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BIOSTRATIGRAPHY AND 
THE FOSSIL RECORD OF THE 

HEMICHORDATA

It is now accepted that the Hemichordata 
are likely to have originated during the late 
Precambrian to early Cambrian (Fig. 1), 
given that the fossil record indicates a pres-
ence of pterobranchs as early as the Fortu-
nian (basal Cambrian), with the possible 
rhabdopleurid Sokoloviina costata (Kirjanov, 
1968) discovered in the Ukraine (Maletz, 
2019). However, early Cambrian records of 
Pterobranchia are rare, and it isn’t until the 
upper Cambrian (Series 2, Stage 4) and the 
Miaolingian (Wuliuan) (Fig. 1) that a better 
fossil record became available, following the 
discovery of the first Enteropneusta fossils 
in the Burgess Shale in Canada (Caron, 
Conway Morris, & Cameron, 2013). 

The fossil record of the Enteropneusta 
is limited to very few specimens and few 
localities in the Palaeozoic to Mesozoic. The 
described fossil taxa have been incorporated 
into the taxonomic scheme and, in part, are 
referred to extant groups (Cameron, 2018). 
The early genera Oesia Walcott, 1911 and 
Spartobranchus Caron, Conway Morris, 
& Cameron, 2013 are included in a stem 
group.

The Cambrian record of the Pterobranchia 
is of interest largely for taxonomy and evolu-
tionary studies, but the planktic Grapto-
lithina represent one of the most important 
fossil groups of the Paleozoic for biostrati-
graphical dating of rock sequences. Their 
origin close to the base of the Ordovician 

System (Cooper, Nowlan, & Williams, 
2001; Wan g  & others,  2019) can be 
regarded as one of the major evolutionary 
events in the history of life on planet Earth 
and marks the onset of the evolution of 
planktic macro-organisms. The extinction 
of the planktic graptoloids during the early 
Devonian was a slow process. The reason for 
this remains unexplored but may be related 
to the emergence of plankton feeders in the 
world’s oceans (Maletz, 2017). This chapter 
focuses on the interval of biostratigraphical 
use of the Graptolithina and does not discuss 
the sparse younger fossil record of the Hemi-
chordata.

GRAPTOLITE 
BIOSTRATIGRAPHY

As early as 1850, Hall estimated that 
graptolites, although at that time poorly 
known, were valuable for identifying certain 
geological periods. Thus, Hall’s 1850 study 
might be regarded as the starting point of 
graptolite biostratigraphy, even though at 
the time few graptolite species had been 
described, and a precise biostratigraphical 
use was not yet possible. In the same year, 
Barrande (1850) indicated the practical 
biostratigraphic use of the Silurian graptolite 
faunas in the Barrandean region. Nicholson 
(1868) provided the first chart showing 
the distribution in time (biostratigraphic 
distribution, in modern terms) of graptolite 
faunas in Britain. It was, however, the impact 
of Lapworth’s (1878) influential study on 
the Moffat Series that established graptolites 
as a prime fossil group for biostratigraphy 
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and relative dating of rock sequences of the 
Paleozoic (Fortey, 1993).

Inevitably, mistakes are made in science, 
and it has occurred in the interpretation 
of graptolite biostratigraphy. One of the 
most glaring examples may be the record 
of supposed Ordovician graptolites on a 
small island in the South Orkney Island 
complex of Antarctica (Dalziel, 1979). 
Fossil material from the island, now called 
Graptolite Island, was initially identified as 
Ordovician graptolites by Gertrude Elles 
and published by Pirie (1905), leading to 
considerable problems for the interpretation 
of the geology of the region. The fossils were 
later identified as possible Carboniferous 
plant material (Strachan in Adie, 1957, p. 
22), but the name of the island still exists 
and is present today on Google Earth. The 
geological map of the South Orkney Islands 
shows a Carboniferous to Triassic age of the 
Greywacke Shale Formation, but paleonto-
logical data are poor, and the dating is based 
on Triassic radiolarians from the Weddell 
Islands to the northwest (Flowerdew, Riley, 
& Haselwimmer, 2011). This example shows 

how important precise identification of fossil 
material is.

Currently used graptolite biozones are 
often quite different from those first devel-
oped during the late 19th and early 20th 
centuries. Scientists most commonly use 
the concept of the First Appearance Datum 
(FAD) to define the base of a fossil biozone, 
which in general is a local level and may not 
represent the worldwide first appearance 
of a taxon. This is especially noticable in 
the definitions of chronostratigraphic units 
based on graptolites. There are now 13 out 
of 16 stage boundary levels from the base 
of the Ordovician System to the base of the 
Devonian System that are defined by the 
level of the FAD of a particular graptolite 
species in a certain section (Ogg, Ogg, & 
Gradstein, 2016). Absolute dates for the 
following charts (Fig. 2–7) are generally 
taken from Gradstein and others, 2020, 
which represents the latest available infor-
mation. Dates have changed considerably 
over the years as a result of new information. 
Details are available from the website of the 
International Commission on Stratigraphy 

Fig. 1. The Cambrian fossil record of the Enteropneusta and Pterobranchia (Hemichordata) (adapted from Maletz, 
2019, fig. 3).
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(https://stratigraphy.org), The website also 
includes uncertainty intervals of radiometric 
dates.

Numerous biostratigraphic range charts 
have been published over the years, many of 
them providing local biozones, but general 
overviews are rare. Elles and Wood (1914) 
tabulated the biostratigraphic ranges of 
all graptolites known at the time from 
Britain in 36 graptolite zones, preceded 
only by the succession of Lapworth (1880), 
which counted 20 zones. This initially local 
(British) Elles and Wood biozonation 
became a worldwide standard and was used 
unchanged for more than 60 years until 
Rickards (1976) and later Zalasiewicz and 
others (2009) revised the British standard 
biozonation and counted 60 biozones and 
subzones leading up to the middle Ludlow. 
Younger graptolite zones were not recog-
nized in Britain. Bulman (1955, fig. 5) 
provided a chart in Treatise, Part V showing 
the stratigraphic distribution of the main 
groups of graptolites and later added grap-
tolite biozonal schemes for Britain and 
Australia as a guideline to the graptolite 
biostratigraphy in the second edition of 
Treatise, Part V (Bulman, 1970). Unified 
international biostratigraphies are difficult 
to construct due to the biogeographic differ-
entiation of many faunas (e.g., Goldman 
& others, 2013), but a generalized grap-
tolite zonal sequence for the Silurian was 
proposed by Jaeger (1991) and Koren’ and 
others (1995, 1996). A standard graptolite 
biozonation may also be used for the Lower 
Devonian, as the faunas of this time interval 
are fairly monotonous (Jaeger, 1978, 1988; 
Lenz, 2013).

A number system was introduced in 
Germany by Eisel (1899), based on the 
succession of Lapworth (1880, table 11–12), 
but slightly different index species were 
employed (Eisel, 1903). This scheme was 
still used by Münch (1952) in his overview 
on Silurian graptolites of Germany, but 
Jaeger (1991) used and adjusted the succes-
sion of Elles and Wood (1914) for the 
German Silurian and indicated a number 

of intervals not covered in their scheme. 
Maletz (2001) suggested abandoning the 
number system in Germany, following Rick-
ards (1995, p. 133) and advocated using 
only index species for the biozonation.

The graptolite biozonation presented here 
is largely based on the excellent compila-
tion of Loydell (2012), including addi-
tional references in his figure captions. New 
information needing to be incorporated is 
reflected herein. 

ORDOVICIAN
According to Goldman, Sadler, and Leslie 

(2020), the Ordovician System (Lapworth, 
1879) is approximately 43.78 Ma long 
(486.85–443.07 Ma), including three series, 
the Lower Ordovician (15.59 Ma), the Middle 
Ordovician (13.08 Ma), and the Upper Ordo-
vician (15.11 Ma), of which the middle one 
is somewhat shorter. The three series include 
seven stages, highly uneven in length. The 
Darriwilian Stage (458.18–469.42 Ma) is the 
longest stage at approximately 11.24 Ma, and 
the Hirnantian (443.07–445.21 Ma) is the 
shortest at only about 2.14 Ma, including two 
graptolite zones (note, the precise radiometric 
ages may differ considerably based on the 
source used). Gradstein and others (2012, 
2020) is used for all units discussed here, but 
numbers may change in the future (compare 
with Cooper & Sadler; 2012; Ogg, Ogg, & 
Gradstein, 2016).

The (informal) Ordovician stage slices 
of Bergström and others (2009) are not 
correlated herein. They were introduced as 
defined chronostratigraphical units, based 
on biostratigraphical data and explained to 
have “potential for precise correlations in 
both carbonate and shale facies” (Bergström 
& others, 2009, p. 97). They were used 
to correlate the d13Corg curve to the chro-
nostratigraphy. These stage slices should not 
be confused with the time slices in Webby 
and others (2004), a term created to provide 
a precise key to correlate biostratigraphic 
intervals based on various fossil groups. The 
individual intervals were estimated to be 
between 1.6 and 2.5 Ma long.
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THE LOWER ORDOVICIAN
The Lower Ordovician includes the 

Tremadocian and Floian stages (Fig. 2). 
The base of the Ordovician System and 
the Tremadocian Stage is defined at the 
level of the FAD of the conodont Iapeto-
gnathus fluctivagus Nicoll & others, 1999 
(Cooper, Nowlan, & Williams, 2001; 
Terfelt, Bagnoli, & Stouge, 2012; Wang 
& others, 2019, 2020). The occurrence of 
Rhabdinopora Eichwald, 1855 is often more 
easily recognized in dark shale in basal Ordo-
vician strata (Henningsmoen, 1973; Bassett 
& Dean, 1982; Norford, 1982, 1988), 
although the FAD of Rhabdinopora occurs 
at a level slightly higher than the Global 
Stratotype Section and Point (GSSP) level. 
The biozones in the Australasian succession 
are named by index species, but their widely 
known and commonly used zonal notations 
are not shown here (Fig. 2–4). See Vanden-
Berg and Cooper (1992) and Percival, 
Quinn, and Glen (2011) for details and full 
biozonal names.

The base of the Floian Stage is defined 
at the level of the FAD of Paratetragraptus 
approximatus (Nicholson, 1873) in the 
Diabasbrottet section, Västergötland, Sweden 
(Bergström, Löfgren, & Maletz, 2004; 
Bergström & others, 2006). This level is 
equivalent to the level of the FAD of the 
common Scandinavian graptolite Tetra-
graptus phyllograptoides Strandmark, 1902. 
The name Tetragraptus phyllograptoides 
Biozone is usually used to identify the 
interval in Scandinavia (Baltica) and South 
America (Egenhoff, Maletz, & Erdtmann, 
2004; Toro & others, 2015).

Maletz, Egenhoff, and Alonso (2010) 
and Maletz and Ahlberg (2018) published 
the latest biozonation for the Tremadocian 
to early Darriwilian of Baltica, representing 
one of the most complete successions known 
(Fig. 2). Maletz, Egenhoff, and Alonso 
(2010), following Maletz and Egenhoff 
(2001), identified a local Kiaerograptus 
stoermeri Biozone beneath the Kiaerograptus 
supremus Biozone of Lindholm (1991), 

which is not indicated in the chart (Fig. 2), 
because it has been identified in only a single 
section. Zalasiewicz and others (2009) 
discussed the graptolite biostratigraphy of 
Britain and listed the known faunas of the 
Lower Ordovician. Maletz and Ahlberg 
(2011, fig. 8) provided a correlation of 
the British succession to the Scandinavian 
succession, showing that the British grap-
tolite succession is fairly incomplete, and 
some intervals are not documented by fossil 
faunas (Fig. 2). Zhang and others (2019) 
provided the latest overview on the Ordovi-
cian graptolite biostratigraphy of China as 
a combination of the North China plat-
form and the Yangtze Region. The North 
China succession starts with the Rhabdino-
pora proparabola interval (Fig. 2) but is not 
known with certainty from other regions of 
China (Wang & others, 2019). 

The basal Ordovician (early Tremadocian) 
and the Floian intervals of the North Amer-
ican succession are best known from western 
Newfoundland (Williams & Stevens, 1988; 
Cooper, Nowlan, & Williams, 2001), but 
the late Tremadocian to early Floian succes-
sion of Yukon Territory, Canada (Jackson & 
Lenz, 2003, 2006) is a more detailed succes-
sion of Paradelograptus Erdtmann, Maletz, 
& Gutiérrez Marco, 1987 species used 
to subdivide the latest Tremadocian strata. 
Williams and Stevens (1991) recognized 
only the Aorograptus victoriae Biozone in 
the late Tremadocian of western Newfound-
land, which is probably correlatable with 
the Kiaerograptus kiaeri interval of Baltica 
(Maletz, 1999).

Lower Ordovician successions are widely 
distributed in South America and have been 
described in some detail from Bolivia and 
Argentina (Maletz & Egenhoff, 2003; 
Egenhoff, Maletz, & Erdtmann, 2004; 
Toro & others, 2015). They have been 
correlated with the Scandinavian successions 
by Maletz and Ahlberg (2011). Albanesi 
and Ortega (2016) discussed the Ordovician 
successions of Argentina and provided the 
latest information on the graptolite biostratig-



Biostratigraphy 5

raphy (Fig. 2–4), showing distinct differences 
between the Argentinian Precordillera and the 
Gondwanan part of South America. In the 
eastern Cordillera of Argentina, a differentia-
tion of the Tetragraptus akzharensis Biozone 
into two subzones, Cymatograptus protobal-
ticus and Baltograptus vacillans biozones, may 
even be possible (Vento & Toro, 2011; 
Vento, Toro, & Maletz, 2012).

The Australasian succession appears to be 
quite incomplete, at least in the Lower Ordo-
vician (Fig. 2). VandenBerg and Cooper  

(1992) provided index species for the biostrati-
graphic intervals, and Percival, Quinn, and 
Glen (2011) updated the succession in New 
South Wales. Maletz and Ahlberg (2011) 
discussed the correlation of the Australasian 
succession and noted this incompleteness of 
the Tremadocian, in which only a few grap-
tolitic horizons were recognized, leading to 
a number of biostratigraphic gaps (Fig. 2). 
VandenBerg (2017) revised the early Floian 
succession, but new data on the Middle and 
Upper Ordovician are not available.

Fig. 2. Correlation of Lower Ordovician graptolite biozones. Yellow intervals indicate possible gaps (not recognized 
faunal intervals) in the successions.
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THE MIDDLE ORDOVICIAN

The Middle Ordovician includes the 
Dapingian and Darriwilian stages (Fig. 3). 
The base of the Dapingian is set at the strati-
graphical level of the FAD of the conodont 
Baltoniodus triangularis (Lindström, 1955) 
in the Huanghuachang section of China 
(Wang & others, 2009). This level is within 
the local Azygograptus suecicus graptolite 
Biozone, but the graptolite record is poor in 
the type section. Wang and others (2013) 
described the graptolite fauna of the GSSP 
section and provided a detailed interna-
tional correlation of the graptolite faunas. 
The base of the Dapingian is approxi-
mately correlatable with the base of the 
Isograptus victoriae Biozone in other regions 
(Maletz, 2011). The Dapingian is charac-
terized by a succession of isograptid species 
(Isograptus, Oncograptus, Cardiograptus) 
as important index taxa (Cooper, 1973; 
VandenBerg & Cooper, 1992; Maletz, 
2011). Recently, Herrera-Sánchez, Toro, 
& LoValvo (2019) and Toro and others 
(2020) discussed the correlation of the 
Floian and Dapingian succession of Argen-
tina and correlated the regional Azygograptus 
lapworthi Biozone with the early Dapingian 
(Fig. 3), followed by the Isograptus victoriae 
Biozone of the Central Andean Basin of 
Argentina and Bolivia.

The base of the Darriwilian is defined at 
the level of the FAD of Levisograptus austro-
dentatus (Harris & Keble, 1932) in the 
Huangnitang section, Zhejiang Province, 
China, and two subzones are differentiated 
(Mitchell & others, 1997). Maletz and 
Ahlberg (2020) and Maletz, Ahlberg, 
and Lundberg (2020) discussed the inter-
national correlation of the Darriwilian in 
some detail. The authors also included 
the complex succession of Bohemo-Iberia 
(Gutiérrez-Marco & others, 2017), in 
which the chronostratigraphical differen-
tiation includes the regional Arenigian, 
Oretanian, and Dobrotivian Stages (not 
shown in Fig. 3). In the past, the correlation 
of the Darriwilian had been difficult due to 
the presence of latitudinally restricted taxa, 

especially the pendent didymograptids (see 
Goldman & other, 2013), but Maletz 
(1997a) and Maletz and others (2011) 
used pandemic faunal elements to intro-
duce a biostratigraphical succession of the 
late Darriwilian (the Llanvirn of the British 
regional chronostratigraphy) as an interna-
tional standard. Maletz (1997b) revised the 
Darriwilian succession of Quebec, Canada, 
and differentiated the Levisograptus austro-
dentatus and Levisograptus dentatus biozones 
into two subzones each (Fig. 3). Maletz, 
Ahlberg, and Lundberg (2020) discussed 
the Darriwilian interval of South America, 
showing a fairly complete succession from 
the Levisograptus austrodentatus Biozone to 
the Pterograptus elegans Biozone. This succes-
sion was pieced together from numerous 
localities. The Pseudamplexograptus distichus 
Biozone from the Puna region of Argentina 
(Brussa, Toro, & Vaccari, 2008) was not 
used in their compilation. Kaufmann (2019) 
described the Darriwilian to basal Katian 
succession of the Sierra de Villicum in the 
Argentinian Precordillera.

THE UPPER ORDOVICIAN

The Upper Ordovician is differentiated 
into three stages, the Sandbian, Katian, and 
Hirnatian (Fig. 4), each stage being defined 
at the level of the FAD of a graptolite species.

The base of the Sandbian Stage is taken 
at the level of the FAD of the distinctive 
Nemagraptus gracilis (Hall, 1847) in the 
Fågelsång section, Scania, Sweden (Berg-
ström & others, 2000), a species that is 
known to have a worldwide distribution 
(Brussa & others, 2007). The precise level 
of the FAD of this species in southern 
Scandinavia has recently been questioned 
(Maletz & Ahlberg, 2020). Chitinozoan 
records may also indicate problems with 
the GSSP section at Fågelsång (Vanden-
broucke, 2004; Hennissen & others, 2010). 
A detailed correlation of the Sandbian grap-
tolite succession, including the Nemagraptus 
gracilis Biozone and the overlying Clima-
cograptus bicornis Biozone, is difficult to 
make (Williams & others, 2004).
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The base of the Katian is defined at the 
level of the FAD of Diplacanthograptus 
caudatus (Lapworth, 1876) in the Black 
Knob Ridge section, Oklahoma, USA 
(Goldman & others, 2007) and is followed 
by a rapid succession of first appearances of 
other graptolite species useful for a wider 
correlation of the level. Katian graptolite 
faunas are widely distributed, but the corre-
lation is invariably difficult due to the pres-
ence of endemic faunal elements. A separate 
biozonation was established in the Appa-
lachian Basin of eastern North America 
(Ruedemann, 1912, 1925; Riva, 1974; 
Goldman, Mitchell, & Joy, 1999; Achab 
& others, 2011) and is shown here (Fig. 
4). It includes a number of endemic faunal 
elements of the genera Geniculograptus 
Mitchell, 1987 and Paraorthograptus Mu 
& others, 1974 that are found only in this 
basin (Goldman & others, 2013). They 

represent the best example of a restriction 
of Upper Ordovician graptolite faunas to a 
certain biogeographic area.

The Katian includes a Geniculograptus 
pygmaeus Biozone in China (Chen & others, 
1995; Zhang & others, 2019), but the taxon 
is not discussed or illustrated in Mu and 
others (2002). Thus, since Geniculograptus is 
considered to be an endemic taxon of eastern 
North America, its presence in China may 
be questioned (Goldman & others, 2013). 
Alulagraptus uncinatus (Keble & Harris, 
1934) is used in Australia to determine the 
Australasian Bolindian 1 (Bo 1), the Alula-
graptus uncinatus Biozone, in the middle 
Katian. The species was recently found 
in the Anticostia macgregorae beds in East 
Qilianshan, northwestern China (Chen & 
others, 2019), a region in which a highly 
local biostratigraphy was described for the 
Katian interval (not shown in Fig. 4). It is 

Fig. 3. Correlation of Middle Ordovician graptolite biozones. Yellow intervals indicate possible gaps.
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also common in the Bolindian 1 of Idaho, 
USA (Carter, 1972; Mitchell & others, 
2003). A Diceratograptus mirus Subzone of 
the Paraorthograptus pacificus Biozone may 
be differentiated locally on the Yangtze Plat-
form of China and in Nevada, USA (Chen 
& others, 2006a; Štorch & others, 2011).

The base of the Hirnantian is defined 
in the Wangjiawan North section, near 
Wangjiawan Village, Hubei Province, China, 
at the level of the FAD of Metabolograptus 
extraordinarius (Sobolevskaya, 1974) (Chen 
& others, 2005, 2006a). The whole Hirnan-
tian is less than 80 cm thick in the type 
section. It includes the Metabolograptus 
extraordinarius Biozone, overlain by the 
Metabolograptus persculptus Biozone. A thin 

limestone with the Hirnantian brachiopod 
fauna (the Kuanyinchiao bed) separates 
the graptolite biozones. Chen and others 
(2006b) discussed the worldwide correlation 
of the Hirnantian Stage in some detail. 

The British Upper Ordovician succession 
of Zalasiewicz and others (2009) combined 
elements of the biozonations used in Baltica 
and Scotland. A detailed biostratigraphic 
zonation for the Upper Ordovician of South 
America does not presently exist because 
few faunas have been described from this 
interval. Albanesi and Ortega (2016) indi-
cated a possible gap between the Dicel-
lograptus ornatus Biozone (Katian) and the 
Metabolograptus extraordinarius Biozone 
(Hirnantian).

Fig. 4. Correlation of Upper Ordovician graptolite biozones. Local biozonation of Appalachian Basin (blue).
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SILURIAN
After the introduction of the Silurian 

System by Murchison (1839), numerous 
changes were made before the modern 
concept emerged and series and stages 
were established. Davies and others (2011) 
provided the latest overview on its devel-
opment in Britain, along with informa-
tion to understand the individual chro-
nostratigraphic intervals. According to 
Melchin, Sadler, and Cramer (2020), 
the Silurian System is approximately 24.07 
Ma long (443.07–419.0 Ma) and is quite 
unevenly differentiated into four series, the 
Llandovery (10.14 Ma), Wenlock (6.19 
Ma), Ludlow (4.01 Ma), and Pridoli (3.73 
Ma). Interestingly, the GSSPs were initially 
defined biostratigraphically with reference to 
standard graptolite zones, although the index 
taxa for these zones are not found in some 
of the GSSP localities (Melchin, Sadler, & 
Cramer, 2012, p. 526). Some of the stages 
are currently under revision and details may 
change accordingly (see Melchin, Sadler, 
& Cramer, 2020). The main information 
on the Silurian graptolite biostratigraphy 
(Fig. 5–7) is based on Loydell (2012) with 
revisions as indicated herein. 

THE LLANDOVERY SERIES

The Llandovery Series (Fig. 5) is differ-
entiated into three stages: the Rhuddanian, 
Aeronian, and Telychian (Bassett, 1985; 
Holland, 1985; Melchin, Cooper, & 
Sadler, 2004). The base of the Rhuddanian 
is defined at Dob’s Linn, Scotland at 1.6 m 
above the base of the Birkhill Shale at the 
level of the FAD of Akidograptus ascensus 
(Cocks, 1985). Originally, the base of the 
Rhuddanian was defined at the level of the 
FAD of Parakidograptus acuminatus (Nich-
olson, 1867) in the same section, but due 
to a revison of the graptolite fauna, the defi-
nition was revised (Melchin & Williams, 
2000; Rong & others, 2008).

The base of the Aeronian has been defined 
at a level “just below the level of occurrence 
of Monograptus austerus sequens, which indi-
cates the Demirastrites triangulatus Zone” 

(Melchin, Sadler, & Cramer, 2012, p. 526). 
Štorch (2015) and Štorch and Melchin 
(2019) discussed the graptolites from the 
Rhuddanian-Aeronian boundary interval of 
the Czech Republic. The authors redescribed 
the zonal index for the base of the Aeronian, 
Demirastrites triangulatus (Harkness, 1851), 
and the anagenetic changes in the Demiras-
trites triangulatus lineage. The GSSP level 
has recently been re-investigated at Rheidol 
Gorge, Wales, since the original location 
was insufficient for further correlations (see 
Melchin & others, 2018). The gap in the 
late Aeronian of the Yangtze Platform of 
China indicated by Loydell (2012) can 
be closed, at least in part, by the record of 
Stimulograptus sedgwickii (Portlock, 1843) 
(Maletz & others, 2021). Maletz and others 
(2019) recognized a considerably extended 
Lituigraptus convolutus Biozone in the Yichang 
region, Hubei Province, China, and subdi-
vided it into the Metaclimacograptus sculptus 
and Paramonoclimacis sidjachenkoi subzones 
based on the common occurrence of the index 
species.

The base of the Telychian is defined between 
the LAD of the brachiopod Eocoelia curtisi 
Ziegler, 1966 and the FAD of Eocoelia inter-
media (Hall, 1860), a level correlated to the 
base of the Spirograptus turriculatus Biozone by 
Holland (1985). According to a revision of 
the genus Spirograptus Gürich, 1908, this level 
now equals the base of the Spirograptus guerichi 
Biozone (Loydell, Štorch, & Melchin, 1993; 
Melchin, Sadler, & Cramer, 2012). The 
detailed biostratigraphy of the Spirograptus 
guerichi and Spirograptus turriculatus biozones 
(seven subzones) in Wales (Loydell, 1992) has 
not been used outside this region and is not 
discussed herein. Melchin and others (2017) 
revised the Llandovery succession of Arctic 
Canada and subdivided the Campograptus 
curtus Biozone into two subzones, a lower 
Demirastrites triangulatus/Demirastrites pecti-
natus Subzone and a Rastrites orbitus Subzone. 

THE WENLOCK SERIES

The base of the Wenlock Series and the 
Sheinwoodian Stage (Fig. 6) is defined in the 
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Hughley Brook section, Shropshire, UK, at 
the base of bed G of the Buildwas Formation 
(Bassett & others, 1975; Holland, 1980; 
Martinsson, Bassett, & Holland, 1981). 
This level was supposed to correlate with the 
base of the Cyrtograptus centrifugus Biozone, 
but no graptolites were found in the section 
and the inference was based on other locali-

ties. Mullins and Aldridge (2004) indicated 
that the GSSP level correlates with a level in 
the upper Cyrtograptus centrifugus Biozone or 
the lower Cyrtograptus murchisoni Biozone. 
Melchin, Sadler, and Cramer (2012) 
considered the GSSP level to be in the lower 
part of the Cyrtograptus murchisoni Biozone. 
The Sheinwoodian is largely zoned by species 

Fig. 5. Correlation of Llandovery (Rhuddanian to Telychian) graptolite biozones.
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of the genus Cyrtograptus Carruthers in 
Murchison, 1867, which are the most 
conspicuous faunal elements. Loydell and 
Large (2019) revised the British biozonation 
of the Sheinwoodian slightly and elimi-
nated the Cyrtograptus perneri/Cyrtograptus 
ramosus Biozone (see Loydell, 2012, fig. 
5) in the uppermost Sheinwoodian. Lenz 
and others (2012) revised the succession 
of Arctic Canada. Zalasiewicz and others 
(2009) listed Cyrtograptus perneri Bouček, 
1933 from the British Cyrtograptus lund-
greni Biozone of basal Homerian age and 
questionably from the Cyrtograptus rigidus 
Biozone of the latest Sheinwoodian age.

The base of the Homerian is defined at 
the level of the FAD of Cyrtograptus lund-
greni Tullberg, 1883 at Sheinton Brook, 
Homer, UK (Holland, 1980; Martinsson, 
Bassett, & Holland, 1981). The Homerian 
time interval includes one of the largest 
extinction events in graptoloid history, 
the Lundgreni Extinction Event (Koren’, 
1987; Jaeger, 1991) during which most 
graptoloid taxa disappeared at the top of the 
Cyrtograptus lundgreni Biozone (e.g., Jaeger, 
1991). Porěbska, Kozłowska-Dawidziuk, 
and Masiak (2004) discussed three separate 
events from the local biostratigraphic scheme 
of the Bartoszyce section of Poland (Fig. 6; 
Poland), partly supported by an investiga-
tion by Manda and others (2019) from 
the Czech Republic. Both suggested addi-
tional graptolite biozone intervals above the 
Cyrtograptus lundgreni Biozone and below 
the Pristiograptus parvus interval. However, 
these biozone intervals are not recognized 
worldwide.

Barca and Jaeger (1989) refined the 
Wenlock graptolite biostratigraphy supported 
by the detailed work of Koren’ (1992, 1994) 
from Central Asia. The Wenlock is poorly 
represented in China, and very few graptolites 
have been described from this region. 
Chen (1984) provided information on the 
Silurian graptolite biozonation, including 
the Wenlock succession of southern Shaanxi, 
China, as the most complete succession of 
this interval, listing a number of biozones 

defined by Cyrtograptus species. Lenz, 
Chen, and Ni (1996) discussed Wenlock 
to Pridoli graptolites from Guangxi, China, 
and recognized a few levels with late 
Homerian (late Wenlock) and Gorstian to 
early Ludfordian (Ludlow) graptolites. They 
also reported a single taxon from the Pridoli, 
Monograptus cf. rectiformis Přibyl, 1981. Ni 
(1997) described a fauna of late Homerian 
graptolites from western Yunnan, China, 
indicating the presence of the Colonograptus 
praedeubeli/Colonograptus deubeli Biozone.

THE LUDLOW SERIES

The Ludlow Series and Gorstian Stage (Fig. 
6) have their stratotype at Pitch Coppice, 
Shropshire, England, at the base of the Lower 
Elton Formation, based on the level of the 
FAD of Neodiversograptus nilssoni (Barrande, 
1850) (Holland, 1980; Holland & Bassett, 
1989). However, the fossil record of the 
GSSP section is extremely poor and unreli-
able; only two poorly preserved specimens 
identified as Neodiversograptus nilssoni and 
Saetograptus varians (Wood, 1900) have 
been found (White, 1981). Štorch and 
others (2016) discussed the graptolite fauna 
of the Wenlock-Ludlow boundary interval 
of the Czech Republic. These authors stated 
that Saetograptus varians first appeared in 
the biostratigraphically higher Lobograptus 
progenitor Biozone. Biostratigraphically 
important successions can be found in Arctic 
Canada (Lenz & Kozłowska-Dawidziuk, 
2004), Kyrgyzstan (Koren’ & Sujarkova, 
2004) and the East European Platform 
(Urbanek & Teller, 1997). )

Many of the late Wenlock (Cyrtograptus 
lundgreni Biozone) to Ludlow (Saetograptus 
leintwardinensis Biozone) graptolites are 
known from chemically isolated specimens 
collected from glacial boulders of northern 
Germany and Poland (e.g., Urbanek, 1958; 
Radzevičius & others, 2010; Maletz & 
Schöning, 2017). This material has its origin 
in the Silurian foreland basin succession of 
the Colonus Trough of Scania, southern 
Sweden (Beier, Maletz, & Böhnke, 2000; 
Eriksson, 2012), which is poorly exposed. 
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Fig. 6. Correlation of Wenlock-Ludlow (Silurian) graptolite biozones.
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These graptolites have been investigated 
mainly in drill core material from Poland 
(e.g., Urbanek, 1963, 1966, 1970).

THE PRIDOLI SERIES

Kříž and others (1986) discussed and 
defined the Přídolí (now Pridoli) Series 
(Fig. 7) in great detail, based on the GSSP 
section in the Prague Basin. The level of the 
FAD of Skalograptus parultimus (Jaeger, 
1975) defines the base of the Pridoli. Their 
work also provided a detailed graptolite 
biostratigraphy of the whole interval. 
Teller (1997a, 1997b) and Urbanek (1997) 
provided the latest overview on the Pridoli 
graptolite biostratigraphy and taxonomy 
of the East European Platform. Ni, Lenz, 
and Chen (1998) discussed the record of 
Pridoli graptolites in China and recognized 
only a single biozone, based on collections 
from northern Xinjiang, northwest China. 
The fauna is similar to that described by 
Koren’ (1983, 1989) from Kazakhstan 
and Koren’ and Sujarkova (1997) from 
southern Tian Shan, Kyrgyzstan. Lenz and 
Kozłowska-Dawidziuk (2004) introduced 
the Uncinatograptus birchensis Biozone in 
the Arctic Islands, Canada, and suggested 
it to be largely of basal Devonian age. They 
suggested a possible latest Silurian age for 
the base of the interval, but Lenz (2013) 
included it entirely in the Pridoli.

DEVONIAN
It is well established that planktic grap-

tolites range biostratigraphically into the 
Lower Devonian (Fig. 7), but the exact 
level of their disappearance is still in discus-
sion. The base of the Devonian System is 
defined at the level of the FAD of Unci-
natograptus uniformis (Přibyl, 1940) in the 
Klonk section, Czech Republic (Chlupáč 
& Kukal, 1977; Chlupáč & Vasek, 2003). 
The absolute ages of the Devonian graptolite 
zone FADs are based on Becker, Grad-
stein, and Hammer (2012) and indicates 
a much longer duration of Early Devo-
nian graptolite biozones in comparison 
with the Silurian time intervals (Fig. 7). 

The base of the Pragian Stage (Lower Devo-
nian) is based on the level of the FAD of 
the conodont Eognathodus sulcatus sulcatus 
Philip, 1965 in the Velká Chuchle Quarry, 
Czech Republic. This level is considered 
to be above the Uncinatograptus hercynicus 
graptolite zone (Chlupáč & Oliver, 1989). 
The base of the Emsian is defined at the 
level of the FAD of the conodont Polygna-
thus kitabicus Yolkin & others, 1994 in 
Uzbekistan (Yolkin & others, 1997), but 
a discussion for revision has begun (Carls, 
Slavík, & Valenzuela-Ríos, 2008). Jaeger 
(1978) suggested an early Emsian age for the 
youngest monograptids and later supported 
this view in his discussion of the correla-
tion with the conodont record (Jaeger, 
1988). Jaeger (1970, 1978, 1988) described 
the Devonian graptolite biostratigraphy in 
some detail using all data available to him 
at the time. Jaeger (1970) suggested Unci-
natograptus pacificus Jaeger in Churkin, 
Jaeger, and Eberlein, 1970 as the youngest 
Devonian monograptid and established the 
Uncinatograptus pacificus Biozone as the 
latest graptolite zone, but it is now known 
that the interval can be correlated with the 
Uncinatograptus yukonensis Biozone (Lenz, 
2013).

Koren’ (1974, 1975, 1978) discussed the 
early Devonian graptolite faunas of central 
Asia. Lenz (2013) provided the most recent 
overview on the early Devonian graptolite 
faunas of the Arctic Islands, Canada, which 
has a fairly high number of these faunas 
interpreted as cosmopolitan. Porěbska 
(1984) described the early Devonian grap-
tolites from the Bardo Mountains and estab-
lished a very detailed biostratigraphy for the 
region. The author discussed a 30 cm thick 
linograptid interregnum (Porěbska, 1984) 
at the top of the Pridoli Skalograptus trans-
grediens Biozone that Lenz (2013) correlated 
with the Uncinatograptus birchensis Biozone 
of Arctic Canada. 

Lenz (1988) recognized Uncinatograptus 
yukonensis (Jackson & Lenz, 1963) as the 
youngest Devonian monograptid in the 
Yukon region of Canada. Lenz (2013) 
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THE DURATION OF 
GRAPTOLITE BIOZONES

The duration of graptolite biozones 
has always been considered quite variable, 
and the duration of Silurian intervals was 
regarded as shorter than the Ordovican 
or Devonian intervals (Rickards, 1976; 
Hughes, 1995; Zalasiewicz & others, 
2009). The advent of radiometric dating 
finally provided better information on the 
precise duration of biostratigraphic intervals, 
but there are few reliable radiometric dates 

rejected the Uncinatograptus pacificus 
Biozone of Jaeger  (1970) due to new 
records in Arctic Canada and considered 
the Uncinatograptus yukonensis Biozone as 
the youngest Devonian graptolite biozone 
(Fig. 7). Chen and others (2015) revised the 
Devonian graptolite faunas of China (Fig. 7) 
and differentiated four biozones, stating that 
the succession has only moderate diversity 
and that certain intervals are not recogniz-
able by their index species. However, this 
general succession compares well with the 
worldwide standard.

Fig. 7. Correlation of Pridoli (Silurian) and early Devonian graptolite biozones.
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from the early Palaeozoic. Loydell (2012) 
used the timescale of Ogg, Ogg, and 
Gradstein (2008) to estimate the duration 
of graptolite zones. General estimates for 
the early and middle Ordovician based on 
Gradstein and others (2020) indicate a 
duration of ~1 Ma of a graptolite zone and 
for the late Ordovician a duration of ~1.5 
Ma. The estimates are between 400,000 and 
600,000 years for the Silurian and about 
2 Ma for the Lochkovian. The estimation 
for the Pragian, the youngest interval for 
a graptolite biozone, is ~1.5 Ma. Only a 
few intervals may be zoned more precisely, 
as the differentiation of the Spirograptus 
guerichi and Spirograptus turriculatus biozones 
demonstrates. Loydell (1992, fig. 7) indicated 
a combined seven subzones for this interval, 
which lasted ~1 Ma. 

Because graptolites are most common in 
dark and black shales, in which other fossils 
are rare or lacking, a precise correlation 
of the graptolite biostratigraphy with the 
succession of other fossil groups is often 
difficult. More information on other groups 
exists in biostratigraphic literature and espe-
cially in the discussion of chronostratig-
raphy (see Gradstein & others, 2012; Ogg, 
Ogg, & Gradstein, 2016). Biostratigraphic 
relevant acritarchs and chitinozoans are 
most commonly associated with graptolites; 
but because they are microfossils, different 
methods have to be used for their extraction 
from the sediments. Graptolites are associ-
ated in limestones with numerous other 
fossils, including conodonts, radiolarians, 
ostracods, and other small organisms, and 
these cases can be used for direct biostrati-
graphic integration (e.g., Bergström, 1986; 
Noble & Maletz, 2000).

Graphic correlation and quantitative 
biostratigraphy is very useful—and in some 
cases, absolutely key—to determining 
biostratigraphic successions and gaining 
insight into the correlation of various fossil 
groups as well as to integrating sedimento-
logical data and event horizons with paleon-
tological data (Sadler, 2004, 2012; Sadler, 
Cooper, & Melchin, 2009, 2011; Sadler, 

Cooper & Crampton, 2014; Goldman, 
Nõlvak, & Maletz  2015). Efforts to 
produce a more precise chronostratigraphic 
time scale for the Palaeozoic have been 
undertaken by integration of various means. 
(Cramer & others, 2010). 

Automated stratigraphic correlation (see 
Sadler, 2004, 2012) integrates biostrati-
graphic and chemostratigraphic data with 
radiometric dates, producing a single 
composite of stratigraphic data. This method 
has increasingly been used to develop the 
Ordovician and Silurian time scales. It has 
also enabled analysis of the changing global 
graptolite biodiversity and its relationship 
with environmental change 
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