately 11.24 Ma, and
the Hirnantian (443.07—445.21 Ma) is the
shortest at only about 2.14 Ma, including two
graptolite zones (note, the precise radiometric
ages may differ considerably based on the
source used). GRADSTEIN and others (2012,
2020) is used for all units discussed here, but
numbers may change in the future (compare
with CooPER & SADLER; 2012; OGG, OGa, &
GRADSTEIN, 2016).

The (informal) Ordovician stage slices
of BERGSTROM and others (2009) are not
correlated herein. They were introduced as
defined chronostratigraphical units, based
on biostratigraphical data and explained to
have “potential for precise correlations in
both carbonate and shale facies” (BERGSTROM
& others, 2009, p. 97). They were used
to correlate the 6"C__ curve to the chro-
nostratigraphy. These stage slices should not
be confused with the time slices in WEBBY
and others (2004), a term created to provide
a precise key to correlate biostratigraphic
intervals based on various fossil groups. The
individual intervals were estimated to be
between 1.6 and 2.5 Ma long.
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THE LOWER ORDOVICIAN

The Lower Ordovician includes the
Tremadocian and Floian stages (Fig. 2).
The base of the Ordovician System and
the Tremadocian Stage is defined at the
level of the FAD of the conodont Zapeto-
gnathus fluctivagus N1coLL & others, 1999
(Coorer, NowLAN, & WiLLiaMS, 2001;
TERFELT, BAGNOLI, & STOUGE, 2012; WANG
& others, 2019, 2020). The occurrence of
Rhabdinopora EicHWALD, 1855 is often more
easily recognized in dark shale in basal Ordo-
vician strata (HENNINGSMOEN, 1973; BASSETT
& DEAN, 1982; NORFORD, 1982, 1988),
although the FAD of Rhabdinopora occurs
at a level slightly higher than the Global
Stratotype Section and Point (GSSP) level.
The biozones in the Australasian succession
are named by index species, but their widely
known and commonly used zonal notations
are not shown here (Fig. 2—4). See VANDEN-
BERG and CooPER (1992) and PERCIVAL,
Quinn, and GLEN (2011) for details and full
biozonal names.

The base of the Floian Stage is defined
at the level of the FAD of Paratetragraprus
approximatus (NICHOLSON, 1873) in the
Diabasbrottet section, Vistergotland, Sweden
(BERGSTROM, LOFGREN, & MALETZ, 2004;
BERGSTROM & others, 2006). This level is
equivalent to the level of the FAD of the
common Scandinavian graptolite Tetra-
graptus phyllograptoides STRANDMARK, 1902.
The name Tetragraptus phyllograptoides
Biozone is usually used to identify the
interval in Scandinavia (Baltica) and South
America (EGENHOFF, MALETZ, & ERDTMANN,
2004; Toro & others, 2015).

MAaLETZ, EGENHOFF, and ALoNso (2010)
and MALETZ and AHLBERG (2018) published
the latest biozonation for the Tremadocian
to early Darriwilian of Baltica, representing
one of the most complete successions known
(Fig. 2). MaLETZ, EGENHOFF, and ALONSO
(2010), following MALETZ and EGENHOFF
(2001), identified a local Kiaerograptus
stoermeri Biozone beneath the Kiaerograptus
supremus Biozone of LINDHOLM (1991),

which is not indicated in the chart (Fig. 2),
because it has been identified in only a single
section. ZALASIEWICZ and others (2009)
discussed the graprolite biostratigraphy of
Britain and listed the known faunas of the
Lower Ordovician. MALETZ and AHLBERG
(2011, fig. 8) provided a correlation of
the British succession to the Scandinavian
succession, showing that the British grap-
tolite succession is fairly incomplete, and
some intervals are not documented by fossil
faunas (Fig. 2). ZHANG and others (2019)
provided the latest overview on the Ordovi-
cian graptolite biostratigraphy of China as
a combination of the North China plat-
form and the Yangtze Region. The North
China succession starts with the Rhabdino-
pora proparabola interval (Fig. 2) but is not
known with certainty from other regions of
China (WaNG & others, 2019).

The basal Ordovician (early Tremadocian)
and the Floian intervals of the North Amer-
ican succession are best known from western
Newfoundland (WiLLIAMS & STEVENS, 1988;
CoOPER, NOWLAN, & WiLLIAMS, 2001), but
the late Tremadocian to early Floian succes-
sion of Yukon Territory, Canada (JaCKsoN &
LeNz, 2003, 20006) is a more detailed succes-
sion of Paradelograptus ERDTMANN, MALETZ,
& GUTIERREZ MARCO, 1987 species used
to subdivide the latest Tremadocian strata.
WiLLIaMS and STEVENS (1991) recognized
only the Aorograptus victoriae Biozone in
the late Tremadocian of western Newfound-
land, which is probably correlatable with
the Kiaerograptus kiaeri interval of Baltica
(MALETZ, 1999).

Lower Ordovician successions are widely
distributed in South America and have been
described in some detail from Bolivia and
Argentina (MALETZ & EGENHOFF, 2003;
EGENHOFF, MALETZ, & ERDTMANN, 2004;
Toro & others, 2015). They have been
correlated with the Scandinavian successions
by MALETZ and AHLBERG (2011). ALBANESI
and ORTEGA (2016) discussed the Ordovician
successions of Argentina and provided the
latest information on the graptolite biostratig-
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FiG. 2. Correlation of Lower Ordovician graptolite biozones. Yellow intervals indicate possible gaps (not recognized
faunal intervals) in the successions.

raphy (Fig. 2-4), showing distinct differences
between the Argentinian Precordillera and the
Gondwanan part of South America. In the
eastern Cordillera of Argentina, a differentia-
tion of the Tetragraprus akzharensis Biozone
into two subzones, Cymatograptus protobal-
ticus and Baltograptus vacillans biozones, may
even be possible (VENTO & ToRO, 2011;
VENTO, TORO, & MALETZ, 2012).

The Australasian succession appears to be
quite incomplete, at least in the Lower Ordo-
vician (Fig. 2). VANDENBERG and COOPER

(1992) provided index species for the biostrati-
graphic intervals, and PERCIVAL, QUINN, and
GLEN (2011) updated the succession in New
South Wales. MALETZ and AHLBERG (2011)
discussed the correlation of the Australasian
succession and noted this incompleteness of
the Tremadocian, in which only a few grap-
tolitic horizons were recognized, leading to
a number of biostratigraphic gaps (Fig. 2).
VANDENBERG (2017) revised the early Floian
succession, but new data on the Middle and
Upper Ordovician are not available.
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THE MIDDLE ORDOVICIAN

The Middle Ordovician includes the
Dapingian and Darriwilian stages (Fig. 3).
The base of the Dapingian is set at the strati-
graphical level of the FAD of the conodont
Baltoniodus triangularis (LINDSTROM, 1955)
in the Huanghuachang section of China
(WANG & others, 2009). This level is within
the local Azygograptus suecicus graptolite
Biozone, but the graptolite record is poor in
the type section. WANG and others (2013)
described the graptolite fauna of the GSSP
section and provided a detailed interna-
tional correlation of the graptolite faunas.
The base of the Dapingian is approxi-
mately correlatable with the base of the
Isograptus victoriae Biozone in other regions
(MALETZ, 2011). The Dapingian is charac-
terized by a succession of isograptid species
(Isograptus, Oncograptus, Cardiograptus)
as important index taxa (COOPER, 1973;
VANDENBERG & COOPER, 1992; MALETZ,
2011). Recently, HERRERA-SANCHEZ, T'ORO,
& LoVarvo (2019) and Toro and others
(2020) discussed the correlation of the
Floian and Dapingian succession of Argen-
tina and correlated the regional Azygograprus
lapworthi Biozone with the early Dapingian
(Fig. 3), followed by the Isograptus victoriae
Biozone of the Central Andean Basin of
Argentina and Bolivia.

The base of the Darriwilian is defined at
the level of the FAD of Levisograptus austro-
dentatus (HARRIS & KEBLE, 1932) in the
Huangnitang section, Zhejiang Province,
China, and two subzones are differentiated
(MiTcHELL & others, 1997). MALETZ and
AHLBERG (2020) and MALETZ, AHLBERG,
and LUNDBERG (2020) discussed the inter-
national correlation of the Darriwilian in
some detail. The authors also included
the complex succession of Bohemo-Iberia
(GUTIERREZ-MARCO & others, 2017), in
which the chronostratigraphical differen-
tiation includes the regional Arenigian,
Oretanian, and Dobrotivian Stages (not
shown in Fig. 3). In the past, the correlation
of the Darriwilian had been difficult due to
the presence of latitudinally restricted taxa,

especially the pendent didymograptids (see
GoLDbMAN & other, 2013), but MALETZ
(1997a) and MaLETZ and others (2011)
used pandemic faunal elements to intro-
duce a biostratigraphical succession of the
late Darriwilian (the Llanvirn of the British
regional chronostratigraphy) as an interna-
tional standard. MALETZ (1997b) revised the
Darriwilian succession of Quebec, Canada,
and differentiated the Levisograptus austro-
dentatus and Levisograprus dentatus biozones
into two subzones each (Fig. 3). MALETZ,
AHLBERG, and LUNDBERG (2020) discussed
the Darriwilian interval of South America,
showing a fairly complete succession from
the Levisograptus austrodentatus Biozone to
the Prerograptus elegans Biozone. This succes-
sion was pieced together from numerous
localities. The Pseudamplexograptus distichus
Biozone from the Puna region of Argentina
(Brussa, Toro, & VACCARI, 2008) was not
used in their compilation. KAurMANN (2019)
described the Darriwilian to basal Katian
succession of the Sierra de Villicum in the
Argentinian Precordillera.

THE UPPER ORDOVICIAN

The Upper Ordovician is differentiated
into three stages, the Sandbian, Katian, and
Hirnatian (Fig. 4), each stage being defined
at the level of the FAD of a graptolite species.

The base of the Sandbian Stage is taken
at the level of the FAD of the distinctive
Nemagraptus gracilis (HaLL, 1847) in the
Figelsdng section, Scania, Sweden (BERG-
STROM & others, 2000), a species that is
known to have a worldwide distribution
(Brussa & others, 2007). The precise level
of the FAD of this species in southern
Scandinavia has recently been questioned
(MALETZ & AHLBERG, 2020). Chitinozoan
records may also indicate problems with
the GSSP section at Figelsdng (VANDEN-
BROUCKE, 2004; HENNISSEN & others, 2010).
A detailed correlation of the Sandbian grap-
tolite succession, including the Nemagraptus
gracilis Biozone and the overlying Clima-
cograptus bicornis Biozone, is difficult to
make (WiLLIAMS & others, 2004).
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The base of the Katian is defined at the
level of the FAD of Diplacanthograptus
caudatus (LAPWORTH, 1876) in the Black
Knob Ridge section, Oklahoma, USA
(GoLpMAN & others, 2007) and is followed
by a rapid succession of first appearances of
other graptolite species useful for a wider
correlation of the level. Katian graptolite
faunas are widely distributed, but the corre-
lation is invariably difficult due to the pres-
ence of endemic faunal elements. A separate
biozonation was established in the Appa-
lachian Basin of eastern North America
(RUEDEMANN, 1912, 1925; Riva, 1974;
GOLDMAN, MITCHELL, & Jov, 1999; ACHAB
& others, 2011) and is shown here (Fig.
4). It includes a number of endemic faunal
elements of the genera Geniculograptus
MirTcHELL, 1987 and Paraorthograptus Mu
& others, 1974 that are found only in this
basin (GOLDMAN & others, 2013). They

represent the best example of a restriction
of Upper Ordovician graptolite faunas to a
certain biogeographic area.

The Katian includes a Geniculograptus
pygmaeus Biozone in China (CHEN & others,
1995; ZHANG & others, 2019), but the taxon
is not discussed or illustrated in Mu and
others (2002). Thus, since Geniculograptus is
considered to be an endemic taxon of eastern
North America, its presence in China may
be questioned (GoLpmaN & others, 2013).
Alulagraptus uncinarus (KEBLE & HARRIS,
1934) is used in Australia to determine the
Australasian Bolindian 1 (Bo 1), the Alula-
graptus uncinatus Biozone, in the middle
Katian. The species was recently found
in the Anticostia macgregorae beds in East
Qilianshan, northwestern China (CHEN &
others, 2019), a region in which a highly
local biostratigraphy was described for the
Katian interval (not shown in Fig. 4). It is
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FiG. 4. Correlation of Upper Ordovician graptolite biozones. Local biozonation of Appalachian Basin (b/ue).

also common in the Bolindian 1 of Idaho,
USA (CARTER, 1972; MITCHELL & others,
2003). A Diceratograptus mirus Subzone of
the Paraorthograptus pacificus Biozone may
be differentiated locally on the Yangtze Plat-
form of China and in Nevada, USA (CHEN
& others, 2006a; STORCH & others, 2011).

The base of the Hirnantian is defined
in the Wangjiawan North section, near
Wangjiawan Village, Hubei Province, China,
at the level of the FAD of Metabolograptus
extraordinarius (SOBOLEVSKAYA, 1974) (CHEN
& others, 2005, 2006a). The whole Hirnan-
tian is less than 80 cm thick in the type
section. It includes the Metabolograprus
extraordinarius Biozone, overlain by the
Metabolograptus persculptus Biozone. A thin

limestone with the Hirnantian brachiopod
fauna (the Kuanyinchiao bed) separates
the graptolite biozones. CHEN and others
(2006b) discussed the worldwide correlation
of the Hirnantian Stage in some detail.

The British Upper Ordovician succession
of ZaLAsIEWICZ and others (2009) combined
elements of the biozonations used in Baltica
and Scotland. A detailed biostratigraphic
zonation for the Upper Ordovician of South
America does not presently exist because
few faunas have been described from this
interval. ALBANESI and ORTEGA (2016) indi-
cated a possible gap between the Dicel-
lograptus ornatus Biozone (Katian) and the
Metabolograptus extraordinarius Biozone
(Hirnantian).
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SILURIAN

After the introduction of the Silurian
System by MURCHISON (1839), numerous
changes were made before the modern
concept emerged and series and stages
were established. DaviEs and others (2011)
provided the latest overview on its devel-
opment in Britain, along with informa-
tion to understand the individual chro-
nostratigraphic intervals. According to
MELCHIN, SADLER, and CRAMER (2020),
the Silurian System is approximately 24.07
Ma long (443.07-419.0 Ma) and is quite
unevenly differentiated into four series, the
Llandovery (10.14 Ma), Wenlock (6.19
Ma), Ludlow (4.01 Ma), and Pridoli (3.73
Ma). Interestingly, the GSSPs were initially
defined biostratigraphically with reference to
standard graptolite zones, although the index
taxa for these zones are not found in some
of the GSSP localities (MELCHIN, SADLER, &
CRAMER, 2012, p. 526). Some of the stages
are currently under revision and details may
change accordingly (see MELCHIN, SADLER,
& CRAMER, 2020). The main information
on the Silurian graptolite biostratigraphy
(Fig. 5-7) is based on LoyDELL (2012) with

revisions as indicated herein.

THE LLANDOVERY SERIES

The Llandovery Series (Fig. 5) is differ-
entiated into three stages: the Rhuddanian,
Acronian, and Telychian (BasseTT, 1985;
Horranp, 1985; MELCHIN, COOPER, &
SADLER, 2004). The base of the Rhuddanian
is defined at Dob’s Linn, Scotland at 1.6 m
above the base of the Birkhill Shale at the
level of the FAD of Akidograptus ascensus
(Cocks, 1985). Originally, the base of the
Rhuddanian was defined at the level of the
FAD of Parakidograptus acuminatus (N1CH-
OLSON, 1867) in the same section, but due
to a revison of the graptolite fauna, the defi-
nition was revised (MELCHIN & WILLIAMS,
2000; RONG & others, 2008).

The base of the Aeronian has been defined
at a level “just below the level of occurrence
of Monograptus austerus sequens, which indi-
cates the Demirastrites triangulatus Zone”

(MELCHIN, SADLER, & CRAMER, 2012, p. 520).
StorcH (2015) and STorcH and MELCHIN
(2019) discussed the graptolites from the
Rhuddanian-Aeronian boundary interval of
the Czech Republic. The authors redescribed
the zonal index for the base of the Aeronian,
Demirastrites triangulatus (HARKNESS, 1851),
and the anagenetic changes in the Demiras-
trites triangulatus lineage. The GSSP level
has recently been re-investigated at Rheidol
Gorge, Wales, since the original location
was insufficient for further correlations (see
MELCHIN & others, 2018). The gap in the
late Aeronian of the Yangtze Platform of
China indicated by LoyDELL (2012) can
be closed, at least in part, by the record of
Stimulograptus sedgwickii (PORTLOCK, 1843)
(MALETZ & others, 2021). MALETZ and others
(2019) recognized a considerably extended
Lituigraptus convolutus Biozone in the Yichang
region, Hubei Province, China, and subdi-
vided it into the Meztaclimacograptus sculprus
and Paramonoclimacis sidjachenkoi subzones
based on the common occurrence of the index
species.

The base of the Telychian is defined between
the LAD of the brachiopod Eocoelia curtisi
ZIEGLER, 1966 and the FAD of Focoelia inter-
media (HALL, 1860), a level correlated to the
base of the Spirograptus turriculatus Biozone by
Horranp (1985). According to a revision of
the genus Spirograprus GURICH, 1908, this level
now equals the base of the Spirograptus guerichi
Biozone (LOYDELL, STORCH, & MELCHIN, 1993;
MELCHIN, SADLER, & CRAMER, 2012). The
detailed biostratigraphy of the Spirograptus
guerichi and Spirograptus turriculatus biozones
(seven subzones) in Wales (LoYDELL, 1992) has
not been used outside this region and is not
discussed herein. MELCHIN and others (2017)
revised the Llandovery succession of Arctic
Canada and subdivided the Campograptus
curtus Biozone into two subzones, a lower
Demirastrites triangulatus/Demirastrites pecti-
natus Subzone and a Rastrites orbitus Subzone.

THE WENLOCK SERIES

The base of the Wenlock Series and the
Sheinwoodian Stage (Fig. 6) is defined in the
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FiG. 5. Correlation of Llandovery (Rhuddanian to Telychian) graptolite biozones.

Hughley Brook section, Shropshire, UK, at
the base of bed G of the Buildwas Formation
(BasseTT & others, 1975; HoLrLaND, 1980;
MARTINSSON, BASSETT, & HOLLAND, 1981).
This level was supposed to correlate with the
base of the Cyrtograptus centrifugus Biozone,
but no graptolites were found in the section
and the inference was based on other locali-

ties. MULLINS and ALDRIDGE (2004) indicated
that the GSSP level correlates with a level in
the upper Cyrtograptus centrifugus Biozone or
the lower Cyrrograptus murchisoni Biozone.
MELCHIN, SADLER, and CRAMER (2012)
considered the GSSP level to be in the lower
part of the Cyrtograptus murchisoni Biozone.
The Sheinwoodian is largely zoned by species
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of the genus Cyrtograptus CARRUTHERS in
MURCHISON, 1867, which are the most
conspicuous faunal elements. LOYDELL and
LARGE (2019) revised the British biozonation
of the Sheinwoodian slightly and elimi-
nated the Cyrtograptus perneri/Cyrtograptus
ramosus Biozone (see LOYDELL, 2012, fig.
5) in the uppermost Sheinwoodian. LENZ
and others (2012) revised the succession
of Arctic Canada. ZALASIEWICZ and others
(2009) listed Cyrtograptus perneri BOUCEK,
1933 from the British Cyrrograptus lund-
greni Biozone of basal Homerian age and
questionably from the Cyrtograptus rigidus
Biozone of the latest Sheinwoodian age.

The base of the Homerian is defined at
the level of the FAD of Cyrtograptus lund-
greni TULLBERG, 1883 at Sheinton Brook,
Homer, UK (HoLLAND, 1980; MARTINSSON,
BasserT, & HoLLAND, 1981). The Homerian
time interval includes one of the largest
extinction events in graptoloid history,
the Lundgreni Extinction Event (KOREN,
1987; JAEGER, 1991) during which most
graptoloid taxa disappeared at the top of the
Cyrtograptus lundgreni Biozone (e.g., JAEGER,
1991). PorEBskA, KOozLOWSKA-DAWIDZIUK,
and Masiak (2004) discussed three separate
events from the local biostratigraphic scheme
of the Bartoszyce section of Poland (Fig. 6;
Poland), partly supported by an investiga-
tion by MANDA and others (2019) from
the Czech Republic. Both suggested addi-
tional graptolite biozone intervals above the
Cyrtograptus lundgreni Biozone and below
the Pristiograptus parvus interval. However,
these biozone intervals are not recognized
worldwide.

Barca and JAEGER (1989) refined the
Wenlock graptolite biostratigraphy supported
by the detailed work of KOREN” (1992, 1994)
from Central Asia. The Wenlock is poorly
represented in China, and very few graptolites
have been described from this region.
CHEN (1984) provided information on the
Silurian graptolite biozonation, including
the Wenlock succession of southern Shaanxi,
China, as the most complete succession of
this interval, listing a number of biozones

defined by Cyrtograptus species. LENZ,
CHEN, and N1 (1996) discussed Wenlock
to Pridoli graprolites from Guangxi, China,
and recognized a few levels with late
Homerian (late Wenlock) and Gorstian to
early Ludfordian (Ludlow) graptolites. They
also reported a single taxon from the Pridoli,
Monograptus cf. rectiformis PRisyr, 1981. N1
(1997) described a fauna of late Homerian
graptolites from western Yunnan, China,
indicating the presence of the Colonograprus
praedeubeli/Colonograptus deubeli Biozone.

THE LUDLOW SERIES

The Ludlow Series and Gorstian Stage (Fig.
6) have their stratotype at Pitch Coppice,
Shropshire, England, at the base of the Lower
Elton Formation, based on the level of the
FAD of Neodiversograptus nilssoni (BARRANDE,
1850) (HorraND, 1980; HOLLAND & BASSETT,
1989). However, the fossil record of the
GSSP section is extremely poor and unreli-
able; only two poorly preserved specimens
identified as Neodiversograptus nilssoni and
Saetograptus varians (Woob, 1900) have
been found (WHITE, 1981). STORCH and
others (2016) discussed the graptolite fauna
of the Wenlock-Ludlow boundary interval
of the Czech Republic. These authors stated
that Saetograptus varians first appeared in
the biostratigraphically higher Lobograprus
progenitor Biozone. Biostratigraphically
important successions can be found in Arctic
Canada (LENz & K0zrowska-DAWIDZIUK,
2004), Kyrgyzstan (KOREN’ & SUJARKOVA,
2004) and the East European Platform
(UrBANEK & TELLER, 1997).)

Many of the late Wenlock (Cyrtograptus
lundgreni Biozone) to Ludlow (Saetograptus
leintwardinensis Biozone) graptolites are
known from chemically isolated specimens
collected from glacial boulders of northern
Germany and Poland (e.g., URBANEK, 1958;
RapzevICIUs & others, 2010; MALETZ &
SCHONING, 2017). This material has its origin
in the Silurian foreland basin succession of
the Colonus Trough of Scania, southern
Sweden (BEIER, MALETZ, & BOHNKE, 2000;
ERixssoN, 2012), which is poorly exposed.
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FiG. 6. Correlation of Wenlock-Ludlow (Silurian) graptolite biozones.
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These graptolites have been investigated
mainly in drill core material from Poland

(e.g., URBANEK, 1963, 1966, 1970).
THE PRIDOLI SERIES

KiiZ and others (1986) discussed and
defined the Pfidoli (now Pridoli) Series
(Fig. 7) in great detail, based on the GSSP
section in the Prague Basin. The level of the
FAD of Skalograptus parultimus (JAEGER,
1975) defines the base of the Pridoli. Their
work also provided a detailed graptolite
biostratigraphy of the whole interval.
TELLER (1997a, 1997b) and URBANEK (1997)
provided the latest overview on the Pridoli
graptolite biostratigraphy and taxonomy
of the East European Platform. N1, LENnz,
and CHEN (1998) discussed the record of
Pridoli graptolites in China and recognized
only a single biozone, based on collections
from northern Xinjiang, northwest China.
The fauna is similar to that described by
KoreN’ (1983, 1989) from Kazakhstan
and KoreN’ and Sujarkova (1997) from
southern Tian Shan, Kyrgyzstan. LENZ and
Kozrowska-Dawipziuk (2004) introduced
the Uncinatograptus birchensis Biozone in
the Arctic Islands, Canada, and suggested
it to be largely of basal Devonian age. They
suggested a possible latest Silurian age for
the base of the interval, but Lenz (2013)
included it entirely in the Pridoli.

DEVONIAN

It is well established that planktic grap-
tolites range biostratigraphically into the
Lower Devonian (Fig. 7), but the exact
level of their disappearance is still in discus-
sion. The base of the Devonian System is
defined at the level of the FAD of Unci-
natograptus uniformis (PRiByr, 1940) in the
Klonk section, Czech Republic (CuLurA¢
& Kuxkat, 1977; CHLUPAC & VASEK, 2003).
The absolute ages of the Devonian graptolite
zone FADs are based on BECKER, GRAD-
STEIN, and HAMMER (2012) and indicates
a much longer duration of Early Devo-
nian graptolite biozones in comparison
with the Silurian time intervals (Fig. 7).

The base of the Pragian Stage (Lower Devo-
nian) is based on the level of the FAD of
the conodont Eognathodus sulcatus sulcatus
PuiLip, 1965 in the Velkd Chuchle Quarry,
Czech Republic. This level is considered
to be above the Uncinatograptus hercynicus
graptolite zone (CHLUPAC & OLIVER, 1989).
The base of the Emsian is defined at the
level of the FAD of the conodont Polygna-
thus kitabicus YOLKIN & OTHERS, 1994 in
Uzbekistan (YOLKIN & others, 1997), but
a discussion for revision has begun (CARLs,
SLAviK, & VALENZUELA-Ri0s, 2008). JAEGER
(1978) suggested an early Emsian age for the
youngest monograptids and later supported
this view in his discussion of the correla-
tion with the conodont record (JAEGER,
1988). JAEGER (1970, 1978, 1988) described
the Devonian graptolite biostratigraphy in
some detail using all data available to him
at the time. JAEGER (1970) suggested Unci-
natograptus pacificus JAEGER in CHURKIN,
JAEGER, and EBERLEIN, 1970 as the youngest
Devonian monograptid and established the
Uncinatograptus pacificus Biozone as the
latest graptolite zone, but it is now known
that the interval can be correlated with the
Uncinatograptus yukonensis Biozone (LENZ,
2013).

KoreN’ (1974, 1975, 1978) discussed the
early Devonian graprolite faunas of central
Asia. LENZ (2013) provided the most recent
overview on the early Devonian graptolite
faunas of the Arctic Islands, Canada, which
has a fairly high number of these faunas
interpreted as cosmopolitan. POREBSKA
(1984) described the early Devonian grap-
tolites from the Bardo Mountains and estab-
lished a very detailed biostratigraphy for the
region. The author discussed a 30 cm thick
linograptid interregnum (POREBSKA, 1984)
at the top of the Pridoli Skalograptus trans-
grediens Biozone that LENz (2013) correlated
with the Uncinatograptus birchensis Biozone
of Arctic Canada.

LENz (1988) recognized Uncinatograptus
yukonensis (JACKSON & LENZ, 1963) as the
youngest Devonian monograptid in the
Yukon region of Canada. LEnz (2013)
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Fic. 7. Correlation of Pridoli (Silurian) and early Devonian graptolite biozones.

rejected the Uncinatograptus pacificus
Biozone of JAEGER (1970) due to new
records in Arctic Canada and considered
the Uncinatograptus yukonensis Biozone as
the youngest Devonian graptolite biozone
(Fig. 7). CHEN and others (2015) revised the
Devonian graptolite faunas of China (Fig. 7)
and differentiated four biozones, stating that
the succession has only moderate diversity
and that certain intervals are not recogniz-
able by their index species. However, this
general succession compares well with the
worldwide standard.

THE DURATION OF
GRAPTOLITE BIOZONES

The duration of graptolite biozones
has always been considered quite variable,
and the duration of Silurian intervals was
regarded as shorter than the Ordovican
or Devonian intervals (RICKARDS, 1976;
HuGHES, 1995; ZaLAsIEwWICZ & others,
2009). The advent of radiometric dating
finally provided better information on the
precise duration of biostratigraphic intervals,
but there are few reliable radiometric dates
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from the early Palaeozoic. LoyDELL (2012)
used the timescale of Ocg, OGg, and
GRADSTEIN (2008) to estimate the duration
of graptolite zones. General estimates for
the early and middle Ordovician based on
GRADSTEIN and others (2020) indicate a
duration of -1 Ma of a graptolite zone and
for the late Ordovician a duration of ~1.5
Ma. The estimates are between 400,000 and
600,000 years for the Silurian and about
2 Ma for the Lochkovian. The estimation
for the Pragian, the youngest interval for
a graptolite biozone, is ~1.5 Ma. Only a
few intervals may be zoned more precisely,
as the differentiation of the Spirograptus
guerichi and Spirograptus turriculatus biozones
demonstrates. LoYDELL (1992, fig. 7) indicated
a combined seven subzones for this interval,
which lasted ~1 Ma.

Because graptolites are most common in
dark and black shales, in which other fossils
are rare or lacking, a precise correlation
of the graptolite biostratigraphy with the
succession of other fossil groups is often
difficult. More information on other groups
exists in biostratigraphic literature and espe-
cially in the discussion of chronostratig-
raphy (see GRADSTEIN & others, 2012; Ogg,
OGa, & GRADSTEIN, 2016). Biostratigraphic
relevant acritarchs and chitinozoans are
most commonly associated with graptolites;
but because they are microfossils, different
methods have to be used for their extraction
from the sediments. Graptolites are associ-
ated in limestones with numerous other
fossils, including conodonts, radiolarians,
ostracods, and other small organisms, and
these cases can be used for direct biostrati-
graphic integration (e.g., BERGSTROM, 1986;
NosLE & MALETZ, 2000).

Graphic correlation and quantitative
biostratigraphy is very useful—and in some
cases, absolutely key—to determining
biostratigraphic successions and gaining
insight into the correlation of various fossil
groups as well as to integrating sedimento-
logical data and event horizons with paleon-
tological data (SADLER, 2004, 2012; SADLER,
COOPER, & MELCHIN, 2009, 2011; SADLER,

CoOPER & CRAMPTON, 2014; GOLDMAN,
NoLvak, & MALETZ 2015). Efforts to
produce a more precise chronostratigraphic
time scale for the Palaecozoic have been
undertaken by integration of various means.
(CrRAMER & others, 2010).

Automated stratigraphic correlation (see
SADLER, 2004, 2012) integrates biostrati-
graphic and chemostratigraphic data with
radiometric dates, producing a single
composite of stratigraphic data. This method
has increasingly been used to develop the
Ordovician and Silurian time scales. It has
also enabled analysis of the changing global
graptolite biodiversity and its relationship
with environmental change
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