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INTRODUCTION
Arms are the most striking aspect of living 

and fossil crinoids. They support the struc-
tures involved in gas exchange, reproduction, 
and both the capture and transfer of food 
particles to the mouth. Their structure and 
the way a crinoid arrays them for feeding—
that is, its posture—are critical to a crinoid’s 
growth and survival. Breimer (1978) and 
UBaghs (1978) offer detailed reviews of the 
structure and diversity of living and fossil 
crinoid arms, respectively.

From the first observations of living 
crinoids in aquaria (e.g., W. B. Carpenter, 
1866; ChadwiCk, 1907; gislén, 1924) to in 
situ observations (e.g., magnUs, 1963, 1964, 
1967; meyer, 1973a, 1979; Fishelson, 
1974; maCUrda & meyer, 1974), the posi-
tioning of the arms to form a suspension-
feeding array, often called a filtration fan, 
has been a focus with broad implications for 
the ecology, paleoecology, and taphonomy 
of these echinoderms (Byrne & Fontaine, 
1981; messing, 1985; FUjita, ohta, & oji, 
1987; messing, neUmann, & lang, 1990; 
BaUmiller, 1997; BaUmiller & rome, 1998; 
kitazawa, oji, & sUnamUra, 2007). The 
filtration array consists of five or more (up 
to ~200) arms that radiate from the central 
calyx and may reach ~50 cm in length (>1 
m in fossil Uintacrinus socialis grinnell, 
1876). In the great majority of crinoids, 
including all extant species, each arm is lined 

by unbranched, shorter pinnules (length 
<0.5 to ~4 cm), which together give each 
arm a narrow feather-like appearance. Both 
arm and pinnule ambulacral grooves are 
lined on either side by minute tube feet, or 
podia (typically <1 mm long).

AEROSOL SUSPENSION FEEDING

The functional morphology of the crinoid 
filtration fan can be understood following 
the principles of aerosol suspension feeding 
(rUBenstein & koehl, 1977). Two different 
physical forces—inertia and viscosity—
govern flow through the filtration array, and 
a Reynolds number (Re) represents the ratio 
of these two forces. If inertia dominates, 
giving a high Re, flow through the array is 
turbulent; if viscosity dominates, giving a 
low Re, flow is laminar. Because each filtra-
tion array component spans a different size 
range (i.e., arms much larger than pinnules, 
which are much larger than tube feet), each 
has a different Re number at a given flow 
velocity. Consequently, for current condi-
tions that crinoids typically encounter, the 
filtration array or even individual arms may 
experience turbulent flow, whereas at the 
tube feet, where particles are captured, flow 
is invariably laminar. (Note, however, that 
each component could experience a given 
Re value under different flow conditions.) 
Most critical is the behavior of flow between 
the pinnules and through the fine-scale array 
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of primary tube feet, which occurs at low Re 
and is governed by viscous forces and laminar 
fluid motion (vogel, 1994).

Unlike a sieve, the mechanisms of aerosol 
filtration depend on the adhesiveness of the 
filtering elements—in this case, the longer 
tube feet (laBarBera, 1984). All observa-
tions indicate that crinoids feed via direct 
particle interception, which reflects the 
operation of their feeding apparatus as an 
adhesive fiber filter, as opposed to other 
mechanisms such as gravitational or diffusive 
deposition, inertial impaction, or simple 
sieving. The latter would retain all particles 
larger than the mesh size while allowing all 
those smaller to pass through (rUBenstein 
& koehl, 1977). Unlike a sieve, crinoids 
can capture particles smaller than the spaces 
between tube feet (holland, striCkler, & 
leonard, 1986).

Aerosol suspension feeding theory has 
been widely applied to both living and 
fossil crinoids and explains a great deal of 
crinoid behavior and feeding biomechanics, 
including variations in posture, spacing and 
length of arms, pinnules and primary podia, 
and variations in habitat, all relative to 
current flow (meyer, 1979, 1982a, 1982b; 
aUsiCh, 1980; liddell, 1982; kammer, 
1985; kammer & aUsiCh, 1987; leonard, 
striCkler, & holland, 1988; leonard, 
1989). In particular, the theory predicts that 
different filter arrays will function optimally 
under different flow regimes (BaUmiller, 
1997; holterhoFF, 1997).

As demonstrated conclusively by meyer 
(1973a, 1979), maCUrda and meyer (1974), 
and others, crinoids are leeward passive 
suspension feeders. They do not create their 
own currents for feeding but rely exclusively 
on external currents for particle capture. 
However, they are active participants to the 
extent that they modify arm and pinnule 
postures to take best advantage of prevailing 
and changing flow velocities and patterns 
(meyer, 1982a; meyer & others, 1984; 
BaUmiller, 1997; messing, 1997). In addi-
tion, mobile taxa seek preferred locations. 
Computational and experimental fluid 

dynamics studies (BaUmiller, laBarBera, & 
woodley, 1991; dynowski & others, 2016) 
further confirm that crinoids are passive, 
aerosol suspension feeders (although, 
note alternative proposals for specialized 
morphologies: jeFFeries, 1989; grimmer & 
holland, 1990; heinzeller & FetCher, 
1995; wisshak & others, 2009).

LIGAMENTS AND MUSCLES

Crinoids assume and maintain their 
various feeding postures through the 
combined action of muscles and ligaments 
(although muscles between skeletal ossicles 
associated with appendage flexibility and 
movement apparently arose in crinoids only 
during the Devonian and remained absent 
in several fossil clades [aUsiCh & BaUmiller, 
1993]). As in other echinoderms, crinoid 
ligaments include unique catch-connective 
or mutable collagenous (or connective) 
tissue (MCT) capable of rapid and reversible 
changes in mechanical properties (between 
flaccid and stiff ) under neuronal control 
(e.g., wilkie, 1983, 1984, 2005; motokawa, 
1984, 1985, 1988; wilkie & emson, 1988; 
see also riBeiro & others, 2011). In the 
arms and pinnules, contraction of muscles on 
the ambulacral side of the fulcral ridge of an 
articular facet, coupled with the flaccid state 
of the large ligament on the other (abambu-
lacral) side of the ridge, curls or collapses the 
arms inward toward the mouth and flexes 
pinnules toward the arm axis. Contrary to 
earlier assumptions that, when the muscles 
relax, elasticity of the large ligament in the 
stiff state extends arms and pinnules outward 
(e.g., grimmer & holland, 1987; Biren-
heide & motokawa, 1994), motokawa, 
shintani, and Birenheide (2004) discovered 
that the abambulacral ligament in the arms is 
capable of both active contraction and altered 
stiffness. Contractility of ligament tissue had 
previously been recognized in cirri, which 
do not contain muscles (Birenheide, yoko-
jama, & motokawa, 2000). Once extended, 
stiffened ligaments allow arms and pinnules 
to maintain an extended posture passively 
against a current for food gathering.
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The crinoid column lacks muscular tissue. 
Bending, either in association with feeding 
postures (e.g., parabolic posture, see p. 
11–16) or in response to strong flow condi-
tions, and rotation in response to changing 
flow direction, has previously been attrib-
uted to a passive response to the resistance 
generated by the crown (BaUmiller, laBar-
Bera, & woodley, 1991). However, the 
discovery of ligament contractility suggests 
that some of this movement may be active 
and is in keeping with the observation that 
at least some living stalked crinoids can 
actively bend the stalk (M. veitCh & T. 
K. BaUmiller, unpublished observations 
of Democrinus perrier, 1883). In any case, 
observations so far indicate that move-
ments derived from ligamentary contrac-
tions are much slower than those associated 
with muscular contractions. Also, gorz-
elak, głUChowski, & salamon (2014) 
found that some columnals in the coiled 
stem of Ammonicrinus sulcatus kongiel, 
1958 (Devonian flexible), exhibit stereomic 
microstructure resembling that in crinoid 
muscular arm articular facets.

TUBE FEET (OR PODIA)

In all living crinoids, the tube feet occur 
in triads, each consisting of a longer primary, 
shorter secondary, and a yet shorter tertiary 
tube foot (niChols, 1960). The primary 
tube feet orient perpendicular to the flow 
and form the filter. Mean lengths vary with 
species and range from approximately 0.4 
to 0.9 mm in those feather stars exam-
ined (Byrne & Fontaine, 1981; lahaye & 
jangoUx, 1985; meyer, 1979) to at least 
~2.0 mm in deep-sea stalked Hyocrinidae 
(C. G. messing, unpublished observa-
tion). Spacing of primary tube feet along 
a pinnule also varies among species, e.g., 
~4 mm-1 in Antedon bifida pennant, 1777 
(lahaye & jangoUx, 1985), 4.5–9.5 mm-1 
in reef-dwelling feather stars (meyer, 1979), 
and ~2 mm-1 in a small hyocrinid (C. G. 
messing, unpublished observation). In 
addition, a significant relationship exists 
between primary tube foot length and 

spacing, although not uniformly across all 
crinoids. meyer (1979) found that, for 
reef-dwelling feather stars, longer tube feet 
are more widely spaced and characteristic 
of semicryptic species, whereas species that 
perch in the open have shorter more crowded 
tube feet. By contrast, Hyocrinidae that feed 
well above the substratum also have long, 
widely spaced tube feet (C. G. messing, 
unpublished observation).

FOOD CAPTURE

In those species so far examined, all three 
tube foot types bear papillae that enclose 
two types of secretory cells responsible for 
releasing mucus (mCkenzie, 1992), which 
holds the suspended particles that strike 
the primary tube feet. Smaller hillocks, so 
far observed only in Antedon bifida, are 
restricted to the ambulacrum-facing surface 
of the tertiary podia and surfaces between 
podia and contain two other kinds of secre-
tory cells, which also occur in the ambula-
cral groove (Flammang & jangoUx, 1992). 
These hillocks may occur in other species 
as well, based on their apparent function: 
unlike the adhesive secretions of both types 
of papillae cells, the hillock cells appear to 
represent a duo-gland system, with one cell 
type secreting an adhesive that contrib-
utes to the bolus of particles and the other 
releasing a de-adhesive that prevents particles 
from sticking to the groove (Flammang & 
jangoUx, 1992).

ni C h o l s  (1960) ,  ma g n U s  (1963) , 
rUtman and Fishelson (1969), and Byrne 
and Fontaine (1981) all reported mucous 
filaments extending from podia in the feather 
stars Antedon bifida, Heterometra savignii 
(müller, 1841), Lamprometra klunzingeri 
(hartlaUB, 1890) (=Dichrometra palmata 
[müller, 1841]), and Florometra serratissima 
(A. H. Clark, 1907a), respectively, although 
it remains unclear whether this is widespread 
among crinoids or not. Possible functions 
include fishing filaments to enhance capture 
or an irritation response to help them discard 
unwanted items (M. Byrne ,  personal 
communication). holland, striCkler, and 
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leonard (1986) found no evidence of such 
strands in the feather star Oligometra serri-
pinna (P. H. Carpenter, 1881). Similarly, it 
is not yet known whether mucus is released 
when a particle strikes a tube foot or if it 
is secreted to partially or completely cover 
extended tube feet in advance of particle 
impact (holland, striCkler, & leonard, 
1986).

Transfer of particles to the food groove 
has been reported to differ with species and 
particle size. However, most of the following 
observations were made more than three 
decades ago in aquaria rather than in situ and 
at a time when available imaging technology 
made the detailed movements of such small 
structures as tube feet much more difficult to 
visualize (M. Byrne, personal communica-
tion). As examples, in Florometra serratissima, 
after contact with a suspended food particle, 
the longest tube foot bends rapidly toward 
the ambulacral groove; the shorter secondary 
tube foot also bends rapidly and, together 
with the adjacent lappet that borders the 
groove, they wipe or scrape the particle 
into the groove. When all three members 
of a triad have curled into the groove, they 
appear to wipe along each other; the shortest 
tube foot wipes particles and mucus from the 
bases of the other two and compacts them 
into a bolus. In addition, the tertiary tube 
feet intercept and propel boluses along the 
groove toward the arm (Byrne & Fontaine, 
1981, 1983). 

In Antedon bifida, either a primary or 
secondary tube foot can capture a large 
particle by folding over it and transferring it 
to the groove either by wiping it off against 
a rake-like tertiary tube foot or by brushing 
it directly against the cilia in the groove. 
Smaller particles may accumulate on a tube 
foot before being wiped off. In this species, 
unlike F. serratissima, the tertiary podia 
paddle rapidly against the ciliary current 
in the groove to comb out the cilia; this 
stops and rotates the food particles, and 
embeds more mucus in the bolus (lahaye & 
jangoUx, 1985). By contrast to both of these 
species, holland, striCkler, and leonard 

(1986, p. 114) reported that, in Oligometra 
serripinna, the primary podia perform all 
“conspicuous small-scale feeding acts” unas-
sisted by secondary podia. They also noted 
that capture by the intercepting tube foot 
of particles larger than 20–30 µm may be 
accompanied by gentler, slightly delayed 
bending of up to a dozen adjacent podia, 
and that captured non-nutritive particles 
are quickly ejected from the pinnule food 
grooves. leonard, striCkler, and holland 
(1988) reported that, in this species, parti-
cles were captured by coordinated bending 
of about 15 podia (multiple or coordinated 
flicks; see also holland, striCkler, & 
leonard, 1986) at all flow velocities tested 
(0.9–13.3 cm s-1). In the unusual, five-
armed, deep-sea feather star Atopocrinus cf. 
sibogae A. H. Clark, 1912a, messing (2020) 
noted that, under near-bottom flow strong 
enough to force the very long primary podia 
into both smooth and irregular downcurrent 
undulations, the secondary podia (less than 
half the length of the primaries) on at least 
some pinnules extended in a straight row 
characteristic of direct particle interception. 
Such differences likely derive at least in part 
from differences among the species in both 
tube foot lengths and relative proportions 
of members of a triad, and flow conditions. 

Under natural conditions, when subjected 
to slow, unidirectional, quasi-laminar flow, 
crinoids array their arms so that the current 
strikes the abambulacral side of the arms 
and pinnules, causing flow to wrap around 
them and pass through the fine-scale filter 
created by the closely spaced primary tube 
feet. Observations of fluorescent dye passing 
through the tube-foot filter of crinoids in a 
flow tank do not reveal any micro-eddying 
along the downcurrent side of the filter 
(along the food groove itself ), but flow 
velocity slows, presumably due to viscous 
forces acting in the low Re number micro-
region of the tube feet (meyer, 1973a). 
However, Colman and others (1984) found 
that a dye stream passing through a feather 
star’s (Anneissia bennetti [müller, 1841]) 
multilayered fan in situ disintegrates into 
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many dye parcels spread across a much wider 
area than the upcurrent stream, indicating a 
downstream increase in turbulence, which 
reflected an effective diffusion coefficient 
an order of magnitude greater than ambient. 
Arms on the downcurrent side lie in the 
turbulent wake generated by the upcurrent 
arms, presumably permitting increased 
opportunities for food particle capture. In 
addition, aquarium observations of stalked 
Metacrinus rotundus P. H. Carpenter, 1885 
indicate that both flow around arms and 
minute postural movements of arms and 
pinnules generate turbulence that enhances 
particle capture and increases when nutrients 
are supplied (oji & kitazawa, unpublished 
observations). Observations in situ of stalked 
crinoids (Neocrinus decorus [thomson, 1864] 
and Endoxocrinus parrae parrae [gervais, 
1835]), exhibiting parabolic postures (see 
p. 11–16) indicate abrupt but brief slowing 
of dye streams on the downcurrent side 
(BaUmiller & messing, unpublished obser-
vations). holland, leonard, and striCkler 
(1987) noted that downcurrent-oriented 
ambulacra captured twice as many particles 
as those pointed up current in Oligometra 
serripinna during surge conditions. Thus, 
the advantage for the downcurrent orien-
tation of the ambulacral groove, appar-
ently a universal behavior among crinoids, 
increases particle capture and retention, as 
well as maintenance of the mucus-and-food-
particle bolus as it moves along the open 
food groove. 

CRINOID DIETS

Information on crinoid diets derives from 
analyses of gut contents and fecal material. 
Ingested particles are generally limited to 
those narrower than or equal to the width 
of the food groove, which places a food 
particle size constraint on different filtration 
morphologies (meyer, 1979; aUsiCh, 1980), 
although several studies have recorded parti-
cles in gut contents larger than groove widths 
(rUtman & Fishelson, 1969; la toUChe & 
west, 1980; meyer, 1982b). Particle size 
spectra vary among species, with the great 

majority of particles commonly between 
~20 and 150–200 µm in length and <100 
µm in width (meyer, 1982b; liddell, 1982; 
Featherstone, messing, & mCClintoCk, 
1998) and smaller in smaller species (e.g., 
<100 µm in length in Antedon bifida) (la 
toUChe & west, 1980). However, liddell 
(1982) recorded ~33 percent of gut content 
particles as 225–490 µm long in Davidaster 
rubiginosus (poUrtalès, 1869); rUtman and 
Fishelson (1969) recorded 26 percent of 
particles >200 µm in length for Dichrometra 
palmata, and leonard (1989) fed Antedon 
mediterranea (lamarCk, 1816) coccolitho-
phores ~11 µm across.

Identifiable dietary components vary 
among crinoid species based on variations 
in availability (seasonality, habitat, activity 
rhythms), density of the arm-and-pinnule 
filtration array and its elevation above the 
substratum, tube foot morphology and 
spacing, and ambulacral groove width 
(rUtman & Fishelson, 1969; meyer 1979, 
1982a 1982b; la toUChe & west, 1980; 
liddell, 1982; Featherstone, messing, 
& mCClintoCk 1998; kitazawa, oji, & 
sUnamUra 2007), as well as on the larger 
scales of geography, depth, and environ-
ment. In addition, meyer (1982b) recorded 
significant variability among fecal samples 
from different individuals of the same 
species collected during a single dive (see 
also kitazawa, oji, & sUnamUra, 2007). 
Most studies have been based entirely 
on microscopy (e.g., gislén, 1924, and 
references therein; rUtman & Fishelson, 
1969; meyer, 1982a, 1982b; la toUChe 
& west, 1980; Featherstone, messing, & 
mCClintoCk, 1998), although kitazawa, 
oji, and sUnamUra (2007) added fluoro-
chrome-labeled oligonucleotide probes for 
microbial analysis and recognition of chlo-
rophyll derivatives.

Dietary components include protists 
(e.g., diatoms, dinoflagellates and other 
unicellular algae, foraminiferans, radiolar-
ians, tintinnid ciliates), invertebrate larvae 
(e.g., veligers), small crustaceans (copepods, 
ostracodes), ovoid fecal pellets, and detrital 
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particles (see references in preceding para-
graph), although some gut contents have 
included substantial non-nutritive particles 
(e.g., sediment grains, sponge spicules) (e.g., 
gislén, 1924; kitazawa, oji, & sUnamUra, 
2007). On one hand, a combination of the 
latter and the capture and ingestion of non-
nutritive carmine dye grains (la toUChe & 
west, 1980) indicate that particle capture 
is non-selective and may not reflect digest-
ibility. However, holland, striCkler, and 
leonard (1986) recorded substantial rejec-
tion from food grooves of non-nutritive 
beads following capture by tube feet in 
Oligometra serripinna, and kitazawa & oji 
(2010) found that gut contents of stalked 
Metacrinus rotundus contained a greater 
proportion of phytoplankton relative to 
non-nutritive beads than in the suspended 
available food, both of which point to some 
level of particle selectivity.

The actual energetic contributions 
of different dietary components remain 
unknown. Organisms lacking hard parts 
(e.g., ciliates, some microphytoplankton) 
may be digested or rendered unidentifiable 
in feces, although holland, striCkler, and 
leonard (1986) found that, in Oligometra 
serripinna, ingested particles accumulate by 
one hour after ingestion in the hind end of 
the intestine and rectum, where most diges-
tion apparently takes place. Detritus may or 
may not contain significant nutritive value, 
e.g., from colonizing microorganisms (la 
toUChe & west, 1980; kitazawa, oji, & 
sUnamUra, 2007). Crustaceans may repre-
sent remains of living prey or low-value 
exuviae. west (1978) and smith, meyer, 
and horner (1981) documented uptake 
of dissolved nutrients in crinoids, but their 
contribution to nutrition likewise remains 
unknown. Also, non-nutritive particles such 
as mineral grains and sponge spicules, as well 
as benthic diatom taxa (e.g., gislén, 1924; 
rUtman & Fishelson, 1969; la toUChe , 
1978a; la toUChe & west, 1980), indicate 
incorporation of resuspended material in 
diets of at least some crinoid species. Finally, 
meyer (1982a) summarized suggestions that 

some chiefly fossil crinoids might be deposit 
feeders.

Examples of the variations in gut contents 
among species include Dichrometra palmata: 
50%–87% foraminiferans, radiolarians, and 
ciliates (rUtman & Fishelson, 1969; meyer, 
1982b); Anneissia bennetti and Pontio-
metra andersoni (P. H. Carpenter, 1889): 
54%–57% phytoplankton (diatoms and 
dinoflagellates); Capillaster multiradiatus 
(linnaeUs, 1758): 32% each, phytoplankton 
and sediment grains (Meyer, 1982b); Antedon 
bifida: 53%–85% chiefly fecal, resuspended 
detritus (la toUChe, 1978a; la toUChe 
& west, 1980); Davidaster rubiginosus, 
D. discoideus (P. H. Carpenter, 1888), 
Comactinia echinoptera (müller, 1841), and 
Analcidometra armata (poUrtalès, 1869): 
68%–75% diatoms (liddell, 1982); and 
Neocrinus decorus and Endoxocrinus parrae 
parrae: 59%–69% detritus (46%–59% radio-
larians exclusive of detritus) (Featherstone, 
messing, & mCClintoCk, 1998).

Tiering is a strategy that subdivides resources 
above the substratum (lane, 1963, 1973; 
aUsiCh, 1980; aUsiCh & Bottjer, 1982). 
Food particles pass above the substratum in 
horizontal currents, so organisms at different 
heights above the substratum partition 
resources (kitazawa, oji, & sUnamUra, 
2007). Further, crinoid habitats range 
from relatively flat, featureless substrata 
to complex, three-dimensional surfaces 
formed by reefs and other types of buildups. 
Crinoids have adapted various suspension-
feeding strategies to exploit resources under 
these widely differing conditions with 
contrasting arm and pinnule postures, filter 
densities, perching habits, and column 
heights. First and foremost, because the arms 
and pinnules together constitute the great 
majority of a crinoid’s structure, the posture 
in which a crinoid arrays this apparatus is 
a major component of its feeding ecology. 
However, living crinoids also display non-
feeding, trauma, and regeneration postures; 
and fossils with well-preserved arms display 
characteristic preservational postures, all of 
which are discussed in the sections to follow.
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RHEOPHILIC AND REHOPHOBIC 
POSTURES VERSUS FLOW REGIME

Breimer (1969) and other authors (see 
Fell, 1966) distinguished two primary 
crinoid behaviors: rheophilic (current 
seeking) and rheophobic (current avoiding). 
aUsiCh (1977) argued that this dichotomy 
is at best misleading, because crinoids rely 
exclusively on external currents to bring 
food to their filtration arrays. A true rheo-
phobic behavior, in which a crinoid is always 
in slack water, would dictate that feeding 
could only depend on a detrital rain of food 
particles, ciliary currents, and/or epidermal 
uptake of dissolved nutrients. Whereas this 
is theoretically possible, it is not clear if such 
a habit could provide sufficient nutrition for 
both growth and reproduction. Effectively, 
slack water would also severely reduce respi-
ratory gas exchange by a crinoid.

aUsiCh (1977) used the terms high-
energy and low-energy rheophilic, and 
meyer (1979, 1982a) described crinoids as 
adapted to a generally more exposed habitat 
with uni- or bidirectional currents versus a 
weaker, more turbulent habitat with multi-
directional currents that occur within the 
infrastructure of a reef. In both instances, 
because ambient currents bring food to the 
crinoid, rheophobic is a misnomer. Accord-
ingly, filtration postures are best envisioned 
within the context of the current regime 
and the crinoid’s means of anchoring to or 
elevating above the substratum. We suggest 
that current regime, i.e., high- versus low-
velocity, and uni-, bi-, or multidirectional, 
be used as environmental parameters that 
influence a crinoid’s filtration posture.

ARM POSTURES
Initial studies of crinoid behavior were 

made in aquaria with feather stars. In this 
slack-water setting, crinoids were idle, and 
their arms typically radiated outward more-
or-less horizontally with the mouth and 
ambulacra oriented upward. This posture 
led to the interpretation that crinoids 
arranged their arms in a collecting-bowl 
posture in order to feed on a detrital rain 

of food (niChols, 1960). As discussed on 
p. 26–27, this is a non-feeding, slack-water 
posture. In situ observations allowed a radi-
cally different interpretation of crinoid 
ecology. pérès (1958, 1959) first docu-
mented living, deep-sea stalked crinoids in 
situ, and magnUs (1963, 1964, 1967) and 
rUtman and Fishelson (1969) were the first 
to use scuba diving to document the ecology 
of living feather stars. meyer (1973a, 1973b, 
1979, 1982a), maCUrda and meyer (1974), 
and others extended these initial studies 
to develop our current understanding of 
crinoid ecology (la toUChe, 1978a, 1978b; 
Conan, roUx, & siBUet, 1981; roUx, 
1985a; BradBUry & others, 1987; leonard, 
striCkler, & holland, 1988; messing & 
others, 1988, 2006; messing, neUmann, 
& lang, 1990; vail, 1990; messing & 
llewellyn 1991; BaUmiller, 1992, 2008; 
roUx, 1994; BaUmiller & aUsiCh, 1996; 
roUx & pawson, 1999; messing, 2004; 
BaUmiller & messing, 2007; kitazawa, 
oji, & sUnamUra, 2007; BaUmiller, mooi, 
& messing, 2008; Bowden & others, 2011; 
eléaUme & others, 2011; BaUmiller & 
gahn, 2013; syverson & others, 2015; 
BaUmiller & stevenson, 2018). These 
s tudies  revea led that  l iv ing cr inoids 
assume arm postures dependent chiefly on 
morphology and current regime. Generally, 
each study independently described and 
distinguished filtration posture shapes, but 
no single encompassing classification of 
crinoid postures has been attempted. Here, 
we recognize four major categories of arm 
postures in living and fossil crinoids: 1) 
feeding, 2) non-feeding, 3) regeneration, 
and 4) preservational postures. Within each 
category, other than regeneration posture, 
specific postural types are described. With 
living crinoid arm postures understood, 
fossil crinoid postures can be interpreted 
with realistic models, as opposed to prob-
lematic reconstructions (see discussion by 
donovan, 2011).

It is also worth noting that, although 
arm division patterns differ widely among 
crinoids, they commonly do not parallel 
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feeding posture. As examples, the feather 
star Pontiometra andersoni has many arms 
divided near their bases, whereas the arms 
of stalked Phrynocrinus sp. branch nearly 
to arm tips, yet both assume a parabolic 
posture. Similarly, the feather star Basilo-
metra boschmai A. H. Clark, 1936, with 
an arm branching pattern similar to that 
of P. andersoni, assumes a disk posture 
similar to that of deep-sea hyocrinids with 
five undivided arms. oji and okamoto 
(1994) proposed that an optimal pattern for 
reducing damage from predation would have 
divisions restricted to near the arm bases 
(a pattern characteristic of shallow-water 
feather stars). In contrast, in an optimal 
pattern for harvesting, a filtration array 
would have divisions extend to nearly half 
of each arm length with an arm density as 
constant as possible throughout the filtration 
array (characteristic of deep-water stalked 
crinoids).

FEEDING POSTURES

Arm postures described below represent 
various morphologies documented in living 
crinoids in their natural habitats, with a 
few extrapolated to similar fossil taxa and 
others suggested for distinctive fossil taxa. 
For each of these distinctive postures, we 
include terms previously used for each. 
A crinoid may exhibit more than one of 
these postures, either when it alters the 
arrangement and orientation of its arms with 
changing ambient flow conditions, or, as in 
many species, it increases arm number with 
growth (meyer & others, 1984). Note that, 
although the widely used term filtration fan 
refers to all arrangements of a crinoid’s arms 
and pinnules for feeding, we here restrict the 
use of the term fan to describe the posture 
in which arms assume a truly fan-shaped 
array and avoid overlapping terms such as 
parabolic fan or radial fan. 

As noted above, crinoids are leeward 
suspension feeders—when capturing food, 
a pinnule’s ambulacrum faces down current 
regardless of posture. In situations in 
which some grooves would face into the 
current either because of overall posture, 

morphology, or current direction, pinnules 
will swivel to maintain a downcurrent orien-
tation of individual ambulacra (meyer, 
1982a). BaUmiller and meyer (2000) 
reported that pinnules on amputated arms 
could swivel passively when subjected to 
oscillating flow, suggesting that the swiv-
eling is generated by the extended tube feet 
behaving like weathervanes in the moving 
fluid, perhaps supported by activity of MCT 
in the articulations between pinnulars. It 
is this MCT that permits all crinoids to 
maintain arm and pinnule arrays that resist 
the pressure of ambient flow (Birenheide 
& motokawa 1996, 1998; Birenheide, 
yokojama, & motokawa, 2000; motokawa, 
osamU, & Birenheide, 2004; BaUmiller, 
mooi, & messing, 2008).

Fan Posture
In this posture, assumed by feather stars 

that attach to the substratum, the arms 
project upward and to the sides to form 
a fanlike array spanning an arc of < 90 to 
~200°. In a fan posture, pinnules of each 
arm are aligned in a roughly feather-like 
array, the fan orients normal to the current, 
and ambulacra face down current (Fig. 1.1). 
Arms on the downcurrent side of the calyx 
swivel near their bases so that their ambu-
lacra also face down current (e.g., magnUs, 
1967; meyer, 1973a, 1982a) (Fig. 1.2). 
Although the pinnules and primary tube 
feet also array basically normal to current 
flow with ambulacra facing down current, 
both typically curve so that their tips face 
more or less into the current (e.g., magnUs, 
1963, fig. 8; Byrne & Fontaine, 1981, fig. 
2a, 5; BaUmiller, 2008, fig. 7). Feather 
stars subjected to a basically laminar flow 
commonly assume a fan posture. In cases 
when the current reverses, e.g., tidally, arms 
swivel near their bases so that the ambulacra 
face down current (meyer, 1979, 1982a). 
When the current reverses rapidly, e.g., at 
depths shallower than wave base, ambulacra 
will face both into and away from the flow 
(messing, 1997).

The precise shape of the fan varies with 
the substratum to which the crinoid anchors, 
current velocity and pattern (i.e ., uni- versus 



Feeding and Arm Postures in Crinoids 9

Fig. 1. Fan postures. 1, single-layered fan, Heterometra a. h. Clark, 1909b (Himerometridae), direction of current 
into image; Liuqiu Island, Taiwan (photo, Jung Hsua/Shutterstock). 2, Two-layered fan, Crinometra brevipinna 
(poUrtalès, 1868) (Charitometridae), direction of current toward viewer showing swiveling of arms (at center) on 
downcurrent side to orient ambulacra down current; note abrupt re-orientation of pinnules immediately distal to 
swiveling of arm; off Half Moon Bay, West End, Isla Roatán, Honduras, depth 305 m (new; photo, C. G. Messing &  
T. K. Baumiller, taken 2013). 3, Multilayered fan, Clarkcomanthus alternans (P. H. Carpenter, 1881) (Comatuli-
dae), upcurrent view (current flow into image); note concave posture of arms and pinnules; lower arms anchor and 
raise the calyx above the substratum; adults of this species lack cirri; Lizard Island, Great Barrier Reef, Australia, 
depth 14 m (new; photo, D. L. Meyer, taken 1976). 4, Multilayered fan with dense downcurrent tangle of arms, 
Clarkcomanthus alternans, downcurrent view (current flow toward viewer); note arms forming fan posture at rear; 
north end of Kri Island, Raja Ampat, Indonesia, (new; photo, C. G. Messing, taken 2013). 5, Fan/canted posture 
attributed to Neogymnocrinus richeri (BoUrseaU, amézaine-Comindardi, & roUx, 1987) (Sclerocrinidae); speci-
men collected off New Caledonia (photo, N. Améziane, in Bourseau & others, 1991, pl. 8,1a). 6, Fan posture 
attributed to Calceocrinidae (Paleozoic disparid), arrow indicates current direction from right (new; W. I. Ausich).
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bidirectional), and number of arms. Feather 
stars with relatively few arms (fewer than 
~20) array them in a monoplanar fan. Those 
with more arms array them into two or more 
planes to form a biplanar or multilayered 
fan, respectively, with arms on the leeward 
side of the calyx swiveled (Fig. 1.2). Those 
with large numbers of arms (~80 or more) 
form thick, bushy fans with arms forming 
a crowded irregular baffle (messing, 1994) 
(Fig. 1.3). Depending on flow conditions, 
the fan may widen into a multilayered funnel 
or bowl, a variation on the conical posture, 
and grade into a slack-water, non-feeding 
posture, both described in sections to follow. 
Upcurrent arms may form a multilayered 
fan or parabolic array with downcurrent 
arms forming a dense tangle or meridional 
array (meyer & maCUrda, 1980; stevens, 
1989) (Fig. 1.4). With a weakening current, 
multilayered fans become irregularly bushy 
with no orientation normal to flow, which 
also grade into slack-water postures (see also 
Alternative and Unusual Postures, p. 21–26).

In most many-armed, reef-dwelling 
Comatulidae (formerly Comasteridae) that 
assume a multilayered fan posture, succes-
sive pinnules are offset—by ~30° under 
high-velocity current conditions and up 
to 90° under quieter, deeper, or sheltered 
conditions—which intergrades with the 
multidirectional posture described on p. 
19–20. Exceptions include Nemaster grandis 
A. H. Clark, 1909a and Anneissia bennetti, 
in which pinnules maintain a typical 
feather-like array (meyer, 1973a; meyer 
& maCUrda, 1980). Semicryptic feather 
stars, which hide the calyx in a hole, crevice, 
sponge, or under a ledge, and extend arms 
for feeding, may assume this fan posture 
(e.g., Alloeocomatella messing, 1995, Comac-
tinia A. H. Clark, 1909a, Tropiometra 
carinata (lamarCk, 1816) (meyer, 1973a, 
fig. 5–3; messing, 1985, fig. 1), although 
it intergrades with the independent arm 
fan posture described on p. 18. In addi-
tion to arms forming the fan, Comatulidae 
with many arms (often more than 100) and 
with cirri reduced or absent (e.g., some 

species of Clarkcomanthus rowe & others, 
1986, Comaster agassiz, 1836, and Phano-
genia lovén, 1866) splay many arms radi-
ally outward both to anchor and to raise 
the calyx above the substratum meyer & 
maCUrda, 1980, fig. 4a, 6b) (Fig. 1.3–1.4).

Among stalked crinoids, the extant sclero-
crinid Neogymnocrinus richeri (BoUrseaU, 
améziane-Cominardi, & roUx, 1987) 
(Cyrtocrinida) has a strongly asymmet-
rical calyx with arms of four rays radiating 
outward in a single fanlike plane, and arms 
of one ray strongly reduced (BoUrseaU, 
améziane-Cominardi, & roUx, 1987) (Fig. 
1.5). (Note that a crinoid ray consists of 
the radial ossicle—part of the calyx—and 
the ossicles that arise from it; almost all 
crinoids, living and fossil, have five rays. An 
arm, which may be branched or unbranched, 
refers to the series of ossicles that arise from 
a radial ossicle.) This species displays a fan 
posture in life with mouth and ambulacra 
oriented down current. However, because 
the asymmetrical calyx tilts permanently 
sideways with the reduced arms closest to the 
substrate, the posture might best be consid-
ered a combination of the fan and canted 
posture, described on p. 21. Similarly, asym-
metrical confamilials, such as Hemicrinus  
d’ orBigny, 1850 in 1850–1852, Stramber-
gocrinus Žítt, 1979 (Upper Jurassic to Lower 
Cretaceous), and other cyrtocrinids likely 
assumed similar postures (hess, 2011).

The Calceocrinidae (Ordovician to 
Permian disparids) lived with the column 
recumbent along the seafloor (moore, 
1962; Brower, 1966; aUsiCh, 1986). These 
crinoids positioned three or four arms verti-
cally. Although they were stalked and their 
filtration array exhibited some curvature 
(Fig. 1.6), these crinoids should be regarded 
as having displayed a fan posture. 

The basic form of this posture, with arms 
arrayed in a single plane, was first described 
and figured by magnUs (1963, fig. 6.9; 
1964, fig. 4.6; 1967, fig. 8.9) and referred to 
as a filtration fan. Other terms have included 
planar semicircular fan (maCUrda & meyer, 
1983); slightly arched fan (perés & piCard, 
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1955); fan perpendicular to currents (perés, 
1959); flat filtration fan (magnUs, 1967); 
vertical filtration fan (magnUs, 1963; 
Breimer, 1969; meyer, 1973a, fig. 5,3); 
vertical plane (maCUrda & meyer, 1974); 
arcuate fan (meyer & maCUrda, 1980; 
meyer, 1979, 1982a; messing, 1995, 1997); 
and biplanar fan (kirkendale & messing, 
2003). The multilayered version was previ-
ously referred to as a vertical filtration fan 
(meyer, 1973a, fig. 3,2 ) and multilayer 
filtration fan (meyer & maCUrda, 1980, 
fig. 4c). All are variations of the fan posture.

Disk Posture

Many feather stars that cling to narrow or 
finely branched perches (e.g., wire corals, sea 
fans, and some sponges) spread their arms 
like wheel spokes in a disk posture normal to 
unidirectional laminar flow, with ambulacra 
and the oral surface oriented down current 
(meyer, 1973b, fig. 8; maCUrda & meyer, 
1974, 1983; Fishelson, 1974, fig. 5) (Fig. 
2.1, 2.4) and with pinnules often concave 
up current (Fig. 2.5). The arms are usually 
slightly concave up current as well, so this 
posture grades into the parabolic posture 
described below (messing, 1994, 1997). 
The posture also exists among living stalked 
crinoids and has been attributed to some 
fossil forms, most commonly among species 
with five or ten arms (Fig. 2.2). A distinc-
tion between a conical and disk posture for a 
fossil crinoid may be difficult to determine. 
In Pisocrinus (Fig. 2.3), although the plane 
of the radial facet faced roughly distally, 
the range of movement at this articulation 
may have permitted the arms to approach a 
disk posture. However, this was even more 
probable in crinoids with the plane of the 
radial articular facets more-or-less parallel 
to the oral-aboral axis of the crinoid (e.g., 
Alloprosallocrinus Casseday & lyon, 1862 
or Steganocrinus meek & worthen, 1866).

Among variations, the colobometrid 
feather star, Basilometra boschmai, maintains 
a similar posture, but with its numerous (as 
many as 80) arms overlapping to form a 
dense, multilayered disk. messing (1994, 

1997) noted that some feather stars that 
cling to elevated perches (e.g., Capillaster 
multiradiatus [linnaeUs, 1758] and Ceno-
metra bella [hartlaUB, 1890]) commonly 
interrupt this posture with several irregularly 
arrayed or curled arms, and that nocturnally 
active mariametrid feather stars sometimes 
spread their arms in this posture across coral 
perches and not oriented normal to flow. 
The latter has also been observed in a variety 
of deep-sea feather stars (e.g., Pentametro-
crinidae, Antedonidae, Atelecrinidae) on 
both sediment and irregular rocky substrata 
(tokeshi, 2002, fig. 3; van den Beld & 
others, 2017, fig. 2H) (Fig. 2.6). Here, 
it is unclear if the posture is restricted to 
slack-water conditions, because some close-
up imagery shows primary tube feet fully 
extended and coplanar with pinnules and 
arms. The disk posture in these deep-sea 
species also intergrades with others, e.g., 
with the proximal arms alone forming a 
cone, with the arm tips raised to form a 
shallow bowl, or with a few upcurrent arms 
partly raised to form a partial fan posture 
(Fig. 2.7, also see Fig. 6.1). It also may 
appear as a transition between the para-
bolic and conical postures (described in the 
following two sections) as current velocity 
increases. 

meyer (1973b) first described this posture 
as a circular, planar filtration fan. It has also 
been called a radial fan (meyer & maCUrda, 
1980; meyer, 1979, 1982a), which has also 
been used for other postures as described 
herein. However, as the arms of all crinoids 
radiate from the central calyx, and radial 
is a general term for much of echinoderm 
morphology (and counterpart to interradial), 
we recommend not using the term radial to 
describe any crinoid posture.

Parabolic Posture

Most extant stalked crinoids subject to 
laminar near-bottom flow array their arms 
in an iconic parabolic posture, with the calyx 
tilted so that the oral surface faces down 
current and with arms radiating outward as 
in the disk posture but flexed back into the 
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Fig. 2. Disk postures. 1, Colobometra perspinosa (P. H. Carpenter, 1881) (Colobometridae), current direction toward 
viewer; north end of Kri Island, Raja Ampat, Indonesia (new; photo, C. G. Messing, taken 2013). 2, Unidentified 
Hyocrinidae; R/V ‘Okeanos Explorer’ cruise EX1606, Alba Guyot between Wake Atoll and Guam, Pacific Remote 
Islands Marine National Monument (PRIMNM), depth 2,114 m (photo, National Oceanic and Atmospheric 
Administration [NOAA], taken 2016). 3, Pisocrinus koninCk, 1858, diagrammatic illustration (Ausich, 1977, fig. 
7b). 4–5, Cenometra bella (hartlaUB, 1890) (Colobometridae), arm length ~14 cm; Lizard Island, Great Barrier 
Reef (new; photo, D. L. meyer). 4, Direction of current into image. 5, Close-up showing pinnules concave upcur-
rent. 6, ?Paratelecrinus messing, 2013 (Atelecrinidae); R/V ‘Okeanos Explorer’ cruise EX1811, south of Isla Mona, 
Caribbean Sea, 1,138 m (photo, NOAA, taken 2018). 7, Pentametrocrinus A. H. Clark, 1908a (Pentametrocrinidae), 
with two arms raised in a partial fan posture; R/V ‘Okeanos Explorer’ cruise EX1605 L3, near Molokai Fracture 

Zone, east of Hawaiian Islands, depth 1,609 m (photo, NOAA, taken 2016).
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Fig. 3. Parabolic postures. 1, Neocrinus decorus (thomson, 1864) (Isocrinidae); south of West End, Grand Bahama 
Island, depth ~420 m (new; photo, C. G. Messing/National Science Foundation (NSF), taken 1993). 2–3, Cenoc-
rinus asterius (linnaeUs, 1767) (Isselicrinidae); off Half Moon Bay, West End, Isla Roatán, Honduras, depth ~150 
m (new; photo, C. G. Messing & T. K. Baumiller, taken 2012). 4, Democrinus perrier, 1883 (Rhizocrinidae); 
off Half Moon Bay, West End, Isla Roatán, Honduras, depth ~220 m (photo, C. G. Messing & T. K. Baumiller, 
taken 2014, in Byrne & O’Hara, eds., 2017, p. 222). Direction of current is toward viewer in 1, from right in 2 

and 3, and from left in 4. 

current so that the crown roughly resembles 
an umbrella held sideways with a concave 
center where the brachitaxes radiate from the 
calyx (Fig. 3.1–3.3) (maCUrda & meyer, 
1974, fig. 1; messing, 1985; Conan, roUx, 
& siBUet, 1981, fig. 3–6). As with the 
preceding postures, ambulacra face down 
current.

When current direction shifts, several 
arms on the now upstream side of the crown 
straighten, and the entire crown rotates 

around its central axis like a wheel. As it 
does, successive series of arms straighten 
and then return to their curved parabolic 
posture, with ambulacra facing down current 
throughout. To accomplish this rotation, 
the proximal stalk columnals roll over each 
other with the outer edges of their symplec-
tial articular facets behaving essentially as 
gears (BaUmiller, laBarBera, & woodley, 
1991). BaUmiller (2008) also discussed 
mechanisms by which an isocrinid could 
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raise its crown from a prone position, e.g., 
after crawling (messing & others, 1988; 
BaUmiller, mooi, & messing, 2001) to 
resume a parabolic posture for feeding, 
although the recent discovery of contractility 
of MCT ligaments (see p. 2) represents the 
likeliest means by which this takes place. 
warner (1977) demonstrated experimen-
tally that this parabolic shape was more 
efficient in particle capture than a planar fan 
(disk posture).

This posture is characteristic of most 
extant stalked crinoids ranging from five-
armed Rhizocrinidae, Phrynocrinidae, and 
Hyocrinidae (Bowden & others, 2011; 
tUnniCliFFe & others, 2015) (Fig. 3.4, 
Fig. 4.1), through ten-armed Bathycrinidae 
(roUse & others, 2013, fig. 1c) and Septo-
crinidae (mironov & pawson, 2010, fig. 7) 
(Fig. 4.2), to many-armed Phrynocrinidae 
(tUnniCliFFe & others, 2015) (Fig. 4.3), and 
almost all Isocrinida that have been observed 
in situ, i.e., Isselicrinidae, Isocrinidae, and 
Proisocrinidae (maCUrda & meyer, 1983; 
roUx, 1985a, 1994; messing, neUmann, 
& lang, 1990; messing & others, 2007; 
tUnniCliFFe & others, 2015) (Fig. 4.4). 
Some feather stars, notably large Zygome-
tridae, Colobometridae (Pontiometra ander-
soni, Cenometra bella) and some Thalassome-
tridae, assume this posture while clinging to a 
variety of perches, including corals, sponges, 
rocks, algae, shells, and tunicates (stevens 
& Connolly, 2003; messing & others, 
2006). Those that exhibit this posture while 
clinging to narrow perches (e.g., wire corals 
or stalked crinoid columns), effectively func-
tion as stalked crinoids (meyer & maCUrda, 
1977; meyer, 1979, fig. 1d; messing, 1985, 
2004) (Fig. 2.4–2.5, Fig. 4.5). Similarly, the 
exceptionally long cirri of P. andersoni and 
some Zygometra a. h. Clark, 1907b elevate 
their calyces enough above the substratum to 
permit the crown to tilt into a parabolic fan 
(meyer & maCUrda, 1977, fig. 3; meyer & 
maCUrda, 1980, fig. 5h; meyer, 1979, fig. 
4c) (Fig. 4.6). 

Variations in this posture relative to taxon 
and flow velocity include the extent to which 

the arms flex into the current, e.g., from 
almost disklike to deeply bowl-shaped, and 
in the arrangement of pinnules. In many-
armed Isocrinida, the relatively stiff and 
straight pinnules vary in length and angle of 
projection to fill the gaps between the arms 
(except distally where pinnule size dimin-
ishes) (Fig. 3.1). Viewed in cross section, the 
pinnules on opposite sides of an arm form 
a V that opens facing down current; the 
V is narrow nearer the more crowded arm 
bases to reduce overlap between pinnules of 
adjacent arms, and widens to span the gap as 
the distance between adjacent arms increases 
distally. In most other crinoids, the pinnules 
are more flexible. In species with fewer 
arms (e.g., Rhizocrinidae, Bathycrinidae, 
Hyocrinidae and some Phrynocrinidae), 
pinnules increase in length along much 
of the arm to span the increasing distance 
between adjacent arms, but they leave a 
gap distally (Fig. 4.1,4; Fig. 5.1). They may 
extend straight and laterally from the arm, 
at an angle as in Isocrinida, or in a curve. In 
many-armed feather stars, the pinnules of 
adjacent arms may or may not span the gaps, 
but they tend to curve (concave up current) 
as in the fan posture (see Fig. 2.5). In large-
crowned forms, especially Isocrinida, as flow 
velocity increases across the height of the 
crown, arms farthest from the substratum 
often flex more gently—even approaching a 
disk posture—than the more strongly flexed 
lower arms (Fig. 5.2). As current velocity 
increases and flexing arms into the current 
becomes more difficult, the arms spread 
more widely, passing through a disk posture 
to a collapsed, eventually non-feeding, 
conical posture (see p. 29–30). As current 
velocity weakens, stalked crinoids typically 
assume the wilted flower posture described 
on p. 29. Feather stars may assume a variety 
of slack-water postures.

A parabolic posture can also be inferred 
for many post-Paleozoic fossil crinoids and 
many fossil articuliformes with arm articula-
tions and connective tissues similar to those 
of living crinoids (aUsiCh & BaUmiller, 
1993). Many Paleozoic crinoids have been 
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Fig. 4. Parabolic postures. 1, Parahyocrinus claguei roUx in roUx & messing, 2017 (Hyocrinidae); North Monterey 
Canyon, California, depth 2,500–2,893 m (photo, © 2002, Monterey Bay Aquarium Research Institute, previ-
ously published in Roux & Messing, 2017). 2, Rouxicrinus vestitus mironov & pawson, 2010 (Septocrinidae); R/V 
‘Okeanos Explorer’ cruise EX1811, La Parguera Ridges, south of Puerto Rico, depth ~960 m (photo, NOAA, taken 
2018). 3, Phrynocrinus A. H. Clark, 1907c (Phrynocrinidae); R/V ‘Okeanos Explorer’ cruise EX1605 L1, north of 
Guam, depth 1,166 m (photo, NOAA, taken 2016). 4, Proisocrinus ruberrimus A. H. Clark, 1910 (Proisocrinidae); 
R/V ‘Okeanos Explorer’ cruise EX1606, “Batfish” Seamount, ~189 miles south of Wake Island, Pacific Remote Islands 
Marine National Monument (PRIMNM), depth ~1,280 m (photo, NOAA, taken 2016). 5, ?Thalassometra A. H. 
Clark, 1907b (Thalassometridae), on isidid bamboo octocoral; “Revolver” Seamount, southeast of Wake Island, 
PRIMNM, depth 1,181 m, (photo, NOAA, taken 2016). 6, Zygometra microdiscus (Bell, 1884) (Zygometridae), 
clinging to green alga Halimeda lamoUroUx, 1812; on sediment between reefs; Lizard Island, Great Barrier Reef, 
Queensland, Australia (photo, L. Vail, in Byrne & O’Hara, eds., 2017, p. 203). Direction of current is toward 

viewer in 1; from left in 2 and 3; from right front in 4; from right in 5; and from left front in 6.
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reconstructed in the parabolic posture 
(e.g., haUgh, 1979), but detailed analyses 
of arm facets (e.g., lane & BUrke, 1976), 
particularly in clades in which brachials lack 
muscular articulations (aUsiCh & BaUmiller, 
1993), are required to demonstrate that their 
arms had sufficient potential for the flexure 
necessary for a parabolic posture. Much 
further research is needed on this topic.

This posture has also been referred to 
as a parabolic filtration fan (maCUrda & 
meyer, 1974, 1983; BaUmiller, laBar-
Bera, & woodley, 1991) and parabolic 
fan (meyer & maCUrda, 1980; messing & 
others, 2007).

Conical Posture (feeding)

This posture ranges from arms arranged 
in a narrow adoral cone or funnel to spread 
nearly into a disk. Unlike the previous three 
postures, both stalked crinoids and feather 
stars may assume a similar, apparently non-
feeding version of this conical posture either 
under slack water or when the current is 
too strong to maintain a disk or parabolic 
posture (see p. 29–31). Similar feeding 
postures described as funnels or bowls and 
derived from planar or multilayered fan 
or parabolic postures (messing, 1994) 
should probably be placed here. However, 
flow velocities and patterns under which 
postures change from a feeding to a slack-

water posture or collapse under strong flow 
undoubtedly vary among taxa. For example, 
with near-bottom flow from the right rear, 
the large feather star in the foreground 
(Fig. 6.1) has almost all of its ten arms 
similarly curved upward to form an almost 
symmetrical bowl with pinnules arrayed in 
a multidirectional posture (see p. 19–20), 
whereas the two smaller feather stars have 
fewer of their ten arms oriented in a slanted 
monoplanar posture. As another example, 
although bathycrinids, rhizocrinids, and 
phrynocrinids usually assume a parabolic 
posture for feeding, the individual in Figure 
6.2 exhibits a conical posture with curved 
pinnules and tube feet arrayed for feeding 
despite the bent stalk and trailing distal arm 
filaments, reflecting an elevated flow velocity 
(see also roUx, 2004, fig. 5).

Figure 6.3 includes more than 30 Floro-
metra cf. serratissima, each in a conical 
posture, on a spherical farreid glass sponge, 
all arrayed apparently to take advantage 
of the sponge’s radiating exhalant current. 
Some reef-dwelling as well as deep-sea 
feather stars, including members of Comat-
ulidae, Mariametridae, Himerometridae, 
and Thalassometridae, assume conical, 
funnel- or bowl-shaped postures, either 
single- or multilayered, shallow or deep, 
depending on species and flow conditions. 
Semicryptic Comatulidae normally assume 

Fig. 5. Parabolic postures. 1, Naumachocrinus A. H. Clark, 1912c (Bathycrinidae); R/V ‘Okeanos Explorer’ cruise 
EX1504 L4, southeast of Johnston Atoll, Pacific Remote Islands Marine National Monument, depth 2,083 m   
(photo, NOAA, taken 2015). 2, Endoxocrinus parrae carolinae (A. H. Clark, 1934) (Isselicrinidae); off Half Moon 
Bay, West End, Isla Roatán, Honduras, depth 372 m (new: photo, T. K. Baumiller & C. G. Messing, taken 2014). 

Direction of current is toward viewer in both images. 
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Fig. 6. Conical/bowl posture (feeding). 1, Unidentified deep-sea feather stars in bowl posture, current direction from 
right rear; large individual (right foreground) has arms raised in a bowl posture and pinnules in multidirectional 
posture, an array characteristic of family Comatulidae; members of this family known from this region and depth 
include Comatulides decameros (A. H. Clark, 1908b) and Comissia A. H. Clark, 1909a; two smaller individuals 
(left and rear, probably Antedonidae) in partial monoplanar fan postures; R/V ‘Okeanos Explorer’ cruise EX1705, 
off Jarvis Island, Pacific Remote Islands Marine National Monument, depth ~680 m (photo, NOAA, taken 2017). 
2–8, Conical postures (feeding). 2, Porphyrocrinus gislén, 1925 (Phrynocrinidae), direction of current from left; 
R/V ‘Okeanos Explorer’ cruise EX1702, Ta’u Unit of National Marine Sanctuary of American Samoa, depth 420 
m (photo, NOAA, taken 2017). 3, Florometra cf. F. serratissima (A. H. Clark, 1907a) (Antedonidae) on a farreid 
sponge (Hexactinellida); R/V Western Flyer, northwestern flank of Pioneer Seamount, off California, depth 1,606.5 
m (photo, © Monterey Bay Aquarium Research Institute, taken 2002). 4, Guillecrinus roUx, 1985b (Guillecrinidae), 
direction of current from right; R/V ‘Okeanos Explorer’ cruise EX1703, Carondelet Reef southwest ridge, Phoenix 
Islands Protected Area, depth 1,701 m (photo, NOAA, taken 2017). 5, Parapisocrinus mU, 1954 (Rozhnov, 2007 
fig. 3c). 6–8, Barycrinus stellatus (hall, 1858), Mississippian cyathoformes; 6–7, reconstructions of arm branching; 
6, arm branching in one-half of a ray in B-, C-, D-, and E-ray arms; 7, arm branching in one-half of the A-ray arm; 
8, diagram of crown with all arms in place, light gray areas indicate rays with no overlap, dark gray areas indicate 
overlap within a ray, black areas indicate overlap of two adjacent rays, and white areas indicate openings through 

the arm array (6–8, adapted from Ausich, 1983, fig. 1a, 1b, and 4, respectively). 
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a multidirectional posture but take on a 
funnel or bowl posture when perched in the 
open, keeping their pinnules in the multi-
directional posture described on p. 19–20. 
(messing, 1985, 1994, 1997; stevenson & 
others, 2017, fig. 4).

Some other stalked crinoids also appear 
to maintain this conical posture for feeding. 
Guillecrinus neocaledonicus BoUrseaU & 
others, 1991, which has five extremely long 
arms, typically assumes a conical posture 
with arms straight or gently curved outward 
and the stalk ranging from almost erect to 
bent strongly down current (tUnniCliFFe & 
others, 2015, fig. 2C–D) (Fig. 6.4). Although 
the conical array and bent stalk suggest a 
strong-flow collapse response, close-up 
imagery shows pinnules and primary tube feet 
curved into the current as in many fan and 
parabolic postures, and the arm closest to the 
substrate (subject to the weakest flow) may 
curl up current as in the parabolic posture 
(tUnniCliFFe & others, 2015).

This posture can be inferred for many 
fossil crinoids, such as the five-armed Silu-
rian Parapisocrinus mU, 1954 (rozhnov, 
2007) (Fig. 6.5), based on the morphology 
of facets on the radial and brachial plates, 
which imply that the arms lacked the ability 
to either form a planar fan or to recurve their 
distal arms into a parabolic shape. aUsiCh 
(1983) inferred a multilayered conical 
posture for Barycrinus meek & worthen, 
1868 (Mississippian cyathoformes), based 
on the lack of accommodation space for all 
of the arm branches to be arrayed in a disk 
posture (Fig. 6.6–6.8). 

maCUrda and meyer (1974) treated the 
arms of the cyrtocrinid Holopus d’orBigny, 
1837, as forming a funnel-like arrange-
ment rather than a filtration fan. grimmer 
and holland (1990) recorded a similar 
posture but noted that the oral surfaces faced 
down current and suggested that asymme-
tries among rays might be generated with 
growth under the influence of prevailing 
unidirectional flow, as suggested by Žitt 
(1983). Subsequent observations found that 
the funnel or cone opened outward, side-

ways, and downward relative to the typically 
vertical or overhanging substrata on which 
Holopus species grow (donovan & pawson, 
2008; syverson & others, 2015). Although 
asymmetrical individuals might better be 
treated under the canted posture (see p. 
21), Holopus may also be symmetrical, and 
adjacent individuals may orient in different 
directions, likely a result of growing on 
differently oriented areas of rugged substrata 
(Fig. 7.1). They are typically found under 
weak or negligible flow conditions, and 
grimmer and holland (1990) posed the 
possibility that they might be carnivorous 
on small crustaceans. The extremely short 
arms of the cyrtocrinid Cyathidium steen-
strUp, 1847, also appear to open outward in 
a truncated cone (Fig. 7.2), and some fossil 
cyrtocrinids may have also utilized a conical 
posture (Fig. 7.3–7.4). dynowski and others 
(2016) modeled the feeding posture of 
Triassic Encrinus liliiformis lamarCk, 1801 
as a variation on the conical posture: the 
stalk bent down current with a teardrop-
shaped crown—a narrow funnel with arm 
tips somewhat incurved—that generated 
a backward recirculation of particle-laden 
water into the funnel (Fig. 7.5). 

Other terms for this posture have included 
conical, radial filtration fan (messing, 1985), 
and conical or quasiconical fan (maCUrda & 
meyer, 1983) for semicryptic feather stars 
with arms radiating outward from a crevice, 
and conical fan for Silurian Pisocrinus (see 
aUsiCh, 1977).

Independent Arm Fan Posture

Irregular, three-dimensional substrata, 
whether shallow reefs or deep rocky bottoms, 
interrupt laminar near-bottom currents 
and generate locally multidirectional and 
sometimes turbulent flow conditions, for 
which fan, disk, and parabolic postures are 
unsuitable. Many feather stars that occur 
in such habitats are semicryptic. They hide 
the calyx in a hole or crevice, under a ledge, 
or within a sponge, and extend the arms 
for feeding (meyer, 1973a, 1973b, 1979, 
1982a; meyer & maCUrda, 1980). Such 
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crinoids exhibit one of two postures. In the 
first, the independent arm fan posture, each 
arm arrays its pinnules and tube feet in a 
single feather-like plane perpendicular to 
local flow, with ambulacra oriented down 
current (Fig. 8.1). However, the arms do not 
form an organized fan but radiate more or 
less independently from the typically hidden 
calyx (e.g., meyer, 1973a, fig. 5,3; sUmmers, 
messing, & RoUse, 2017, fig. 1A).

Multidirectional Posture

In the second posture, again a response 
by semicryptic feather stars to weak non-

laminar or turbulent near-bottom flow, 
arms extend in various directions, and each 
successive pinnule orients at ~90⁰ from its 
neighbor, which produces a four-pinnule 
repeated pattern along the arm (meyer, 
1979, fig. 1b, 1e) (Fig. 8.2). Viewed along 
an arm, the pinnules line up in two planes 
that cross the arm and appear as a + or x in 
cross section, with four successive pinnules 
pointing in four directions sometimes 
referred to as a tetrad (Fig. 8.3). This alter-
nating pinnule orientation creates wider 
spacing between successive pinnules rela-
tive to those in a monoplanar, feather-like 

Fig. 7. Conical postures (feeding). 1, Holopus cf. mikihe donovan & pawson, 2008 (Holopodidae); off Half Moon 
Bay, West End, Isla Roatán, Honduras; note small juvenile (partly visible at top center) and large pale dead calyx 
(right center), depth ~442 m (new: photo, C. G. Messing & T. K. Baumiller, taken 2013). 2, Cyathidium foresti 
CherBonnier & gUille, 1972 (Holopodidae); submersible ‘LULA’, southern Faial Channel, Azores Archipelago, 
depth ~500 m (Wisshak & others, 2009, fig. 2D, original photo provided by Wisshak and cropped). 3–4, Fossil 
cyrtocrinids; 3, Lonchocrinus pskaboirensis arendt, 1974 (Eugeniacrinitidae), (Pisera & Dzik, 1979, fig. 8a, © Swiss 
Geological Society); 4, Psalidocrinus armatus (zittel, 1870) (Psalidocrinidae) (Pisera & Dzik, 1979, fig. 9a, © 
Swiss Geological Society). 5, Triassic Encrinus liliiformis lamarCk, 1801 (Encrinidae), schematic diagram illustrat-
ing modeled flow around the crown showing backward recirculation of particle-laden water into the funnel (blue) 

(Dynowski & others, 2016, fig. 10A).



20 Treatise Online, number 150

arrangement, and the tube feet are both 
more widely spaced and longer (meyer, 
1979). Tube feet thus arrayed can feed from 
any current that finds its way into a reef ’s 
infrastructure or other irregular substratum 
from any unpredictable direction, thereby 
increasing feeding capacity (meyer 1973a, 
fig. 6; 1973b, fig. 3, 6; meyer & maCUrda, 
1980, fig. 4h). Unlike independent arm fans 
described above, this posture so far appears 
restricted to members of family Comatu-
lidae, with the exception of the semicryptic 
antedonid Ctenantedon kinziei meyer, 1972. 
Some species, such as Nemaster grandis, that 
normally exhibit a monoplanar pinnule 

array, may assume a multidirectional posture 
under reduced flow conditions (Fig. 8.4). 

This has previously been termed radial 
posture (meyer, 1973a) and conical or quasi-
conical fan (maCUrda & meyer, 1983). The 
former has been used for multiple fan types 
(as noted above).

Common Fans

Functionally analogous to the multi-
layered fan posture, multiple arm baffling 
can be achieved by the overlapping crowns 
of more than one individual that typically 
display either fan or parabolic postures. 
These common fans (magnUs, 1964, fig. 

Fig. 8. 1, Independent arm fan, Tropiometra afra (hartlaUB, 1890) (Tropiometridae); Lizard Island, Great Barrier 
Reef, Queensland, Australia (photo, G. W. Rouse, taken 2001). 2, Multidirectional posture, Phanogenia gracilis 
(hartlaUB, 1890) (Comatulidae); Kri Island, Raja Ampat, Indonesia, depth < 6 m (photo, C. G. Messing, taken 
2013). 3–4, Multidirectional posture, positioning of pinnules; 3, Davidaster rubiginosus (poUrtalès, 1869) (Co-
matulidae), showing alternating orientation of successive pinnules on each side of arm and minute tube feet; San 
Salvador, Bahamas, (new; photo, D. L. Meyer, taken 1979); 4, Nemaster grandis A. H. Clark, 1909a (Comatulidae), 
showing alternating orientation of pinnules on each side of arm under conditions of reduced, multidirectional flow; 
Santa Marta, Colombia, depth 20 m (photo, W. K. Sacco, taken 1969, in Meyer, 1973a, fig. 4.4, p. 109). Fig. 1 

and 2 published in Byrne & O’Hara, eds., 2017, p. 209 and 201, respectively.



Feeding and Arm Postures in Crinoids 21

8; meyer, 1973a, fig. 3,4, 1982a) occur in 
locally dense populations of both stalked 
crinoids (Conan, roUx, & siBUet, 1981, 
fig. 3; messing & others, 1988, fig. 2A; 
messing, neUmann, & lang, 1990, fig. 5; 
and BaUmiller, 1997) (Fig. 9.1) and feather 
stars (Fig. 9.2).

Canted Postures

In a parabolic or conical feeding posture, 
an erect column bends below the crown, so 
that the oral surface orients either upward at 
an angle or, with sufficient current velocity, 
perpendicular to the substratum (e.g., Fig. 
3.2–3.3, Fig. 6.2,4). In some living and 
fossil crinoids that exhibit an asymmetrical 
calyx, this tilting of the crown is obligate, 
and this is termed a canted posture. As noted 
above, examples include cyrtocrinids such as 
extant and fossil Sclerocrinidae and Holopus 
(e.g., donovan & pawson, 2008; hess, 
2011) (Fig. 7.1, Fig. 10.1–10.3). A canted 
posture also evolved in some Permian flexible 
crinoids, including Calycocrinus wanner, 
1916, in which canting is the result of crown 
asymmetry (Fig. 10.5). In Nevadacrinus 
lane & weBster, 1966 (Fig. 10.4) and 
Trampidocrinus lane & weBster, 1966, the 
generating columnal between the proxistele 
and mesistele is wedge-shaped, resulting in 
an obligate bend in the column, presumably 

to facilitate a canted posture. aUsiCh (1988) 
referred to the asymmetrical canted posture 
of Calycocrinus as a fist design.

Alternative and Unusual Postures

The following are treated as alterna-
tive and unusual postures: either distinc-
tive arrays observed in living crinoids or 
because unusual and limiting morpholo-
gies in some fossil forms suggest different 
postures. Although most feeding postures 
of extant crinoids may intergrade depending 
on morphology and flow conditions, three 
feather star postures do not fit easily into any 
of those described, although they are clearly 
related. Some reef-dwelling Comatulidae 
with usually more than ~40 but fewer than 
~80 arms form more-or-less completely 
irregular bushy masses with no fanlike 
broadening across the current even under 
flow conditions strong enough for feeding, 
e.g., Comaster audax rowe & others, 1986, 
Phanogenia gracilis (hartlaUB, 1890), and 
P. multibrachiatus (P. H. Carpenter, 1888) 
(messing, 1994). stevens (1989) recognized 
a multidirectional ball posture, observed in 
many-armed Clarkcomanthus alternans (P. 
H. Carpenter, 1881) feeding in a strong 
current, in which the arms arched over the 
disk in a meridional arrangement or formed 
a tangled mass, with tips overlapping and 

Fig. 9. Common fans. 1, Metacrininae (Isselicrinidae); R/V ‘Melville’ cruise MGLN02MV, Ruby volcano, north 
of Saipan Island, northern Mariana Islands, depth 273 m (photo, NOAA/W. Embley, taken 2006). 2, Crinometra 
brevipinna (poUrtalès, 1868) (Charitometridae); off Half Moon Bay, West End, Isla Roatán, Honduras, depth 340 

m (new; photo, C. G. Messing & T. K. Baumiller, taken 2014). 
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curled inward. This should be distinguished 
from the slack-water meridional posture 
described below.

Comatula rotalaria, lamarCk, 1816, which 
lacks cirri and, uniquely among crinoids, has 
~10 longer interior arms and ~10 shorter 
exterior arms, exhibits a unique variation on 
the multilayered posture: five to eight of its 
long interior arms bend into U- or V-shapes 
to elevate the calyx, as in confamilials with 
reduced or no cirri; the remainder flex slightly 
but do not touch the sediment substratum, 

and the ~10 exterior arms orient upward as a 
multilayered central tuft (messing & others, 
2006, fig. 2c) (Fig. 11.1).

This posture offers a potential model for 
arm posture and substrate adaptation in 
Late Cretaceous Uintacrinus socialis—arms 
bent proximally to elevate the calyx and the 
majority of the length erect to form a fan or 
independent arm fan posture (messing & 
others, 2004) (Fig. 11.2). This species has 
been variously treated as pelagic, pleustonic, 
hemipelagic, and benthic (see milsom, 

Fig. 10. Obligate, canted posture. 1–2, lateral (1) and oral (2) view of Torynocrinus canon seeley, 1866 (Sclerocrini-
dae), scale bar 5.0 mm (Rasmussen, 1961, pl. 33,7a–b). 3, Hemicrinus astierianus d’orBigny, 1850 in 1850–1852 
(Sclerocrinidae), lateral view of crown in trauma posture; Museum für Naturkunde der Humbolt-Universität zu 
Berlin cat. no. B14793, scale bar 2.5 mm (new; C. G. Messing; redrawn from Jaekel, 1918). 4, Nevadacrinus ge-
niculatus lane & weBster, 1966 (Taxocrinidae), wedge-shaped columnal, producing an obligate canted posture 
for the crown, scale bar 5.0 mm (adapted from Lane & Webster, 1966, fig. 4). 5, Calycocrinus curvatus curvatus 
wanner, 1916 (Calycocrinidae), DE-interray lateral view illustrating asymmetry (especially in interradial circlet), 

scale bar 5.0 mm (Wanner, 1916, pl. 60,10c).
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simms, & gale, 1994; weBBer, meyer, & 
milsom, 2008; gorzelak & others, 2017). 
The proposed posture would spread the arm 
bases as in extant feather stars, including 
those with similar interbrachial plates, and 
eliminate the acute, abrupt bend in the 
ambulacrum at the base of the arms present 
in some Uintacrinus fossils. Assuming this is 
an accurate reconstruction and based on the 
high density of uintacrinids preserved on a 
single bedding surfaces, it is probable that 
Uintacrinus individuals formed a common 
fan, as discussed on p. 20–21.

Whereas living crinoids actively position 
their arms to adjust to the flow conditions 
of their habitat, which in many cases offer 
insights into the postures of extinct forms, 
the morphologies of many extinct Paleozoic 
crinoids suggest that some had more obligate 
filtration postures dictated by skeletal struc-
ture—apart from the canted fans described 
on p. 21. For instance, arm mobility in most 
Paleozoic crinoids was limited by radial plate 
and arm facets lacking articular ridges and 
presumably lacking muscular tissue on articu-
lations along each ray (aUsiCh & BaUmiller, 
1993) (although ligament contractility may 
have at least partly overcome the absence 
of muscles). In addition to these potential 

restrictions on arm movement, the morphol-
ogies of several extinct crinoids signifi-
cantly deviate from modern analogs, so that 
alternative arm posture interpretations are 
required. Nevertheless, it is still reasonable 
to assume that these crinoids should be 
interpreted within the framework of aerosol 
suspension feeding, downcurrent orientation 
of ambulacra, and a likely range of near-
bottom flow velocities. Although it remains 
uncertain how much of a fossil crinoid’s 
feeding posture can be reconstructed from 
a preservational posture, the absence of 
muscles in many Paleozoic taxa suggests that 
they could not alter their posture rapidly, 
which increases the likelihood of retaining a 
life posture postmortem, at least in response 
to rapid burial (e.g., obrution; see Preserva-
tional Postures, p. 32).

Presumably, obligatory arm postures 
existed in crinoids with arm trunks, such 
as in Eucladocrinus millebrachiatus waChs-
mUth & springer, 1878 (Mississippian 
camerate) (Fig. 12.4), which had biserial 
feeding appendages attached to reasonably 
stout, multiplated arm trunks. Crinoids with 
arm trunks are interpreted to have formed a 
disk (or perhaps slightly conical) arm posture 
when alive.

Fig. 11. Alternative postures. 1, Comatula rotalaria lamarCk, 1816 (Comatulidae), on sediment and rubble bot-
tom between reefs; Lizard Island, Great Barrier Reef, Queensland, Australia, depth ~15 m (photo, G. W. roUse, 
2001, in Byrne & O’Hara, eds., 2017, p. 201). 2, Uintacrinus socialis grinnell, 1876, proposed posture. (new; 

C. G. messing). 
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Some crinoids presumably had obligate 
recumbent arms recurved downward along 
the sides of the calyx and upper stalk, remi-
niscent of the non-feeding reversed meridi-
onal posture described on p. 31–32, which 
must have exposed the ambulacral side of the 
arms to currents. Most crinoids with this arm 
posture were camerates with pinnulate arms, 

e.g., Acanthocrinus roemer, 1850 (Devo-
nian), Amphoracrocrinus moore & strimple, 
1969 (Mississippian) (Fig. 12.1), Artaocrinus 
pendens (springer, 1926a) (Mississippian), 
and Dichocrinus münster, 1839 (Mississip-
pian–Permian). In a specialized variation, 
the arms of the Silurian camerate Barrandeo-
crinus angelin, 1878 were recumbent along 

Fig. 12. Alternative postures: recumbent, obligate, and unusual. 1, Amphoracrocrinus amphora (waChsmUth & 
springer, 1897), Mississippian, scale bar 5.0 mm (Bather, 1900, fig. 73). 2, Barrandeocrinus sceptrum angelin, 
1878, scale bar 5.0 mm (Moore, 1952, fig. 18–23,1). 3, Gilbertsocrinus dispansus (waChsmUth & springer, 1897) 
showing slender pinnulate arms beneath and between the thick inverted Y-shaped crown appendages, no scale 
available (photo, J. St. John). 4, Eucladocrinus millebrachiatus waChsmUth & springer, 1881 in 1880–1886, 
bearing arm trunks; biserial arms attached to arm trunks mostly broken away, scale bar 5.0 mm (Wachsmuth & 

Springer, 1897, pl. 73,3).
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the column, and the pinnules were bent into 
a V halfway along their lengths, so that the 
tips of opposing pinnules just touched and 
formed a palisade along the arms, covering 
the ambulacra and forming an elongate 
heart-shaped chamber along each arm (Fig. 
12.2). It is not known if this was a feeding, 
non-feeding, or trauma posture.

The unusual camerate Gilbertsocrinus 
phillips, 1836 had thick, branching tegmen 
appendages that extended beyond the typical 
periphery of the tegmen and thread-like 
arms that dangled beneath them (Fig. 12.3), 
which combined to form a unique filtration 
array. Gilbertsocrinus also had an extremely 

flexible column (lane, 1963; 1973; riddle, 
wUlFF, & aUsiCh, 1988; hollis & aUsiCh, 
2008).

The eucladids Crotalocrinites aUstin & 
aUstin, 1843 (Silurian) (Fig. 13.1) and 
Pernerocrinus BoUška, 1946 (Devonian) had 
arms laterally fused into continuous sheets, 
with and without perforations, respectively. 
Their crowns are commonly preserved with 
the arms rolled inward over the oral surface. 
Only a high-velocity current could have 
generated a flux of water through such dense 
filtration arrays. Perhaps these crinoids fed 
primarily via currents that eddied around 
the solid or finely perforate arms (perhaps 

Fig.13. Alternative postures: laterally merged arms with a mesh texture. 1, Crotalocrinites pulcher hisinger, 1840 
in 1837–1841, United States National Museum cat. no. 2291, crown with arms folded into a trauma posture, 
scale bar 1 cm (new; photo, W. I. Ausich). 2–3, Crotalocrinites rugosus (miller, 1821). 2, Oral view of tegmen and 
proximal arms, Paleontological Museum, Uppsala University cat. no. 26505, scale bar 5.0 mm (new; photo, W. I. 
Ausich). 3, Enlargement of the oral side of arms, with laterally fused brachials and ambulacral cover plates in place, 

scale bar 2.5 mm (new; W. I. Ausich, based on Ubaghs, 1953, fig. 83b).
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like fenestrate bryozoans), but details are 
not known.

The Devonian eucladid Scoliocrinus jaekel, 
1895 had branched feeding appendages 
attached to two or four arm trunks. haUde 
(2007) reconstructed its posture as having the 
arm trunks arched outward and downward (as 
in the preservational posture) with branching 
appendages arrayed in an erect monoplanar 
fan on each trunk as an adaptation to unidi-
rectional or tidal flow (Fig. 14).

In the Petalocrinidae (Ordovician–Devo-
nian eucladid), each arm consisted of two 
brachial plates: a small, tetragonal first 
primibrachial and a second large and trian-
gular (Petalocrinus weller & davidson, 
1896 and Sinopetalocrinus mU & lin, 1987) 
(Fig. 15.1–15.5) or cylindrical (Spiroc-
rinus mU & wU, 1974) brachial (mao & 

others, 2017; aUsiCh, mao, & li, 2019) 
(Fig. 15.6–15.8). Ambulacra branched 
multiple times on the aboral side of the 
second brachial (Petalocrinus and Sinopet-
alocrinus) or spiraled around the cylindrical 
second brachial (Spirocrinus). Petalocrinus 
and Sinopetalocrinus presumably fed with 
either a fan or conical posture (Fig. 15.9). 
The few known Petalocrinus specimens with 
articulated arms are preserved in a starburst 
posture (mao & others, 2017, fig. 2) (see p. 
36–37). Similarly, Spirocrinus had either a 
fan or conical posture (Fig. 15.10).

Barrandeocrinus, Crotalocrinites, and the 
petalocrinids are commonly associated with 
reefs. mao and others (2017) suggested 
that the three-dimensional spiraling of the 
ambulacra around the second brachial in 
Spirocrinus may have been an adaptation 
for multidirectional currents on Silurian 
reefs. It is also possible that the unusual arm 
morphologies of Barrandeocrinus, Crotalo-
crinites, and other petalocrinids were adap-
tations to reef and reef-associated habitats.

NON-FEEDING POSTURES

Crinoids assume a variety of non-feeding 
postures when little to no particle capture 
occurs via the normal feeding method. 
Slack-water postures are assumed by crinoids 
when water movement is negligible or not 
detectable. They assume a trauma posture 
when attacked by a predator, when regener-
ating, or when the current is too strong to 
feed. In some cases, a crinoid may assume 
a similar posture in response to slack water 
or strong flow. Of course, a crinoid could 
presumably capture a particle that fell onto 
or otherwise impacted a tube foot while in 
any of these postures, and epidermal uptake 
of dissolved nutrients would remain possible 
as well.

Collecting-bowl Posture

As noted above, living crinoids were 
initially observed in aquaria, where a crinoid 
was lying on the substratum with its distal 
arms raised in a collecting-bowl posture 
(w. B. Carpenter, 1866; ChadwiCk, 1907; 

Fig. 14. Alternative, obligate posture. Scoliocrinus 
ubaghsi haUde, 2007 reconstruction in anterior view 
showing the two arm-bearing radials A and E, with 
ambulacra and large posterior-lateral anal tube oriented 
down current; direction of flow (arrows) is into image, 
scale bar 1 cm (new; C. G. Messing, based on Haude, 

2007, fig 1,5).
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gislén, 1924). This posture has rarely 
been encountered in in situ observations 
of shallow-water crinoids. In one unusual 
occurrence, meyer (unpublished observa-
tions) observed unidentified feather stars 
with arms splayed radially on a cohesive 
mud substratum within shallow crater-like 
depressions in depths of 1–2 m in Bowling 
Green Bay, Queensland, Australia. As noted 
above, deep-sea Pentametrocrinidae, Ante-
donidae, and Atelecrinidae may assume 

a shallow bowl posture (see Fig. 2.6), 
although, because some close-up imagery 
shows primary tube feet fully extended and 
coplanar with pinnules and arms, it is not 
clear when this array becomes a slack-water 
posture. In particular, five-armed Pentam-
etrocrinus A. H. Clark, 1908a, have been 
observed to form both a shallow collecting 
bowl (tokeshi, 2002) and to spread their 
arms out along the substrate, so they look like 
ophiuroids (van den Beld & others, 2017).

Fig.15. Alternative obligate postures. Petalocrinidae with subtriangular and cylindrical arms. 1–5, Sinopetalocrinus 
involutus mU & lin, 1987, second brachial plate in various views, Nanjing Institute of Geology and Paleontology 
(NIGP) cat. no. 163729; lateral (1), distal (2) oral (3), proximal (4), and aboral (5) views, scale bar 5.0 mm (Mao 
& others, 2017, 4,5a–e). 6–8, Spirocrinus dextrosus (mao & others, 2017), NIGP cat. no. 163743; left-lateral (6 ), 
distal (7) and right-lateral (8) views, scale bar 5.0 mm (Mao & others, 2017, fig. 8,5a–c). 9–10, Diagrammatic 
reconstructions of complete specimens; 9, Petalocrinus mirabilis (weller & davidson, 1896) (Bather, 1900, fig. 

91); 10, Spirocrinus mU & wU, 1974 (new; W. I. Ausich).
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Fig. 16. Wilted flower posture. 1, Metacrininae (Isselicrinidae, either Metacrinus P. H. Carpenter, 1884 or Saracrinus 
A. H. Clark, 1923); R/V ‘Okeanos Explorer’ cruise EX1605 L1, North Esmeralda Bank, west of Saipan, northern 
Marianas Islands, depth 447 m (photo, NOAA, 2016) (note, in all Metacrininae, the pinnules along the distal portion 
of the arms are strongly reduced). 2, Endoxocrinus parrae prionodes (H. L. Clark, 1941) (Isselicrinidae); “Johnson Sea-
Link II” 3685, northeastern Strait of Florida, north-northwest of West End, Grand Bahama Island, Bahamas, depth 
598–621 m (photo, Bioluminescence 2009 Expedition, NOAA Office of Ocean Exploration and Research [OER], 
taken 2009). 3, Phrynocrinus A. H. Clark, 1907c (Phrynocrinidae); R/V ‘Okeanos Explorer’ cruise EX1705, Kahale-
wai Seamount, Pacific Remote Islands Marine National Monument, depth 1,677 m (photo, NOAA, taken 2017).

2

3
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Wilted Flower Posture

In slack-water conditions, the stalk of 
a stalked crinoid usually stands more or 
less erect, with one or more of its arms 
drooping downward in a wilted flower 
posture (maCUrda & meyer, 1974, fig. 1e; 
BaUmiller, laBarBera, & woodley, 1991; 
yoUng & emson, 1995) (Fig. 16). Although 
the animal looks rather pathetic, if not 
dead in some cases, with increased current 
velocity, a crinoid in this posture will raise its 
arms and, in a sustained current, will even-
tually form a parabolic posture. However, 
note that tube feet may remain extended 
in this posture, perhaps for respiration, but 
also suggesting that feeding may still take 
place (Fig. 16.3). This posture also occurs 
in some feather stars, which messing (1997) 
referred to as a reversed meridional posture: 
under slack conditions, the asterometrid 
Pterometra venusta A. H. Clark, 1912b, 
the ptilometrid Ptilometra australis wilton, 
1843 (and perhaps other members of those 
genera), and the colobometrid Pontiometra 

andersoni curve their arms aborally with 
pinnules and ambulacra facing outward 
(meyer & maCUrda, 1980, fig. 3c; stevens, 
1989) (Fig. 17). Although traditional under-
standing of Paleozoic crinoids that lacked 
muscular articulations suggests that those 
taxa could not have assumed this position, 
the discovery of contractility in MCT may 
require rethinking of such limits. Detailed 
studies of crinoid articulations are required 
to answer this question.

Conical Posture (non-feeding)

Both stalked crinoids and feather stars may 
assume a conical posture under slack water 
(la toUChe, 1978b; Byrne & Fontaine, 
1981) or when the current is too strong 
to maintain a disk or parabolic posture. 
However, it may also represent a transition 
between a feeding posture and either a slack-
water or trauma posture. A series of time-lapse 
images (Fig. 18) illustrates how an assemblage 
of Neocrinus decorus and Endoxocrinus parrae 
parrae respond to increasing near-bottom 

Fig. 17. Wilted flower posture. Ptilometra australis wilton, 1843; Shark Point, Clovelly, New South Wales, Australia 
(photo, J. Turnbull, 2007).
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Fig. 18. Time-lapse images of a group of Neocrinus decorus (thomson, 1864) (Isocrinidae) and one Endoxocrinus 
parrae parrae (gervais, 1835), short stalk, center rear (Isselicrinidae), on a carbonate ridge. Images show changes 
from parabolic (1–2) through non-feeding conical posture in the two tallest N. decorus (3), to fully collapsed to a 
trauma posture (4) with increasing near-bottom current from left, except for the E. parrae parrae, which remains 
exposed to weaker flow closer to the substrate. Flow velocities estimated 1–2 m above bottom: 1, ~5 cm sec-1; 2, ~15 
cm sec-1; 3, ~25–30 cm sec-1; 4, ~50 cm sec-1; northeastern Strait of Florida, west of Grand Bahama Island, ~420 m 

(photos, C. G. Messing/NSF, taken 1993).
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Fig. 19. 1–2, Conical posture (non-feeding). 1, Stalked crinoids with upright conical posture in slack water, Democri-
nus perrier, 1883 (Rhizocrinidae) (top), Porphyrocrinus daniellalevyae messing, 2016 (Phrynocrinidae) (bottom), with 
feather star, Trichometra cubensis (poUrtalès, 1869) (Antedonidae), clinging to its stalk in conical non-feeding posture 
with inrolled arm tips; Johnson Sea-Link II 3685, northeastern Strait of Florida, north-northwest of West End, Grand 
Bahama Island, Bahamas, 598–621 m (photo, Bioluminescence 2009 Expedition, NOAA/OER, taken 2009, previously 
published in Messing, 2016). 2, Metacrininae (Metacrinus P. H. Carpenter, 1884 or Saracrinus A. H. Clark, 1923) in 
drooping slack-water conical posture on cliff face; R/V ‘Barun Jaya IV,’ INDEX-SATAL cruise 2010, Gelembung II site, 
South Sangihe Arc, Sangihe Talaud Region, Indonesia, 1,175 m (photo, NOAA, taken 2010). 3–4, Meridional postures;  
3, Himerometra robustipinna (P. H. Carpenter, 1881) (Himerometridae); Pulisan, Sulawesi, Indonesia (photo, L. 
Pitkin). 4, Capillaster multiradiatus (linnaeUs, 1758) (Comatulidae); Kri Island, Raja Ampat, Indonesia, (new; 

photo, C. G. Messing, taken 2013).

flow velocity, passing from parabolic through 
conical to a shaving-brush trauma posture 
(see p. 36). 

Under slack-water conditions, some stalked 
crinoids hold the arms in an upright cone 
instead of the wilted flower (Fig. 19.1), 

while others droop (Fig. 19.2), the latter 
likely associated with local topography. In 
many feather stars, the cone orients in any 
direction and the arm tips commonly curl 
inward, approaching the meridional posture 
(see p. 32) (Fig. 19.1). It is important to 



32 Treatise Online, number 150

note, however, that it may be impossible to 
determine if a crinoid assuming a conical 
posture is actually feeding or not, particularly 
if tube feet cannot be observed. Too few 
observations exist to generalize whether 
particles are being captured or not.

Meridional Posture

In a meridional posture, a crinoid arches 
its arms over the tegmen, creating an overall 
subspherical shape with ambulacra oriented 
inward (meyer, 1973a, fig. 4,4; meyer & 
maCUrda, 1980, fig. 4f; meyer, 1982a; 
zmarzly, 1984) (Fig. 19.3–19.4). As an 
alternative to a collecting-bowl posture, 
many multi-armed feather stars assume this 
posture under slack flow conditions, although 
stevens (1989) reported a similar posture 
in Clarkcomanthus alternans actively feeding 
under strong flow. This posture offers some 
protection for the visceral mass, which would 
be fully exposed in a collecting-bowl posture.

This was considered an inactivity posture 
in magnUs (1963; 1964, fig. 6), a radial 
posture in meyer (1973a, fig. 5,2) and 
a multilayered hemispherical posture in 
maCUrda and meyer (1983).

Camouflage Posture

Although the feather star, Oligometra 
carpenteri (Bell, 1884), which clings to octo-
corals and branching Halimeda lamoUroUx, 

1812, green algae, may assume a disk posture, 
it is most commonly observed in a unique 
posture: pinnules appressed against arms, 
pairs of its ten arms pressed together, and as 
many as four of five arm pairs lying along or 
parallel to the branches of its perch. This is 
an apparent camouflage posture (vail, 1990; 
messing & others, 2006) (Fig. 20).

REGENERATION POSTURE

Two feather stars are photographed (in Fig. 
21.1) attached to a wire coral. The one on 
the right exhibits a typical parabolic feeding 
posture, but the other hangs downward with 
the arms closed about the oral-aboral axis in 
a regeneration posture similar to the non-
feeding conical posture described earlier (p. 
29), but with pinnules particularly closely 
pressed against the arms. It is regenerating 
its visceral mass (and some arms) following 
a nonlethal predation encounter, presumably 
with a fish. The corresponding posture for 
a stalked crinoid is not known, although 
both stalked crinoids and feather stars can 
maintain feeding postures while regenerating 
at least some arms (Fig. 21.2–21.3). For 
instance, note that one Democrinus in Fig. 
3.4 (p. 13) has lost all five arms yet maintains 
the same stalk posture as its intact neighbors.

PRESERVATIONAL POSTURES

Preservational postures are those exhibited 
by crinoids preserved as fossils in the rock 
record. Because crinoids consist of a modular, 
multi-plated mesodermal skeleton, in which 
ossicles are typically bound together during 
life by soft tissues, a dead crinoid decays 
very rapidly (meyer, 1971). Thus, most 
complete or nearly complete crinoid fossils 
were most likely buried during catastrophic 
events (taylor & Brett, 1996; donovan, 
1991; aUsiCh, 2001, 2016). Crinoids have 
a typical reaction to catastrophic disturbance 
that leads in most cases to two characteristic 
preservational patterns when crowns remain 
intact. BaUmiller, mooi, and messing 
(2008) discussed both the conditions and 
morphologies that contribute to one or the 
other.

Fig. 20. Camouflage posture. Oligometra carpenteri 
(Bell, 1884) (Colobometridae) on Halimeda green 
algae; Lizard Island, Great Barrier Reef, Australia 
(photo, G. W. Rouse, taken 2001, Byrne & O’Hara, 

eds., 2017, p. 205).
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Fig. 21. Regeneration posture. 1, Cenometra bella (hartlaUB, 1890) (Colobometridae), two individuals attached 
to octocoral Junceella valenCiennes, 1855; drooped individual (left) eviscerated or regenerating visceral mass, 
individual at right in normal feeding parabolic posture, arm length ~10 cm; Lizard Island, Great Barrier Reef, 
Australia (new; photo, D. L. Meyer, taken 1975). 2–3, Crinoids maintaining feeding postures while regenerating 
arms; 2, Cenocrinus asterius (linnaeUs, 1767) (Isselicrinidae); Isla Roatán, Honduras, depth ~150 m (new; photo, 
T. K. Baumiller & C. G. Messing, taken 2014); 3, Amphimetra tessellata (müller, 1841) (Himerometridae); Lizard 

Island, Great Barrier Reef, Australia, depth ~15 m (photo, G.W. Rouse, taken 2001).
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Fig. 22. Trauma posture. 1, Sarametra triserialis (A. H. Clark, 1908c) (Zenometridae); Rapano Ridge, Musicians 
Seamounts, north of the Hawaiian Islands, depth 1,930 m (photo, NOAA, taken 2017). 2, Shaving-brush posture 
in Mississippian crinoids; Hampton Formation at LeGrand, Iowa, USA, scale bar 10.0 mm (new; W. I. Ausich). 
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Trauma Posture
If a crinoid is subjected to current veloci-

ties considerably higher than those in which 
feeding can occur, its arms close along the 
oral-aboral axis into a trauma posture, 
which is either an elongated subcylindrical 

or subspherical shape, depending on the 
morphology of the radial and brachial artic-
ular facets and arms (Fig. 18.4, Fig. 22.1). 
The closure of the arms likely results from a 
combination of the pressure of the current, 
softening of the MCT that held the arms and 

Fig. 23. Trauma postures (diagrammatic) in Paleozoic crinoids with unusual morphology, 1, Feeding posture 
interpretation of Crinobrachiatus brachiatus (hall, 1852) (Donovan & Sevastopulo, 1989, fig. 3). 2, Trauma pos-
ture of Myelodactylus ammonis (Bather, 1893) (Springer, 1926a, pl. 2,1). 3–4, Trauma posture of Ammonicrinus;  
3, A. sulcatus kongiel, 1958 (Piotrowski, 1977, fig. 2); 4, A. wanneri springer, 1926a (Krause, 1927, pl. 8,3).  
5, Trauma posture of Halysiocrinus tunicatus (hall, 1860) (Springer, 1926b, pl. 30,19 ). Scale bars in 2, 4, and 

5, 10.0 mm.
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pinnules in the feeding posture, and contrac-
tion of the adambulacral interbrachial 
muscles, if present (which also contribute 
to the meridional posture described on 
p. 32). When current velocity diminishes 
(assuming the specimen is still attached to 
the substratum), the crinoid can resume its 
normal feeding posture.

If a crinoid in the trauma posture is 
subject to sustained or further increased 
current disturbance, whether or not the 
holdfast or cirri are dislodged or the column 
breaks, it may be buried in this posture. 
BaUmiller and others (2008) called this 
a shaving-brush posture (Fig. 22.2). If a 
buried crinoid is not disturbed by subse-
quent re-exhumation or other sediment 
disturbance, this trauma posture remains 
intact and is a characteristic posture for 
well-preserved fossil crinoids. Tempestites 
are regarded as a common mode of rapid 
burial required for preservation of complete 

crowns (taylor & Brett, 1996; donovan, 
1991; aUsiCh, 2001, 2016), and this form 
of burial would commonly preserve a crown 
in a trauma posture. Rapid burial of two 
Metacrinus rotundus specimens under muddy 
volcanic ash in an aquarium produced a 
closed, straight-armed posture similar to the 
shaving brush. However, when two other 
specimens were subjected to slow, inter-
mittent burial, their arms curved strongly 
aborally, and some autotomized at proximal 
cryptosyzygial articulations. Detached arms 
also curved aborally (oji, matsUmoto, & 
BUrns, 2015, and unpublished observations).

The myelodactylids (Ordovician dispa-
rids) have one of the more unusual morphol-
ogies among crinoids. Their columnals are 
elliptical with a fulcral ridge along the long 
axis of the articular facet, which allows for 
planispiral coiling of the column parallel to 
the oral-aboral axis of the crown (Fig. 23.1). 
When completely coiled, the crown is tucked 

Fig. 24. Preservational postures. Glyptocrinus decadactylus (hall, 1847) from a large bedding surface with specimens 
displaying both shaving-brush trauma posture and starburst posture, Geier Center, Cincinnati Museum Center 

catalog no. 50668, scale bar 20.0 mm (new; photo by M. Milam).
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within a compact coil, and rhizoids along 
the stalk may further conceal the crown 
(Fig. 23.2). A variety of feeding postures 
has been suggested for myelodactylids (e.g., 
donovan & Franzén-Bengtson, 1988; 
donovan & sevastopUlo, 1989; seilaCher 
& maCClintoCk, 2005; donovan, 2006, 
2016), but details of their ecology remain 
uncertain. However, it is probable that the 
trauma posture for these crinoids involves 
the crown enclosed within the tightly 
coiled column and rhizoids. Interestingly, 
similar crinoid morphologies evolved two 
more times among Paleozoic crinoids, i.e., 
Ammonicrinidae (Devonian flexibles) (Figs. 
23.3–23.4) and Camptocrinidae (Mississip-
pian–Permian camerates). As in myelodac-
tylids, the trauma coil in ammonicrinids is 
tight, whereas the coiling in camptocrinids 
does not fully enclose the crown.

Similarly, calceocrinids (Ordovician–
Permian disparids) (see Fig. 1.6), which 
have a unique morphology and feeding 
posture, are commonly preserved in a trauma 
posture (Fig. 23.5). Because calceocrinids 
lived with the column along the substratum, 
individuals in this posture could have easily 
folded their arms along the column and then 
be readily buried. Consequently, preserva-
tion of arms in calceocrinids is relatively 
more common than in sympatric disparids 
(aUsiCh, 1986).

Starburst Posture

In response to a high-velocity current 
of sufficient magnitude and rapid enough 
onset, a crinoid may be dislodged, forced 
onto the substratum oral surface downward, 
and buried in a starburst posture before its 
arms could close into a trauma posture. In 
this posture, which is less common than 
the trauma posture, the arms are splayed 
out into a more-or-less planar fan that 
conformed to the substratum onto which 
they were thrust prior to burial. BaUmiller, 
mooi, and messing (2008) recognized both 
starburst-up and starburst-down postures, 
which depended on the direction of the 
powerful burial current. milam and others 

(2017) reported an extensive bedding surface 
with many specimens of Glyptocrinus deca-
dactylus hall, 1847 (Ordovician mono-
bathrid), splayed out into a starburst posture 
(Fig. 24). The most common crinoid in 
Silurian inter-reef facies of the midconti-
nental United States is Macrostylocrinus styo 
lane & aUsiCh, 1995, which is also typically 
preserved in a starburst posture (lane & 
aUsiCh, 1995).
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