Part E, Revised, Volume 4, Chapter 2A:

Introduction to the Fossil Hypercalcified Chaetetid-Type Porifera (Demospongiae)

Ronald R. West

2011
In this introduction to chaetetid hypercalcified demosponges, it is pertinent to review briefly the history of relevant extant and fossil species, and key features used to recognize the fossil representatives.

Döderlein (1892, 1897) described Petrostroma schulzei, an extant sponge from Japan with a massive calcareous skeleton composed in part of fused spicules. This appears to be the first report of a living sponge with a hypercalcified basal skeleton.

Lister (1900) described Astro sclera willeyana; then, in 1911, Hickson described Ceratopora nicholsoni (now Ceratoporella nicholsoni), and Kirkpatrick (1912) described Merlia normani, all three extant taxa with a calcareous skeleton. Kirkpatrick (1912) noted that Merlia normani was allied to the Paleozoic fossil Monticulipora. At that time, Monticulipora was considered to be a bryozoan by Grabau and Shimer (1909, p. 127) and Zittel (1913, p. 331). Earlier, Nicholson (1874, p. 500) stated that Chaetetes and Monticulipora were identical and considered Monticulipora to be a tabulate coral (Nicholson, 1879, p. 201). Still earlier, Duncan (1872) regarded Chaetetes, along with Monticulipora and other genera, as alcyonarians. This is important because (1) the skeleton of Merlia is similar to Chaetetes; and (2) Nicholson (1879, p. 201) included Chaetetes with Monticulipora as a tabulate coral. Although Chaetetes was not included in Grabau and Shimer (1909), it was grouped with tabulate corals by Zittel (1913, p. 117). Though most workers (e.g., Hill, 1981) accepted Chaetetes as a tabulate coral, others still considered it to be a bryozoan (Peterhans, 1929).

In addition to extant species, fossil species of Astrosclera are known from the Triassic, and Reitner (1992), Worheide (1998), and Reitner and others (2001) considered the calcareous skeleton as being similar to that of fossil stromatoporoids. The calcareous skeleton of both Merlia and Ceratoporella is similar to that in fossil chaetetids (Hartman & Goreau, 1972; Vacelet, 1990; Reitner, 1992) but the microstructure of these two extant taxa is different (Cuif & Gautret, 1993). However, there is a similarity in the microstructure of Merlia normani and the fossils Chaetetes cylindricus (Fischer von Waldheim, 1837) and Blastochaetetes bathonicus (Cuif & Gautret, 1993). The different microstructure in extant Ceratoporella and Astrosclera is reported in fossil chaetetids from the Permian and Mesozoic (Wendt, 1984; Gautret & Razgallah, 1987; Cuif & Gautret, 1991, 1993).

Although Kirkpatrick (1912) suggested that chaetetids and other taxa, including stromatoporoids, were siliceous sponges with a supplementary calcareous skeleton, it was not until after Hartman and Goreau (1966, 1970, 1972, 1975, 1976) rediscovered living sponges with a calcareous skeleton in reefal environments of the Caribbean and Indo-Pacific regions during the late 1960s and early 1970s that there was some acceptance of this view. Cuif and others (1973) described astrorhizae from Mesozoic (Triassic of Turkey and Cretaceous of Spain) chaetetids. Gray (1980)
Fig. 1. Rigid aspicular skeletons in chaetetid sponges; 1. SEM of a longitudinal fracture of Merlia lipoclavidisca, an extant form, from La Catedral cave at a water depth of 12 m, Balearic Islands, Mediterranean Sea, ×70 (adapted from Vacelet & Uriz, 1991, p. 172, fig. 2a, with kind permission of Springer Science+Business Media); 2. SEM of a longitudinal fracture of Acanthochaetetes wellsi, an extant form, locality not given, probably a cave at Anae (Continued on facing page.)
documented spicule pseudomorphs in Carboniferous chaetetids from the United Kingdom, and West and Clark (1983, 1984) illustrated astrorhizae in Pennsylvanian (upper Carboniferous) chaetetids from Kansas. Neuwoll (1935) reported the Paleozoic stromatoporoid Parallelapora with spicules from the same succession, and Galloway (1957, p. 450) recognized it as a sponge, thus excluding it from this stromatoporoid genus, as did Flügel and Flügel-Kahler (1968, p. 270), who recognized the presence of spicules. A reexamination of Neuwoll’s (1935) specimens confirmed their occurrence (Wood, Reitner, & West, 1989).

Other extant sponges with a calcareous skeleton were recognized, and of particular importance was the description of an extant species of the Mesozoic genus of Acanthochaetetes as A. wellsii by Hartman and Goreau (1975) from cryptic reefal habitats in the Pacific. There are now at least three extant sponge taxa with a calcareous skeleton that resemble the fossil chaetetids. Also, comparing the extant Ceratoporella nicholsoni with the calcareous skeleton of fossil chaetetids led Hartman and Goreau (1972) to place the chaetetids in the phylum Porifera and suggested to them that ceratoporellids, with a range back into the Permian, were their descendants. Although a taxonomic home for fossil chaetetids was now better established, there were still problems. Sponges are differentiated taxonomically on the basis of the composition and morphology of their spicules, and spicules are virtually absent in fossil chaetetids. Additionally, the spicules in the extant genera

**Fig. 1.** Continued from facing page.

Island, Guam, ×40 (adapted from Hartman & Goreau, 1975, fig. 6; courtesy of Yale Peabody Museum of Natural History); 3, longitudinal section (SEM) of Acanthochaetetes sp., an extant form, collected live in October 2005 off the Komesu coast, southern Okinawa, at a water depth of 15 m, ×50 (new); 4, longitudinal thin section of Acanthochaetetes seunesi, Cretaceous, Cenomanian form, locality not given, probably from the Pyrenees, magnification not given, probably ×10 (adapted from Wood, 1990, p. 230, fig. 7); 5, SEM of a longitudinal fracture of a chaetetid skeleton, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×30 (new).

**Fig. 2.** Rigid aspicular skeletons in chaetetid sponges (continued); 1, SEM of a longitudinal fracture of Chaetetes radians, probably Moscovian, upper Carboniferous, Moscow Basin, Russia, ×15 (new); 2, longitudinal thin section of a chaetetid skeleton, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×14 (new).
placed those genera in different poriferan subclasses. Wood (1990) summarized the resulting confusion and ultimate solution, namely that the chaetetid skeleton is a grade of organization with no high systematic value, and it belongs in the Tetractinomorpha and Ceractinomorpha, two of the three subclasses of the Demospongiae. Both of these subclasses extend back into the Paleozoic, and, to better understand hypercalcified demosponges with a chaetetid skeleton, it is necessary to consider,
in some detail, their living descendants. However, recent studies (Borchiellini & others, 2004; Boury-Esnault, 2006) have shown that these two subclasses are polyphyletic and their use should be abandoned. Additionally, the form genus Chaetetes and the species assigned to it require further study.

EXTERNAL MORPHOLOGY

The skeleton of hypercalcified demosponges is a rigid aspicular skeleton (Fig. 4).
Fig. 5. Basal calcareous skeleton of chaetetid sponges; 1a–c, basic shapes of chaetetid skeletons; a, laminar, b, ragged, low domical, c, columnar (West & Clark, 1984, p. 339, fig. 3; courtesy of Paleontological Research Institution, Ithaca, New York); 2, laminar (multiserial, single layer) chaetetids, Pennsylvanian, upper Carboniferous, southeastern Kansas, ×0.5 (new); 3, domical (multiserial, multilayered) chaetetid, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.35 (new); 4, columnar (multiserial, multilayered) chaetetid, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.65 (new); 5, extant *Merlia normani*, a single (multiserial) layer encrusting a volcanic rock, ×0.6 (adapted from Kirkpatrick, 1911, pl. 32, 4).
Fig. 6. Basal calcareous skeleton of chaetetid sponges (continued); 1, extant *Acanthochaetetes* sp., a small domical (multiserial, multilayered) pedunculate specimen, collected live in October 2005 off the Komesu coast, southern Okinawa, at a water depth of 15 m, ×1.7 (new); 2, extant *Ceratoporella nicholsoni*, a small domical (multiserial, multilayered) specimen from Pear Tree Bottom, Runaway Bay, Jamaica, in a tunnel at a depth of 85 feet, ×0.65 (new); 3, a small domical, pedunculate specimen of *Atrochaetetes lagaaji*, Triassic, Cassian Formation, northern Italy, ×3.3 (adapted from Engeser & Taylor, 1989, p. 51, fig. 8A; courtesy of the Natural History Museum, London).
Fig. 7. External features of chaetetid skeletons: astorhizae and mamelons; 1, Acanthochaetetes wellsi, with mamelons and astorhizae from underwater cave, Anae Island, Guam at 7.5 to 9 m, paratype, YPM No. 9078, ×1.45 (adapted from Hartman & Goreau, 1975, fig. 1; courtesy of Yale Peabody Museum of Natural History); 2, Acanthochaetetes wellsi, with astorhizae on mamelon from Augulpelu Reef, Palau Island, southwestern wall of a cave at a depth of 12.2 m, ×4 (new); 3, fossil chaetetid with eroded astorhiza on mamelon, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×3 (new); 4, Ceratoporella nicholsoni, with mamelons and astorhizae from subreef tunnel off Runaway Bay, Jamaica, at a depth of 30 m, ×1.5 (adapted from Hartman & Goreau, 1970, p. 211, fig. 6).
Fig. 8. External features of chaetetid skeletons: astrorhizae and mamelons (continued); 1, fossil chaetetid with astrorhizae, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas, ×2 (new); 2, Cassianochetaetes sp., with astrorhizae, Triassic, Cassian Formation, northern Italy, ×6.5 (adapted from Engeser & Taylor, 1989, p. 49, fig. 7C; courtesy of the Natural History Museum, London); 3, Atrochaetetes lagaiji, with astrorhizae, Triassic, Cassian Formation, northern Italy, ×3.3 (adapted from Engeser & Taylor, 1989, p. 51, fig. 8B; courtesy of the Natural History Museum, London); 4, upper surface of laminar chaetetid with mamelons, Pennsylvanian, upper Carboniferous, Laberdie Limestone Member, Pawnee Limestone, Bourbon County, Kansas, ×0.5 (new).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

1–2), a rigid spicular skeleton (Fig. 3–4), or a combination of both. Morphological features of the exterior of this skeleton are the following: (1) general shape of the calcareous skeleton (Fig. 5–6); (2) surface features such as astrorhizae, mamelons, chimneys, and tubercules (Fig. 7–9); and (3) the numerous, vertically partitioned tubes, or tubules (Fig. 10–11) that compose the calcareous skeleton.

What becomes the rigid calcareous chaetetid skeleton is the result, initially, of sexual reproduction; however, the details of fertilization and larval development in extant taxa are still largely unknown (Treatise Online, Part E, Revised, Volume 4, Chapter 1, Vacelet, Wilkenz, & Hartman, 2010, Living Hypercalcified Sponges, p. 10). This sexually produced individual increases asexually (i.e., by cloning; see West & others, 2010) and the resulting clone may become differentiated into functional units, a form of modularity (Wood, Zhuravlev, & Debrenne, 1992). The degree of the structural relationship between the resulting modules may suggest interdependence expressed as low, medium, or high skeletal integration (Wood, Zhuravlev, & Debrenne, 1992, p. 133). Wood, Zhuravlev, and Debrenne (1992, p. 138, fig. 4) illustrated eight different modular-type skeletons recognized in hypercalcified sponges. Chaetetid skeletons are considered to be highly integrated and multiserial, and there are both horizontal and erect multiserial skeletons (Wood, 1999, p. 223, table 6.4). Most chaetetid skeletons are either highly integrated, multiserial, single layered (encrusting), horizontal sheets, or highly integrated, multiserial, multilayered, horizontal (massive) forms (Wood, 1999, p. 223, table 6.4). Wood, Zhuravlev, and Debrenne (1992, p. 135) described some extant hypercalcified sponges “… with multiserial massive (e.g., Ceratoporella), encrusting (e.g., Merlia normani, Stromatopospongia vermicola) or pedunculate, saucer-shaped morphologies (Goreaevella auriculata).” Certainly, the skeleton of Acanthochaetetes wellsi should also be considered multiserial and single layered; see Treatise Online, Part E, Revised, Volume 4, Chapter 9B, External

---

**Fig. 9.** External features of chaetetid skeletons: tubercules and chimneys; 1, SEM of the surface of *Merlia lipo-clavidisca*, an extant form, note tubercules, from La Catedral cave at a water depth of 12 m, Balearic Islands, Mediterranean Sea, ×100 (adapted from Vacelet & Uriz, 1991, p. 172, fig. 2c, with kind permission of Springer Science+Business Media); 2, SEM of the surface of a fossil chaetetid, note tubercules, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×40 (new); 3, surface of fossil chaetetid with tubercules, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×15 (adapted from West & Clark, 1984, p. 341, pl. 1, C; courtesy of Paleontological Research Institution, Ithaca, New York); 4, surface of fossil chaetetid with chimneys, Pennsylvanian, upper Carboniferous, Homer School Limestone Member, Holdenville Formation, Seminole County, Oklahoma, ×1 (new); 5, longitudinal section of chimney in chaetetid, Pennsylvanian, upper Carboniferous, Homer School Limestone Member, Holdenville Formation, Seminole County, Oklahoma, ×1.3 (new).
Fig. 10. (For explanation, see facing page).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera


The shape, or gross morphology, of chaetetids is like that of other hypercalcified demosponges, namely: nodular, branching, columnar, laminar, or domical, and may be referred to as the growth form. The relationship between growth morphology and growth form is given in the Glossary (see Treatise Online, Part E, Revised, Volume 4, Chapter 8, Glossary, Webby, 2010). As pointed out by West and Kershaw (1991), there are essentially three basic growth forms in chaetetids: laminar, domical, and columnar. These are synonymous, respectively, with what Stanton, Connolly, and Lambert (1994) termed tabular, hemispherical, and columnar. In terms of skeletal integration, a multiserial, encrusting growth would produce a laminar form, and the other two growth forms would be the result of a multiserial, massive growth. Domical, multiserial massive skeletons would be roughly equi-dimensional, and in columnar skeletons, the height would exceed the width. The basic building block of most chaetetids is a thin laminar sheet, and thus one might consider that there is a single growth form: laminar (Fig. 5–6; Fig. 12). As shown in Figure 12, laminar growth can result in domical and columnar masses, as well as in forms with more complex geometries. Such complex geometries are probably the result of environmental perturbations and

**Fig. 10.** Internal features of chaetetid skeletons: walls and tubules; 1, longitudinal section (SEM) of tubules in Acanthochaetetes wellsi, Guam, western Pacific, ×13 (adapted from Reitner, 1991, p. 196, fig. 11a, with kind permission of Springer Science+Business Media); 2, longitudinal section of tubules in Merlia normani, ×130 (adapted from Kirkpatrick, 1911, pl. 35,17); 3, transverse section of tubules in Merlia normani, ×130 (adapted from Kirkpatrick, 1911, pl. 35,16); 4, longitudinal thin section of tubules in a fossil chaetetid, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×75 (adapted from West & Clark, 1984, p. 341, pl. 1B; courtesy of Paleontological Research Institution, Ithaca, New York); 5, transverse thin section of tubules in a fossil chaetetid, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×70 (adapted from West & Clark, 1984, p. 341, pl. 1A; courtesy of Paleontological Research Institution, Ithaca, New York); 6, longitudinal thin section of tubules in a fossil chaetetid, Pennsylvanian, upper Carboniferous, Akiyoshi Limestone, Akiyoshi-dai, Japan, ×12 (new).

**Fig. 11.** Internal features of chaetetid skeletons: walls and tubules (continued); 1, surface expression of tubules in a fossil chaetetid, Pennsylvanian, upper Carboniferous, Higginsville Limestone Member, Fort Scott Limestone, Bourbon County, Kansas, ×5 (adapted from Brosius, 2006, p. 42, fig. 58B; courtesy of Kansas Geological Survey, Lawrence); 2, longitudinal thin section of tubules in Atrochaetetes alakirensis, Carnian, Upper Triassic, southwestern Turkey, ×20 (adapted from Cremer, 1995, pl. 25,2; courtesy of Geobios, Université Lyon).
Fig. 12. Possible environmental controls on growth of the chaetetid skeleton, with the basic building block being a laminar accretionary unit; 1, laminar accretionary unit; 2, growth on a soft substrate; 3, turbulence during growth; 4, periodic sedimentation during growth; 5, inferred growth to sea level; 6, no sedimentation during growth; 7–9, different inferred results of growth in areas of very slow, continuous sedimentation (adapted from Kershaw & West, 1991, p. 342, fig. 7).

may be referred to as digitate, branching, anastomosing, or other terms, but essentially they are the result of one or more of the three basic growth forms (Fig. 13–17). Although the calcareous skeleton of chaetetids is composed of tubules, the resulting shapes and growth habits are similar to that observed in stromatoporoids. Webby and Kershaw (see Treatise Online, Part E, Revised, Volume 4, Chapter 9B) discuss in detail the external morphology of Paleozoic stromatoporoids in terms of their shapes and growth habits. In large part, this discussion also applies to chaetetids. Stanton, Connolly, and Lambert (1994, fig. 1) illustrated what they considered axial growth and suggested that it might be taxonomically important. Specimens that appear to demonstrate axial growth are often poorly preserved, either partially or completely silicified (Stanton, Connolly, & Lambert, 1994), or completely recrystallized. Such diagenetic changes, and others, significantly alter skeletal features. Axial growth in chaetetids may occur, but further study is needed for it to be clearly demonstrated and its possible taxonomic value assessed.

The ancestral part, i.e., initiation, of the calcareous skeleton of extant and fossil chaetetid skeletons is unknown. Thus, it can only be inferred that the entire basal area of any particular chaetetid growth form began at the same time from a thin layer or sheet of soft tissue. Although upward growth of all the tubules from the base appears to be simultaneous, there are differences. Based on studies of thin sections, polished surfaces, and acetate peels, Kershaw and West (1991) reported five different styles of initial growth of the
Fig. 13. Laminar chaetetid growth forms, Pennsylvanian, upper Carboniferous; 1, laminar growth of a chaetetid skeleton on an irregular substrate, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.85 (new); 2, laminar growth of a chaetetid skeleton on an oncoid, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.85 (new); 3, laminar growth of a chaetetid skeleton on an irregular surface that resulted in a bimodal, low domical form, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.5 (new); 4, laminar to ragged domical chaetetids in a carbonate mudstone, Blackjack Creek Limestone Member, Fort Scott Limestone, Crawford County, Kansas, ×0.1 (new); 5, closely stacked laminar chaetetid skeletons in an argillaceous carbonate mudstone, Myrick Station Limestone Member, Pawnee Limestone, Bourbon County, Kansas, ×0.45 (adapted from Miller & West, 1996, p. 293, fig. 4A); 6, bowl-shaped laminar chaetetid skeletons surrounded by argillaceous carbonate mudstone, Myrick Station Limestone Member, Pawnee Limestone, Bourbon County, Kansas, ×0.35 (adapted from Miller & West, 1996, p. 293, fig. 4B).
Fig. 14. Domical chaetetid growth forms, Pennsylvanian, upper Carboniferous; 1, low domical chaetetid produced by laminar chaetetid encrusting an oncoid that formed around a productid brachiopod valve, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.55 (new); 2, upper surface of domical chaetetids, Higginsville Limestone Member, Fort Scott limestone, Crawford County, Kansas, ×0.075 (new); 3, laminar to ragged, high domical chaetetids, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas, ×0.075 (new); 4, modified interpretive sketch of area shown in view 3, ×0.09 (new).
Fig. 15. Domical chaetetid growth forms (continued), Pennsylvanian, upper Carboniferous: 1, high domical, ragged chaetetid, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas, ×0.2 (new); 2, ragged, domical chaetetid in a fusulinid packstone, Higginsville Limestone Member, Fort Scott Limestone, Crawford County, Kansas, ×0.45 (new); 3, low and high domical chaetetids, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.06 (new).
Fig. 16. Columnar chaetetid growth forms, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas; 1, smooth columnar chaetetid, ×0.25 (adapted from Miller & West, 1996, p. 293, fig. 4E); 2, mass of columnar chaetetids, ×0.06 (new); 3, smooth to slightly ragged columnar chaetetids, ×0.1 (new); 4, smooth columnar chaetetid, ×0.045 (new).
Fig. 17. Columnar chaetetid growth forms (continued), Pennsylvanian, upper Carboniferous; 1, largely silicified ragged columnar chaetetid, Horquilla Limestone, Whetstone Mountains, Arizona, ×0.1 (new); 2, largely silicified smooth columnar chaetetid, Horquilla Limestone, Whetstone Mountains, Arizona, ×0.05 (new); 3, largely silicified high domical to columnar chaetetids in an inferred so-called biostrome, Middle Magdalena Group, Hueco Mountains, Texas, ×0.16 (new); 4, largely silicified vase-shaped chaetetid associated with an inferred biostrome, Middle Magdalena Group, Hueco Mountains, Texas, ×0.3 (new).
calcareous skeleton in chaetetids. These are shown in Figure 18. Some of these differences appear to be influenced by the substrate (Fig. 18.5; Fig. 19–20), but causes of the other observed differences are currently unknown (Fig. 18.1–18.4). As noted by West and Kershaw (1991, p. 446), vertical, uniform growth would produce a laminar form (Fig. 18.1), and vertical, non-uniform growth would produce a domical or columnar form (Fig. 18.2). Growth of some of the initial tubules may be oblique to the substrate and returns to a more vertical position as growth continues (Fig. 18.3). Tubule growth may also proceed from what appears to be two or more growth centers, producing an arrangement of tubules that is complex (Fig. 18.4; Fig. 21).

The amount and rate of sedimentation also plays a role in the gross morphology of chaetetids. Lack of, or very slow, continuous sedimentation results in domical or columnar growth forms with a smooth outer surface (Fig. 12). Episodic sedimentation, which is often recorded as interruptions in the growth of tubules, produces chaetetids with ragged margins, as seen in Figures 22–23. These are not the only two factors that influence the growth form of chaetetids, but these are particularly important. For a fuller discussion, see Kershaw and West (1991), West and Kershaw (1991), and Treatise Online.

---

**Fig. 18.** Styles of initial growth in chaetetids; 1, uniform tubule growth more or less normal to substrate; an uncommon style, ×3.25; 2, greater tubule growth in the center; a common style and one that often is the template for continued growth, ×1.2; 3, upward tubule growth is normal to oblique relative to the substrate, eventually all tubules grow, more or less, normal to the substrate; a common style, ×3; 4, tubules spread upward and laterally from more than one center of growth, eventually compromised growth occurs at the margins of the different centers of growth; a common style, ×3; 5, tubule growth associated with positive topographic features, tubules fan out from the positive area; a common style, ×3 (adapted from Kershaw & West, 1991, p. 336, fig. 2A).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

Part E, Revised, Volume 4, Chapter 2E and Chapter 9B.

Surface features on chaetetids, such as astrorhizae, chimneys, mamelons, basal layer (basal layer is favored over epitheca, theca, or peritheca to avoid confusion with corals and bryozoans), and tubercules are seldom observed, probably, in part, because of postmortem abrasion, dissolution, or both. All of these, except the basal layer, occur on the upper exterior surface of chaetetids, and even when they are preserved in fossil specimens, they are often broken or muted. Unlike some fossil stromatoporoids and some extant hypercalcified sponges in which astrorhizae can be traced downward into the calcareous skeleton, astrorhizae in chaetetids are confined to the exterior surface (Fig. 13). Serial sectioning of a chaetetid specimen with surface astrorhizae revealed no evidence of these features within the calcareous skeleton. However, Cuif and others (1973, pl. 1, 2) illustrated a longitudinal section of astrorhizae in Blastoporella, but this genus is not currently considered valid because neither spicules nor spicule pseudomorphs have been found.

Although present, the basal layer is rarely seen in fossil forms, but it does occur (Fig. 24) in some very small specimens and on the undersides of laminar forms that have been colonized to some extent by epibionts. Preservation of this feature occurs in specimens collected from mudrocks and has not been observed in any specimens collected from carbonates. The basal layer in fossil chaetetids appears similar to that described from extant forms, with fine concentric growth lines on both (Fig. 24.1–24.4). The basal layer in a section through a specimen of Acanthochaetetes welsi is easily recognized in SEM images, because the microstructure is different from that of the rigid calcareous skeleton (Fig. 24.6). However, the basal layer is not everywhere present in extant forms, no doubt the result of abrasion, dissolution, and/or bioerosion during life. In a fossil specimen, where it could be observed in cross section, it is a very thin (about 0.1 mm or less in thickness), single layer of dark calcite, and the SEM images reveal that it is slightly different from the calcareous skeleton (Fig. 24.5). Although the difference between the basal layer and calcareous skeleton is not as clear in the fossil because of diageneis, it can be recognized (Fig. 24.7). It is important to note that in both extant and fossil specimens, the outer layer of the skeleton, i.e., the basal layer, is rich in organics. In that a basal layer, like the periostracum in bivalves and brachiopods, functioned, in part at least, as a protection of the more calcareous skeleton (Clark, 1976), an organic-rich, outer layer is not surprising.

INTERNAL MORPHOLOGY

Irrespective of the growth form, the calcareous skeletons are composed internally of numerous thin-walled tubes that
Fig. 19. Influence of substrate irregularities on chaetetid growth, Pennsylvanian, upper Carboniferous; 1, oncoid with a productoid brachiopod nucleus, colonized by a laminar chaetetid, followed by a microbial mat; because of this substrate irregularity, a low domical chaetetid skeleton was produced, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.5 (new); 2, chaetetid colonization of two oncoids, producing a complex laminar to smooth, low domical skeleton, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.35 (see West & Kershaw, 1991, p. 449, fig. 2E for interpretive sketch, with kind permission of Springer Science+Business Media); 3, smooth to slightly ragged, low, domical chaetetid as a result of a substrate irregularity produced by oncoids, skeletal debris, and matrix (carbonate mudstone), Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.3 (new); 4, high domical chaetetid with ragged margins that colonized and grew on an oncoid, substrate is inclined about 30° in a clockwise direction, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.45 (new); 5, interpretive sketch of specimen in view 4, with the substrate oriented horizontally, depicted by a row of slash marks on either side of large rounded oncoids displayed with a dark stippling, ×0.45 (see also West & Kershaw, 1991, p. 452, fig. 4E, with kind permission of Springer Science+Business Media); 6, low domical chaetetid that began by colonizing a large crinoid columnal, southeastern Kansas, ×0.6 (West & Kershaw, 1991, p. 449, fig. 2D, with kind permission of Springer Science+Business Media).
are polygonal (regular to irregular) to meandroid (Fig. 25–26) in transverse or tangential section. These tubes are referred to as tubules, and their walls are tightly joined or shared in common. Pores connecting tubules, referred to as mural pores in tabulate corals, have been documented in one possible chaetetid genus, *Blastoporella* (Cuif & Ezzoubair, 1991). Longitudinal sections of the calcareous skeleton reveal that the most conspicuous internal morphological features are the tabulae (Fig. 27–28). These are random, irregularly spaced, subhorizontal partitions within tubules that may or may not be aligned between adjacent tubules and are easily observed in polished and thin sections and acetate peels. Generally, the tabulae are thinner than the walls of the tubules, but taphonomic processes can produce thickening or thinning of both (see Fig. 49.2). Because of these taphonomic processes, all measurements, especially those used for taxonomic differentiation, i.e., tubule size, wall thickness, and spacing of tabulae, are of little value (West, 1994). A foramen (Fig. 29) may be present as a circular opening in the tabulae, allowing interconnection between tubular spaces immediately above and below the tabulae. In fossil taxa, the foramen is rarely observed, either because it has been sealed off during later growth or subsequently infilled by taphonomic processes. Spines that have been recognized in such extant forms as *Acanthochaetetes*, if present in
fossil taxa, are usually indistinguishable from incomplete tabulae or pseudosepta. Laminae do not appear to be related to the occurrence of tabulae, but may be associated with closely spaced tabulae. The term as used in chaetetids does not refer to the same features as laminae in stromatoporoids; rather, it is more like what are referred to as latilaminae in stromatoporoids (see Treatise Online, Part E, Revised, Volume 4, Chapter 8, Glossary, Webby, 2010). Laminae (Fig. 30) in chaetetids are bounded, above and below, by interruptions in the growth of the calcareous skeleton as a result of some disturbance. Thus, the thickness of the lamina will vary depending on the frequency of interruptions, and may thin and thicken laterally. Miller and West (1996) recognized five different types of growth interruption surfaces in chaetetids, all of which may define laminae in the calcareous skeleton (Fig. 31). Tubules may be continuous or discontinuous across some interruptions from one lamina to the next (Fig. 31.1–31.2). Sedimentation, biological encrustation, and/or erosion may also separate laminae (Fig. 31.3–31.6). Erosion process may be biological, physical, chemical, or a combination of all three. Several types of interruption surfaces may occur in a single skeleton, and the type of interruption surface may change across the skeleton (Fig. 31.1–31.2).

Growth of tubules upward and addition of tubules by longitudinal fission, intertubular increase, peripheral expansion, or combinations of all three increase the size of the calcareous skeleton (Fig. 32–33). Lateral growth of the calcareous skeleton occurs when new tubules are formed on the adjacent basal layer or inorganic substrate and are connected to existing tubules, i.e., peripheral expansion (Fig. 32.2). Longitudinal fission and intertubular increase occur within the existing calcareous skeleton. In the former, one pseudoseptum or more (pseudosepta) join to form a new tubule (Fig. 33.2). In intertubular growth, the latter tubule walls separate, and rapid upward growth produces a full-sized tubule (Fig. 32.3; Fig. 33.1).

Particularly conspicuous in transverse and tangential sections is the pseudoseptum (Fig. 34–35). Pseudosepta project into individual tubules from the tubule walls and begin as tiny pustules that might be interpreted as incipient spines. However, serial sections reveal that these pustules expand upward, bladelike, into the tubule as upward growth continues, producing a pseudoseptum and ultimately a new tubule, as noted above. This process of division is called longitudinal fission and, in longitudinal section, might be confused with intertubular increase (see Fig. 32.3). Pseudosepta are most reliably identified from surfaces perpendicular to the long dimension of the tubules, i.e., transverse sections of the calcareous skeleton.

Spicules, siliceous megascleres, and microscleres, are known from extant and fossil forms. However, not all extant or fossil sponges have spicules; Vacelet and Uriz (1991, p. 176) stated: “Interestingly, siliceous spicules are somewhat inconstant features in existing calcified demosponges.” Most megascleres in chaetetids are tylostyles (Fig. 36–37) with or without spines, and the microscleres are some type of euaster (Fig. 38). Only megascleres are known in Astrosclera willeyana; they vary in abundance from high to low, and their morphology varies across different geographic regions (Wörheide, Reitner, & Gautret, 1997; Wörheide, 1998). Spicules are absent in Central Pacific populations of Astrosclera willeyana.
Fig. 21. Tubule complexity in chaetetids; 1, polished longitudinal section, showing the complexity of tubule interaction in a laminar chaetetid, Pennsylvanian, upper Carboniferous, Homer School Limestone Member, Holdenville Formation, Seminole County, Oklahoma, ×0.6 (new); 2, interpretive sketch of view 1, ×0.94 (Kershaw & West, 1991, p. 336, fig. 2B).

(Vacelet & Uriz, 1991, p. 176). Megascleres in extant forms range in length from 47 µm in some specimens of Astro sclera (acanthostyles; Fig. 39) to nearly 600 µm in Willardia (tylostyles). Microscleres in extant forms range from 5 µm in Acan thochaetetes (amphiasters, diplasters, and spirasters; Fig. 40.1–40.5) to 45 µm in Merlia (clavidiscs; Fig. 40.6).

Environmental factors can have a significant effect on spicule formation in some extant demosponges. Uriz and others (2003, p. 288), referring to the formation of siliceous spicules in sponges, stated that,
Fig. 22. Inferred development of laminar, domical, and columnar chaetetid skeletons with a ragged margin, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas; 1, inferred growth sequence of a ragged columnar chaetetid, based on specimens, ×0.09 (Kershaw & West, 1991, p. 338, fig. 3B); 2, example of a ragged columnar chaetetid for comparison to view 1, ×0.1 (new); 3, ragged domical chaetetid illustrating multiple disturbances after initiation on an oncoid, ×0.45 (Miller & West, 1996, p. 293, fig. 4F); 4, inferred sequence of growth events leading to the domical chaetetid shown in view 3, ×0.19 (Miller & West, 1996, p. 297, fig. 9).
“Si uptake in sponges has been measured in laboratory experiments (Frohlich & Barthel, 1997; Reincke & Barthel, 1997; Maldonado, & others, 1999) and may vary according to Si concentration in the water, temperature, and other environmental factors that affect sponge physiology and metabolism.” Experimental studies have shown that spicules are lacking in sponges grown in water low in silicic acid (Yourassowsky & Rasmont, 1983). Additionally, some extant sponges that lack one or more spicule types in one area but have a full complement of spicules in other areas, is the result, in part, of the silicon concentration in the seawater (Uriz, Turon, & Becerro, 2003, p. 187). Thus, spicule types, absent in natural populations living in waters with a low concentration of silicon, can be produced by artificially increasing the silicic acid concentration (Maldonado & others, 1999). Maldonado and others (1999) suggested that reef-building sponges during the Mesozoic were limited by the availability of silicon. In addition to silicon, experimental studies suggest that iron is necessary for the polymerization of silica to form spicules in demosponges (Müller & others, 2003; Uriz, Turon, & Becerro, 2003). Although megascleres and microscleres are expected in extant forms, environmental factors may preclude their presence. Variation in the spicules of the hypercalcified demosponge Astrosclera willeyana, as noted above, may be due to such environmental factors.

Spicules, both megascleres and microscleres, are much less common in fossil hypercalcified demosponges than in

Fig. 23. Inferred development of laminar, domical, and columnar chaetetid skeletons with a ragged margin (continued): 1, inferred sequence of growth events of some cup-shaped laminar chaetetids, based on specimens, Pennsylvanian, upper Carboniferous, Myrick Station Limestone Member, Pawnee Limestone, Bourbon County, Kansas (Miller & West, 1996, p. 295, fig. 6); 2, example of cup-shaped laminar chaetetids for comparison to view 1, ×0.3 (adapted from Miller & West, 1996, p. 293, fig. 4B).
Fig. 24. (For explanation, see facing page).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

extant forms. In addition to the environmental factors noted above, there may be several other explanations; two have been suggested. Most spicules are contained in the soft tissue of extant taxa and are not always incorporated into the calcareous skeleton (Kirkpatrick, 1911; Hartman & Goreau, 1975). Silica is unstable in the presence of calcium carbonate, and siliceous spicules are commonly corroded away in older parts of the calcareous skeleton of still-living taxa (Hartman & Goreau, 1970, 1972). Thus, it should not be surprising that spicules are rarely seen in fossil forms.

Given the ease with which silica spicules are corroded from the older parts of the skeleton, any evidence of spicules in fossil forms might be expected to be as pseudomorphs. Spicule pseudomorphs of calcite, pyrite, and iron oxide are known from Mesozoic chaetetids (see Gray, 1980, for summary). The first clear evidence of the poriferan affinities of Paleozoic chaetetids were the spicule pseudomorphs of calcite, pyrite, and silica described by Gray (1980) in chaetetids from the lower Carboniferous (Missippian) of England (Fig. 36.6–36.9). Subsequently, Reitner (1991) documented spicule pseudomorphs, mostly calcite, in both Mesozoic and Paleozoic chaetetids (Fig. 37.1–37.3). Based on what he interpreted as pyrite pseudomorphs of spicules, Kaźmierczak (1984, 1989) suggested a poriferan affinity for some tabulate corals, but Oekentorp (1985) thought that these were the result of boring organisms. These features are similar to what Twitchell (1929) considered spicules in Stromatopora, but which Finks (1986) interpreted as pyrite-filled endolithic borings. Wood, Copper, and Reitner (1990) and Copper and Plusquellec (1993) reached similar conclusions for these features described by Kaźmierczak in tabulate corals. Kaźmierczak (1991) presented three cases of what appear to be spicule pseudomorphs in three different favositid tabulate genera. In 1994, Kaźmierczak illustrated well-ordered vertical and subhorizontal tracts of what he interpreted as calcite pseudomorphs of monaxonic sclerites in a Silurian favositid tabulate from Gotland. However, Scrutton (1997, p. 189) regarded these structures as diagenetically altered cores of the trabeculae of the corallite walls. What have been interpreted as calcite spicules have been described from Silurian tabulate corals (Chatterton & others, 2008) but support an affinity with the Octocorallia. Although the morphology of these spicules is not typical of sponges, the growth form and the external and internal morphological features of some tabulates, such as favositids, are similar to chaetetids, and perhaps there is some connection between them as suggested by the pores in the tubule walls of Blastoporella, a possible chaetetid genus.
Fig. 25. (For explanation, see facing page).
Fig. 25. Shape variation in chaetetid tubules; 1, SEM of transverse view of tubules in *Chaetetes radians*, Carboniferous limestone, Miatschkovo, near Moscow, Russia, ×15 (new); 2, transverse thin section of tubules in *Atrochaetetes alakirensis*, Norian, Upper Triassic, southwestern Turkey, ×21 (adapted from Cremer, 1995, pl. 25, 1); 3, SEM of transverse view of tubules in a ceratoporillid chaetetid, Permian, Tunisia, ×30 (new); 4, transverse thin section of tubules in *Chaetetes favrei*, Barremian, Lower Cretaceous, Crimea, ×11.5 (adapted from Kazmierczak, 1979, p. 103, fig. 2B; courtesy of E. Schweizerbartsche Verlags, Naegele U Obermüller Science Publishers, Stuttgart, Germany); 5, transverse thin section of tubules in *Leiospongia polymorpha*, Upper Triassic, Cassian Formation, northern Italy, ×21 (adapted from Engeser & Taylor, 1989, p. 43, fig. 2B; courtesy of the Natural History Museum, London); 6, transverse thin section of *Chaetetes (Boswellia) mortoni*, lower Asbian, lower Carboniferous, northern Wales, ×14 (adapted from Gray, 1980, pl. 102, 3).

Fig. 26. Shape variation in chaetetid tubules (continued); 1, transverse thin section of tubules in *Blastochaetetes dolomiticus*, Norian, Upper Triassic, southwestern Turkey, ×17 (adapted from Cremer, 1995, pl. 26, 3; courtesy of Geobios, Université Lyon); 2, transverse thin section of tubules in ?*Bauneia* sp., Norian, Upper Triassic, southwestern Turkey, ×26 (adapted from Cremer, 1995, pl. 27, 5; courtesy of Geobios, Université Lyon); 3, view of the surface, showing meandroid shape of tubules in *Meandriospera zardinii*, Carnian, Upper Triassic, Cassiano beds near Cortina d’Ampezo, Italy, ×2.4 (adapted from Dieci & others, 1977, pl. 1, 2a; courtesy of Bollettino della Societa Paleontologica Italiana).
Fig. 27. Walls and tabulae in fossil chaetetids: 1, SEM of transverse to oblique fracture of a chaetetid, Permian, Tunisia, showing tubule walls and tabulae, ×20 (new); 2, SEM of longitudinal fracture of chaetetid, Pennsylvanian, upper Carboniferous, Buckhorn Asphalt, Murray County, Oklahoma, ×15 (new); 3, longitudinal thin section of chaetetid, upper Carboniferous, Akiyoshi Limestone, Akiyoshi-dai, Japan, ×36 (new); 4, SEM of longitudinal fracture of a chaetetid, Moscovian, upper Carboniferous, near Podolsk, Russia, ×15 (new); 5, longitudinal thin section of *Chaetetopsis crinata*, Upper Jurassic, Portlandian, Japan, ×15 (adapted from Fischer, 1970, pl. E,8; courtesy of *Annales de Paléontologie* (Invertébrés), Elsevier Masson SAS); 6, longitudinal thin section of *Blastochaetetes capilliformis*, Oxfordian, Upper Jurassic, France, ×15 (adapted from Fischer, 1970, pl. A, fig. 8; courtesy of *Annales de Paléontologie* (Invertébrés), Elsevier Masson SAS).
BIOMINERALIZATION AND MICROSTRUCTURE

Skeletal components of hypercalcified sponges comprise the spicules and the calcareous skeleton. Spicules composed of silica may or may not occur, and even if they are present in extant forms, they are, as noted above, commonly lacking because of taphonomic processes. The calcareous skeleton in extant forms is composed of aragonite or high magnesium calcite (Reitner & Wörheide, 2002). Calcareous chaetetid skeletons composed of aragonite have been reported from the Mesozoic (Cuif, 1974; Dici, Russo, & Russo, 1974; Wendt, 1974, 1984). Squires (1973) reported at least 5 mol% magnesium carbonate in the walls of chaetetids preserved in the Buckhorn Asphalt, a Pennsylvanian (upper Carboniferous) unit in Oklahoma. The magnesium carbonate of extant chaetetid sponges is between 14 and 20 mol% (Wendt, 1984, p. 327). Squires (1973, p. 98) suggested that the value he obtained could have been higher, in that a thin layer of dolomite rims the walls of the tubules (see his pl. 15, p. 97). Thus, some of the magnesium from the chaetetid skeleton could have been incorporated into the dolomite during diagenesis. Dolomite rims also occur in some of the Pennsylvanian (upper Carboniferous) chaetetids from Kansas (Fig. 41). In most fossil forms, these unstable mineral phases, aragonite and high magnesium calcite, have converted to low magnesium calcite. Because of this recrystallization, the original microstructure of the calcareous skeleton in fossil forms is muted or completely destroyed.

Biomineralization of the spicules and the calcareous skeleton in some extant forms has been well documented (Kirkpatrick, 1911; Vacelet & Garrone, 1985; Wilenz & Hartman, 1989, 1999; Cuif &
Fig. 29. Foramen in tabulae in extant and fossil chaetetids; 1, SEM of a possible foramen in a tabula of an extant specimen of *Merlia normani*, Mediterranean Sea, ×350 (adapted from Gautret, Vacelet, & Cuif, 1991, pl. II, 1; courtesy of *Publications Scientifiques du Muséum national d'Histoire naturelle, Paris*); 2, SEM of a possible foramen in a tabula of an extant specimen of *Merlia lipoelavidosica* *Vacelet* & *Uriz*, 1991, La Catedral cave, at a water depth of 12 m, Balearic Islands, Mediterranean Sea, ×300 (adapted from Vacelet & Uriz, 1991, p. 172, fig. 2b, with kind permission of Springer Science+Business Media); 3, SEM of a possible foramen in a tabula of *Chaetetes radians*, Moscovian, upper Carboniferous, Moscow Basin, Russia, ×103 (new); 4, SEM of a possible foramen in a tabula of *Chaetetes radians*, Moscovian, upper Carboniferous, near Podolsk, south of Moscow, Russia, ×60 (new).

Fig. 30. Laminae in fossil chaetetids, upper Carboniferous; 1, interlayered chaetetid laminae with algal-microbal mats, Akiyoshi Limestone, Akiyoshi-dai, Japan, ×0.3 (new); 2, polished longitudinal section of a ragged columnar chaetetid, showing laminae, Pennsylvanian, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×0.65 (new); 3, differentially weathered longitudinal (vertical) surface of a ragged, high domical chaetetid, showing laminae, Pennsylvanian, Amoret Limestone Member, Altamont Limestone, Labette County, Kansas, ×0.4 (new); 4, laminae of laminar chaetetids accentuated by weathering, Pennsylvanian, Myrick Station Limestone Member, Pawnee Limestone, Bourbon County, Kansas, ×0.25 (new); 5, laminar to low domical chaetetids, showing individual laminae in a fusulinid grainstone, Pennsylvanian, Higginsville Limestone Member, Fort Scott Limestone, Crawford County, Kansas, ×0.16 (new).
Fig. 30. (For explanation, see facing page).
Fig. 31. Five types of growth interruptions observed in chaetetid skeletons, Pennsylvanian, upper Carboniferous, Higginsville Limestone Member, Fort Scott Limestone, Crawford County, Kansas; all figures are ×6; 1, continuity of tubules across the interruption, type 1 (arrows) grades laterally into discontinuity of tubules across the interruption, type 2 (arrows); 2, discontinuity of tubules across the interruption, type 2 (arrow), that grades laterally into a thin layer of matrix or matrix filled tubules, type 3 (arrow); note that a type 1 interruption (upper arrow) occurred after subsequent growth; 3, thin layer of matrix separating chaetetid laminae, with some tubules below filled with matrix; 4, chaetetid surface overgrown by fistuliporoid bryozoan (b) either coincident with or subsequent to renewed chaetetid growth (type 4 interruption); 5, chaetetid surface covered by matrix and encrusted by the tabulate coral Multithecopora either coincident with or subsequent to renewed chaetetid growth (type 4 interruption); 6, chaetetid surface locally corroded with evidence of skeletal destruction prior to renewed chaetetid growth (type 5) (adapted from Miller & West, 1996, p. 292, fig. 3A–F).
Gautret, 1991; Reitner, 1992; Gautret, Reitner, & Marin, 1996; Reitner & Gautret, 1996; Wörheide, Reitner, & Gautret, 1996, 1997; Reitner & others, 1997; Wörheide & others, 1997; Wörheide, 1998). However, because of taphonomic processes, little is known of the biomineralization of fossil forms, although it is assumed to be similar, if not identical, to that in extant taxa. Both Merlia normani and Acanthochaetetes wellsi have a calcareous skeleton similar to that seen in some fossil chaetetids. Kirkpatrick (1911) produced a very careful and detailed study of Merlia normani. Using modern techniques, Vacelet (1980); Gautret, Vacelet, and Cuif (1991); and Cuif and Gautret (1993) described the spicules of Merlia normani and compared the microstructure of its calcareous skeleton with that of fossil chaetetids. Because it bears on the occurrence of spicules, it is important to note the differences between the species of Merlia (Table 1).

Currently four species of Merlia are recognized: normani, lipoclavidisca, deficiens, and tenuis (Vacelet & Uriz, 1991). M. normani and M. lipoclavidisca have a calcareous skeleton and contain spicules; M. deficiens and M. tenuis lack a calcareous skeleton but have spicules that place them within the family Merliidae. The megascleres of all four are small tylostyles. The microscleres in M. normani, M. deficiens, and M. tenuis are the very distinctive clavidiscs, but there are no microscleres in M. lipoclavidisca. Thus, all extant forms of Merlia have tylostyles, but may or may not have a calcareous skeleton and microscleres. Uriz and others (2003, p. 290) suggested that the absence of clavidiscs in M. lipoclavidisca is because of the silica-poor water where they live, and that they are present in M. normani because it inhabits silica-rich waters. Here again we have evidence relative to the occurrence of spicules in hypercalcified demosponges that is important to the studies of fossils with a chaetetid skeleton.

Studies by Hartman and Goreau (1975); Reitner and Engeser (1987); Cuif and Gautret (1991); Reitner (1991, 1992); Wood (1991); Gautret, Reitner, and Marin (1996); Reitner and Gautret (1996); Wörheide, Reitner, and Gautret (1996, 1997); Reitner and others (1997); Lange and others (2001); and Reitner and others (2001) using more sophisticated techniques, have examined in some detail the microstructure of Acanthochaetetes wellsi. To provide some insight into the possible biomineralization in fossil chaetetids, a brief summary of biomineralization in A. wellsi and other hypercalcified demosponges follows (see also Treatise Online, Part E, Revised, Volume 4, Chapter 1, Vacelet, Willenz, & Hartman, 2010, Living Hypercalcified Sponges).

Spicules are formed by sclerocyte cells contained within the soft tissue (mesohyl) of the sponge. Studies of Acanthochaetetes wellsi show that this soft tissue is only 0.5 to 1 mm thick and contains siliceous tylostyle megascleres, amphipaster-like, and spiraster-like microscleres; some of the microscleres appear to become incorporated into the calcareous skeleton (Rützler & Vacelet, 2002, p. 277). Reitner and others (2001) divided the soft tissue and calcareous skeleton of Acanthochaetetes wellsi into six major zones.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Megascleres</th>
<th>Microscleres</th>
<th>Calcareous skeleton</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. normani</td>
<td>tylostyles</td>
<td>clavidiscs</td>
<td>present</td>
</tr>
<tr>
<td>M. lipoclavidisca</td>
<td>tylostyles</td>
<td>none</td>
<td>present</td>
</tr>
<tr>
<td>M. deficiens</td>
<td>tylostyles</td>
<td>clavidiscs</td>
<td>absent</td>
</tr>
<tr>
<td>M. tenuis</td>
<td>tylostyles</td>
<td>clavidiscs</td>
<td>absent</td>
</tr>
</tbody>
</table>
Fig. 32. Skeletal increase in chaetetids: 1, schematic diagram of chaetetid on a stippled substrate illustrating the methods of skeletal increase and associated morphological features: $a =$ area of peripheral expansion; $b =$ tubule; $c =$ tubule increase by intertubule budding; $d =$ pseudosepta and tubule increase by longitudinal fission; $e =$ tabulae (adapted from West & Clark, 1983, p. 131, fig. 1; courtesy of Paleontological Research Institution, Ithaca, New York); 2, peripheral expansion of the skeleton in an extant specimen of Merlia normani, $a =$ area of peripheral expansion, $\times 75$ (adapted from Kirkpatrick, 1911, pl. 38, 5); 3, SEM of longitudinal fracture of Chaetetes radians, showing intertubular budding (white X), Moscovian, upper Carboniferous, near Podolsk, Russia, $\times 5$ (new).
These are, from the exterior inward: (1) the dermal area; (2) the internal dermal area; (3) the central part of tubules; (4) the tabulae within the tubules; (5) the space(s) between tabulae; and (6) the nonliving calcareous skeleton. Reitner and others (2001, p. 230), in referring to zone 1, reported that, “The uppermost portion is formed by a thick crust of spiraster microscleres (dermal area, zone 1) and tylostyle megascleres arranged in clearly plumose bundles…”

Some spicules may be entrapped in the calcareous skeleton, resulting in what would be termed a rigid aspicular skeleton (Fig. 1–2). If the spaces within a framework produced by fused or linked spicules are filled by aspicular cement, the skeleton would be referred to as a rigid spicular skeleton (Fig. 3–4). Such a distinction is rarely possible in fossil forms because of taphonomic processes.

Wendt (1984) recognized three different microstructures in the calcareous skeletons of chaetetids: irregular, spherulitic, and clinogonal. Present usage recognizes three basic types of microstructure in the calcareous skeleton of chaetetids: microlamellar, fascicular fibrous, and spherulitic. Three different fascicular fibrous types are recognized: water-jet, penicillate, and trabecular (Cuif & Gautret, 1993), but only the former two are found in chaetetids. What Wendt (1984) referred to as irregular is the same as microlamellar, and his clinogonal is the same as fascicular fibrous. Wendt considered water-jet, penicillate, and trabecular
Fig. 34. Pseudosepta in fossil chaetetids; 1, transverse thin section of chaetetid skeleton, showing tubules with conspicuous pseudosepta, Pennsylvanian, upper Carboniferous, Bird Springs Formation, near Mountain Springs, Nevada, ×100 (new); 2, transverse thin section of chaetetid skeleton, showing tubules and pseudosepta, Pennsylvanian, upper Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×40 (new); 3, SEM of transverse view of chaetetid skeleton, showing tubules and pseudosepta, Moscovian, upper Carboniferous, Moscow Basin, Russia, note prominent pseudoseptum in the tubule in the upper center and the two pseudosepta approaching each other in the tubule in the left center, ×25 (new); 4, SEM of transverse view of Chaetetes radians, showing tubules with pseudosepta, Moscovian, upper Carboniferous, near Moscow, Russia; note the prominent pseudoseptum in the triangular tubule in the right center and the tubule in the left center with two pseudosepta approaching each other, ×30 (new).
as synonyms of clinogonal, and Boury-Esnault and Rützler (1997) considered them to be synonyms of fasciculate fibrous. Thus, the microstructure of the calcareous skeleton of chaetetids may be: microlamellar, spherulitic, water-jet, or penicillate; the last two being two of the three subdivisions of clinogonal and fasciculate fibrous. Cuif and Gautret (1991) pointed out the potential taxonomic value of the microstructure of the calcareous skeleton of fossil and recent sponges, in both Calcispongiae and Demospongiae.

Mineralization of the calcareous skeleton in Acanthochaetetes wellsi occurs in three different areas: (1) associated with the thin cover of Mg-rich calcite on collagenous fibers at the top of the walls of the tubules; (2) where the tabulae are being formed; and (3) within older parts of the calcareous skeleton between tabulae where decaying soft sponge tissue produces ammonia (Reitner & Gautret, 1996). Details of the biomineralization in these three areas was described by Reitner and Gautret (1996) and summarized in Reitner and others (2001, p. 230–232).

A microlamellar microstructure (Cuif & others, 1979; Wendt, 1979; Reitner & Engeser, 1987) composed of an irregular arrangement of loosely packed crystals, generally with a random orientation, but sometimes arranged such that a lamellar structure is indicated (Wendt, 1984, p. 328), is produced by these processes in Acanthochaetetes (Fig. 42). Wendt (1984) referred to this microstructure as irregular.

The calcareous skeleton of the extant genus Astrosclera, and some fossil chaetetids from the Permian of Tunisia and the Triassic of Turkey, have a spherulitic microstructure (Wörheide, 1998; Fig. 43). Wörheide (1998) detailed the biocalcification process that produces the calcareous skeleton of

---

**Fig. 35.** Pseudo septa in fossil chaetetids (continued): 1, transverse thin section of Acanthochaetetes seunesi, showing tubules and pseudo septa, Cenomanian, Upper Cretaceous, Pyrenees, ×7.5 (adapted from Fischer, 1970, pl. F,3); 2, transverse thin section of Blastochaetetes capilliformis, showing tubules and pseudo septa, Oxfordian, Upper Jurassic, France, ×18.7 (adapted from Fischer, 1970, pl. A,7; both views courtesy of Annales de Paléontologie (Invertébrés), Elsevier Masson SAS).
Table 2. Comparison of the microstructures and skeletal mineralogy of extant and fossil hypercalcified demosponges with either a chaetetid or stromatoporoid calcareous skeleton (numerals with lower-case letters and author abbreviations refer to sources provided in the explanation; see below and facing page; new).

<table>
<thead>
<tr>
<th>Merlia</th>
<th>Acanthochaetetes</th>
<th>Astrosclera</th>
<th>Ceratoporella</th>
<th>Chaetetids</th>
<th>Stromatoporoids</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aragonite</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillate</td>
<td></td>
<td>1a (F/R), 4a (C/G)</td>
<td>1a (F/R), 4b*(C/G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherulitic</td>
<td></td>
<td>1a (F/R), 2a (H/S), 6 (Wt)</td>
<td>1a (F/R), 6 (Wt)</td>
<td>1a (F/R)</td>
<td></td>
</tr>
<tr>
<td>Irregular</td>
<td></td>
<td></td>
<td></td>
<td>1a (F/R), 6 (Wt)</td>
<td></td>
</tr>
<tr>
<td>Spherulitic compound</td>
<td></td>
<td>5a (Wd)</td>
<td></td>
<td></td>
<td>1a (F/R), 6 (Wt)</td>
</tr>
<tr>
<td>Spherulitic elongate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinogonal</td>
<td></td>
<td>2a (H/S), 6 (Wt)</td>
<td>6 (Wt)</td>
<td>6 (Wt)</td>
<td></td>
</tr>
<tr>
<td>Orthogonal</td>
<td></td>
<td></td>
<td></td>
<td>6 (Wt)</td>
<td></td>
</tr>
<tr>
<td>Fibrous centers</td>
<td></td>
<td></td>
<td>7a (Cet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetrical</td>
<td></td>
<td></td>
<td>7a (Cet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mg Calcite</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillate</td>
<td></td>
<td>1b (F/R)</td>
<td>1b (F/R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamellar</td>
<td></td>
<td>1b (F/R), 2b (H/S), 7b (Cet.)</td>
<td>1b (F/R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-jet</td>
<td></td>
<td>2b (H/S), 4b (C/G)</td>
<td>4b (C/G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fascicular fibrous</td>
<td></td>
<td>5b (Wd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular</td>
<td></td>
<td>5b (Wd), 6 (Wt)</td>
<td>6 (Wt)</td>
<td>6 (Wt)</td>
<td></td>
</tr>
<tr>
<td>Clinogonal</td>
<td></td>
<td>6 (Wt)</td>
<td>6 (Wt)</td>
<td>6 (Wt)</td>
<td></td>
</tr>
<tr>
<td>Spherulitic</td>
<td></td>
<td></td>
<td>6 (Wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthogonal</td>
<td></td>
<td></td>
<td>6 (Wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabecular</td>
<td></td>
<td>7b (Cet)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mineralogy not recorded</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fascicular fibrous</td>
<td></td>
<td>3 (B-E/R)</td>
<td>3 (B-E/R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microlamellar</td>
<td></td>
<td>3 (B-E/R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spherulitic</td>
<td></td>
<td>3 (B-E/R)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*, some Mesozoic to Recent taxa, but all Paleozoic and some Mesozoic–Recent chaetetids have a water-jet calcite skeleton.

Table 2. Explanation.

1. (F/R)

1a. Aragonite
Spherulitic: compound spherulitic, Astrosclera and relatives of stromatoporoid morphology, Permo-Triassic genera of inozoans, sphinctozoans, and chaetetids.
Penicillate: clionogonal aragonite, elongate spherulitic, water-jet Ceratoporella of chaetetids and inozoans of the Middle Triassic.
Irregular: microgranular aragonite, Vaceletia and Triassic sphinctozoans, inozoans, and stromatoporoids.

1b. Mg Calcite
Homogeneous-granular: microgranular Mg calcite, no extant examples, Triassic sphinctozoans and inozoans, best known in Cassianothalamina (not included in table).
Lamellar: Acanthochaetetes, in Cretaceous to Recent genera with a chaetetid morphology, and the Cretaceous Calcidombilla, an encrusting form with a nonchaetetid morphology.
Penicillate: clionogonal calcite, fascicular fibrous calcite, Merlia, and Paleozoic and Mesozoic genera with a chaetetid morphology, such as Stromatoaxinella.

(Continued on facing page).
Table 2. Explanation (continued from facing page).

**Spherulitic:** no extant examples, Cretaceous *Euzkadiella*.

**Fibrous:** orthogonal Mg calcite, examples in the Calcarea.

2. (H/S)

2a. Aragonite
Spherulitic: *Astrosclera*.
Clinogonal: *Ceratoporella*.

2b. Mg Calcite
Water-jet: *Merlia*, probably the same as penicillate calcite of 1.

Lamellar: *Acanthochaetetes*.

3. (B-E/R)
Boury-Esnault, Nicole, & Klaus Rützler. 1997. Thesaurus of Sponge Morphology. Smithsonian Contributions to Zoology, Number 596:55 p. [Mineralogy not recorded; also here the authors did not recognize separate aragonite and Mg calcite fields].

Fasciculate fibrous: water-jet, penicillate, and trabecular *Merlia*; water-jet, mineralogy not reported; *Ceratoporella*, penicillate.

Microlamellar: *Acanthochaetetes*.

Spherulitic: *Astrosclera*.

4. (C/G)

4a. Aragonite
Penicillate: *Ceratoporella*.

4b. Mg Calcite
Water-jet: *Merlia*.

Trabecular: scleractinian corals (not included in table)

5. (Wd)

5a. Aragonite
Compound spherulitic: *Astrosclera*, probably the same as spherulitic aragonite of 1.

Elongate spherulitic: *Ceratoporella*, probably the same as penicillate aragonite of 1.

5b. Mg Calcite
Fascicular fibrous: *Merlia*, probably penicillate calcite of 1.

Irregular: *Acanthochaetetes*, crystals aligned in one plane, probably lamellar calcite of 1.

6. (Wt)


Mg Calcite or Aragonite
Irregular: aragonite in stromatoporoids and Mg calcite in Cretaceous and Recent "sclerosponges," *Acanthochaetetes*.

Spherulitic: probably aragonite in Carboniferous sclerosponges and in the extant genus *Astrosclera*; probably calcite in a Cretaceous stromatoporoid.

Clinogonal (synonyms = water-jet, trabecular, penicillate): aragonite or calcite in Mesozoic and possibly Paleozoic chaetetids and stromatoporoids; calcitic in *Merlia* and aragonite in *Ceratoporella* and stromatoporoids.

Orthogonal (synonym, fibro-normal): aragonite and calcite in stromatoporoids.

7. (Cet.)

7a. Aragonite
Sphéroîtes fibres centres [fibrous spherulitic centers]: *Astrosclera*.
Sphéroîtes asymétriques [asymmetrical spherulites]: *Ceratoporella*.

7b. Mg Calcite
Lamelles presque plates [nearly flat lamellae]: *Acanthochaetetes*.

Trabecules verticales [vertical trabeculae]: *Merlia*. 

---

*Table 2. Explanation (continued from facing page).*

Spherulitic: no extant examples, Cretaceous *Euzkadiella*.

Fibrous: orthogonal Mg calcite, examples in the Calcarea.

2. (H/S)

2a. Aragonite
Spherulitic: *Astrosclera*.
Clinogonal: *Ceratoporella*.

2b. Mg Calcite
Water-jet: *Merlia*, probably the same as penicillate calcite of 1.

Lamellar: *Acanthochaetetes*.

3. (B-E/R)
Boury-Esnault, Nicole, & Klaus Rützler. 1997. Thesaurus of Sponge Morphology. Smithsonian Contributions to Zoology, Number 596:55 p. [Mineralogy not recorded; also here the authors did not recognize separate aragonite and Mg calcite fields].

Fasciculate fibrous: water-jet, penicillate, and trabecular *Merlia*; water-jet, mineralogy not reported; *Ceratoporella*, penicillate.

Microlamellar: *Acanthochaetetes*.

Spherulitic: *Astrosclera*.

4. (C/G)

4a. Aragonite
Penicillate: *Ceratoporella*.

4b. Mg Calcite
Water-jet: *Merlia*.

Trabecular: scleractinian corals (not included in table)

5. (Wd)

5a. Aragonite
Compound spherulitic: *Astrosclera*, probably the same as spherulitic aragonite of 1.

Elongate spherulitic: *Ceratoporella*, probably the same as penicillate aragonite of 1.

5b. Mg Calcite
Fascicular fibrous: *Merlia*, probably penicillate calcite of 1.

Irregular: *Acanthochaetetes*, crystals aligned in one plane, probably lamellar calcite of 1.

6. (Wt)


Mg Calcite or Aragonite
Irregular: aragonite in stromatoporoids and Mg calcite in Cretaceous and Recent "sclerosponges," *Acanthochaetetes*.

Spherulitic: probably aragonite in Carboniferous sclerosponges and in the extant genus *Astrosclera*; probably calcite in a Cretaceous stromatoporoid.

Clinogonal (synonyms = water-jet, trabecular, penicillate): aragonite or calcite in Mesozoic and possibly Paleozoic chaetetids and stromatoporoids; calcitic in *Merlia* and aragonite in *Ceratoporella* and stromatoporoids.

Orthogonal (synonym, fibro-normal): aragonite and calcite in stromatoporoids.

7. (Cet.)

7a. Aragonite
Sphéroîtes fibres centres [fibrous spherulitic centers]: *Astrosclera*.
Sphéroîtes asymétriques [asymmetrical spherulites]: *Ceratoporella*.

7b. Mg Calcite
Lamelles presque plates [nearly flat lamellae]: *Acanthochaetetes*.

Trabecules verticales [vertical trabeculae]: *Merlia*. 

---
Fig. 36. (For explanation, see facing page).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

Fig. 36. Megascleres in chaetetids: tylostyles in extant forms, pseudomorphs in fossil forms; 1, SEM of surface of *Acanthochaetetes* sp., showing spicules (tylostyles and spirasters) associated with the growing surface; from an extant specimen collected live in October 2005 off the Komesu coast, southern Okinawa, at a water depth of 15 m, ×100 (new); 2, SEM of the tubule on the left side of view 1, showing the tylostyles, ×500 (new); 3, SEM of the surface of *Ceratoporella nicholsoni*, showing tylostyles of an extant specimen, Jamaica, ×100 (adapted from Hartman & Goreau, 1972, fig. 1; courtesy of *Transactions of the Connecticut Academy of Arts and Sciences*); 4, SEM of tylostyles of *Ceratoporella nicholsoni*, an extant species, probably Caribbean, ×230 (adapted from Reitner, 1992, pl. 36,3; courtesy of *Berliner Geowissenschaftliche Abhandlungen*, Free University, Berlin); 5, SEM of a tylostyle from *Merlia deficiens*, an extant species, Mediterranean, ×4500 (adapted from Gautret, Vacelet, & Cuif, 1991, pl. 1,2; courtesy of *Publications Scientifiques du Muséum national d’Histoire naturelle, Paris*); 6, longitudinal thin section of *Chaetetes (Boswellia) mortoni*, showing spicule pseudomorphs (thin dark lines within tubule walls), lower Asbian, lower Carboniferous, northern Wales, ×30 (adapted from Gray, 1980, pl. 103,1); 7, enlargement of part of view 6, showing pyritic spicule pseudomorphs, ×87 (adapted from Gray, 1980, pl. 103,2); 8, SEM of longitudinal section of *Chaetetes (Boswellia) mortoni*, showing preferential etching of siliceous spicule pseudomorphs, ×821 (adapted from Gray, 1980, p. 814, fig. 4a); 9, SEM of longitudinal section of *Chaetetes (Boswellia) mortoni*, showing pyritized spicule pseudomorph, ×667 (adapted from Gray, 1980, p. 814, fig. 4c).

Fig. 37. Pseudomorphs of megasclere tylostyles in fossil chaetetids; 1, tangential thin section of *Calcistella tabulata*, showing spicule pseudomorphs within tubule walls (white dots within dark areas) from a Cretaceous, possibly Aptian, boulder in an Eocene conglomerate in Greece, ×9 (adapted from Reitner, 1991, p. 190, fig. 7a); 2, SEM of a tylostyle from *Acanthochaetetes dendroformis*, Cretaceous, northern Spain, ×145 (adapted from Reitner, 1991, p. 200, fig. 13c); 3, longitudinal thin section of a pyritized tylostyle, *Chaetetopsis favrei*, Cretaceous, possibly Aptian, boulder in an Eocene conglomerate, Greece, ×210 (adapted from Reitner, 1991, p. 185, fig. 5c, all views with kind permission of Springer Science+Business Media).
Fig. 38. (For explanation, see facing page).
Astrosclera willeyana, and this process is summarized in Reitner and others (2001). Spherulites are produced within the soft tissue of the sponge. When they are about 15 microns in size, they are transported to the growing tips of the walls and fused together by epitaxial growth, and in some cases, spicules are incorporated, producing a rigid spicular skeleton.

Cuif and others (1979) referred to the microstructure of Merlia normani as trabecular and Wendt (1979, 1984) as clino- gonal. Boury-Esnault and Rützler (1997) used the term fascicular fibrous, rather than clino- gonal, and considered water-jet, trabecular, and penicillate as synonyms of fascicular fibrous. However, Cuif and Gautret (1993) clearly differentiated between the different types of fascicular fibrous microstructures, namely trabecular, penicillate, and water-jet. In taxa with a trabecular microstructure, the orientation of the crystal fibers in the axial part of the trabecula is strongly oblique to the growth direction of the trabecula and does not occur in sponges (Cuif & Gautret, 1993, p. 312). The main difference between the water-jet and penicillate microstructure is

Fig. 39. Variation in acanthostyles in Astrosclera wil- leyana; 1, SEM of an astrosclerid acanthostyle spicule in an extant specimen, Marigondon Cave, Philippines, ×1100 (adapted from Wörheide & others, 1997, pl. III, 2; courtesy of Real Sociedad Española de Historia Natural, Seccion Geologica, Madrid, Spain); 2, SEM photos of verticillately spined styles: a–b, Indonesia (×400); c. Palau (×482); d, Philippines (×364); and e, Glorieuses Islands (×615) (adapted from Wörheide, 1998, p. 49, pl. 20, with kind permission of Springer Science+Business Media).

Fig. 38. Microcleres in chaetetids: eusters in extant forms; pseudomorphs in fossil forms; 1, SEM of a siliceous spicule, tylostyle from an extant specimen of Acanthochaetetes wellsii, Great Barrier Reef, ×650 (new; courtesy of Jean Vacelet); 2, thin section of an asterose microsclere pseudomorph in the tubule wall of Chaetetes radians, upper Carboniferous, Russia; Reitner (1991) referred to this specimen as Chaetetes radians and renamed it Chondrochaetetes longitubus, ×150 (adapted from Reitner, 1991, p. 187, fig. 6d); 3, thin section of asterose microscleres pseudomorphs with pyrite centers (dark areas within lighter circular spicules) in the tubule wall (white arrow in lower left points to inferred relict star rays of the microsclere) of Chaetetes radians, upper Carboniferous, Russia; Reitner (1991) referred to this specimen as Chaetetes radians and renamed it Chondrochaetetes longitubus, ×147 (adapted from Reitner, 1991, p. 187, fig. 6d); 4, longitudinal thin section, showing clusters of eusters in the tubule wall of the extant species Chondrilla grandistellata, geographic locality not provided, ×29 (adapted from Reitner, 1991, p. 195, fig. 10a); 5, enlarged view of the eusters in view 4, ×200 (adapted from Reitner, 1991, p. 195, fig. 10b); 6, longitudinal thin section, showing inferred euster pseudomorphs in the tubule wall of Calcichondrilla crustans, Albian, Cretaceous, northern Spain, ×36.2 (adapted from Reitner, 1991, p. 192, fig. 8b); 7, enlarged view of polycrystalline calcite pseudomorphs of inferred eusters in view 6, ×135 (adapted from Reitner, 1991, p. 192, fig. 8c); 8, SEM of eusters in tubule wall of the extant species Chondrilla grandistellata, geographic locality not provided, diameter of eusters approximately ×200 (adapted from Reitner, 1991, p. 190, fig. 7c); 9, thin section of calcite-filled microscleres, pseudomorphs of inferred eusters, in Calcistella tabulata from a Cretaceous (Aptian) boulder in an Eocene conglomerate in Greece, ×220 (adapted from Reitner, 1991, p. 190, fig. 7d); 10, SEM of an etched euster microsclere from the tubule wall of Acanthochaetetes dendroformis, Cretaceous, northern Spain, ×2000 (adapted from Reitner, 1991, p. 200, fig. 13d; views 2–10 with kind permission of Springer Science+Business Media).
Fig. 40. Microscleres from *Acanthochaetetes* and *Merlia*: 1, SEM of masses of microscleres and a few megascleres (tylostyles) from the growing surface of *Acanthochaetetes* sp., an extant specimen collected live in October 2005 off the Komesu coast, southern Okinawa at a water depth of 15 m, ×1000 (new); 2, enlargement of part of view 1, showing details of the spirasters, ×4500 (new); 3, SEM of spiraster microscleres from the growing surface of *Acanthochaetetes* sp., an extant specimen collected live in October 2005 off the Komesu coast, southern Okinawa, at a water depth of 15 m, ×1000 (new); 4, SEM of diplaster from an extant specimen of *Acanthochaetetes wellsi*, Great Barrier Reef, ×1320 (new; courtesy of Jean Vacelet); 5, SEM of several siliceous microscleres from an extant specimen of *Acanthochaetetes wellsi*, Great Barrier Reef, ×1200 (new; courtesy of Jean Vacelet); 6, SEM of a clavidisc, a meniscoid microsclere from an extant specimen of *Merlia normani*, Great Barrier Reef, ×1760 (new; courtesy of Jean Vacelet).
in the degree of divergence in the crystal fibers upward in the direction of growth (Cuif & Gautret, 1993). In longitudinal sections, the fibers in a water-jet microstructure fan out upward, and in a penicillate microstructure, the fibers diverge at a very low angle and may appear almost parallel in some views.

Referring to the microstructure of Merlia normani, Cuif and Gautret (1993, p. 311) stated, “In longitudinal sections, the fibers are vertical in the axial part of the unit…” and bend progressively toward the external part. They comment that this is a typical water-jet (Fig. 44) disposition and noted a similar microstructure in some Carboniferous and Mesozoic (Jurassic and Cretaceous) chaetetids. As noted above, taphonomic processes often obliterate or mute the microstructure in fossil chaetetids, but in some specimens, there is evidence of the original microstructure, and it is fascicular fibrous, water-jet (Fig. 45–46).

The calcareous skeleton of other chaetetids is penicillate, also a type of fascicular
Fig. 42. (For explanation, see facing page).
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

fibrous microstructure. The penicillate microstructure is easily seen in the extant genus *Ceratoporella* and is also known from fossil chaetetids from the Permian, Triassic, Jurassic, and Cretaceous (Fig. 47; Wendt, 1984; Cuif & Gautret, 1993). Although the term penicillate is used in the *Thesaurus of Sponge Morphology* (Boury-Esnault & Rützler, 1997), Reitner and others (2001) and Vacelet (2002) referred to the microstructure in *Ceratoporella* as clinogonal. Hartman and Goreau (1970, 1972), Willenz and Hartman (1989), and Reitner and others (2001) described biomineralization in *Ceratoporella*. The calcareous skeleton of *Ceratoporella* is a rigid spicular skeleton in which the crystalline units diverge at a very low angle (Hartman & Goreau, 1970, fig. 17; Wendt, 1984, fig. 1, pl. 2; Wood, 1991, fig. 5). In spite of taphonomic processes, this microstructure is well preserved in some chaetetids with an original aragonitic skeleton, but less so in those with a calcitic skeleton (Wendt, 1984).

The most recent information on the microstructure and mineralogy of the calcareous skeleton of hypercalcified demosponges is given in Finks and Rigby (2004). They based their eight different categories on the studies of Wood (1990), Cuif and Gautret (1991), and Mastandrea and Russo (1995): spherulitic aragonite, penicillate aragonite, irregular aragonite, homogeneous-granular Mg calcite, lamellar Mg calcite, penicillate Mg calcite, spherulitic Mg calcite, and fibrous Mg calcite. How their categories compare with those recognized by others is shown in Table 2, to aid in better understanding and comparing the literature on the different microstructures and skeletal mineralogies of extant and fossil hypercalcified demosponges with either a chaetetid or stromatoporoid calcareous skeleton.

**TAPHONOMY**

**(BIOSTRATINOMY AND DIAGENESIS)**

Biostratinomic processes (changes between death and final burial) and diagenetic processes (changes after burial) are important in modifying the spicules and the calcareous skeleton of chaetetids. Taphonomic processes identified by Rodriguez (2004) in corals are also important in chaetetids. The 12 taphonomic processes he identified (p. 151), with some modifications and additions, are listed below.

1. Colonization and encrustation by cyanobacteria, algae, bryozoans, foraminifera, corals, sponges, worms, and arthropods, i.e., borings by acrothoracian barnacles (see Treatise Online, Part E, Revised, vol. 4, Chapter 2E, Fig. 40.3; West & Clark, 1984).

---

Fig. 42. Microlamellar microstructure in *Acanthochaetetes*: 1, section showing high Mg calcite microstructure and growing tip of a tubule wall, where the mineralization occurs in an extant specimen of *Acanthochaetetes wellsi*, Lizard Island Bonnie Bay reef cave, Great Barrier Reef, Australia, ×95 (adapted from Reitner & others, 1997, pl. 3,2; courtesy of E. Schweizerbart Science Publishers); 2, SEM of part of the zone of initial mineralization that produces the microlamellar microstructure in *Acanthochaetetes wellsi*, an extant species collected from the Lizard Island Bonnie Bay reef cave, Great Barrier Reef, Australia, ×165 (adapted from Reitner & others, 1997, pl. 3,3; courtesy of E. Schweizerbart Science Publishers); 3, SEM of calcite microstructure in *Acanthochaetetes seunesi*, Albian, Cretaceous, northern Spain, ×8000 (adapted from Wendt, 1984, p. 331, pl. 1, 4; courtesy of Paleontological Research Institution, Ithaca, New York); 4, ultrapolished thin section of an extant specimen of *Acanthochaetetes* sp., showing microlamellar microstructure of tubule walls, geographic locality not listed, ×650 (adapted from Cuif & others, 1979, pl. II.9; courtesy of CNRS, Paris); 5, SEM of an extant specimen of *Acanthochaetetes* sp., showing microlamellar microstructure of tubule walls, geographic locality not listed, ×1250 (adapted from Cuif & others, 1979, pl. II.10; courtesy of CNRS, Paris).
Fig. 43. Spherulitic microstructure in extant and fossil astrosclerid chaetetids; 1, aragonite spherulites (lighter gray irregular areas that appear brecciated) in a longitudinal section through the living part of an extant specimen of *Astrosclera willeyana*, collected at a depth of 25 m, Ribbon Reef No. 10, Lizard Island, Great Barrier Reef, Australia, ×2.4 (adapted from Reitner & others, 1997, pl. 2,2; courtesy of E. Schweizerbart Science Publishers); 2, SEM of smooth walls composed of aragonite spherulites in the skeleton of a Recent specimen of *Astrosclera willeyana*, collected from a reef crest cave of Osprey Reef, Great Barrier Reef, Australia, ×175 (adapted from Wörheide, 1998, pl. 28,3); 3, SEM of aragonite fibers composing the skeleton of a Recent specimen of *Astrosclera willeyana*, collected at a depth of 270 m from the forereef slope of Osprey Reef, Great Barrier Reef, Australia, ×130 (adapted from Wörheide, 1998, pl. 28,4); 4, thin section of spherulitic skeleton (darker areas) of *Astrosclera cuifi*, Norian, Upper Triassic, Turkey, ×50 (adapted from Wörheide, 1998, pl. 30,1); 5, thin section of sub-acanthostyles (arrow) in the skeleton of *Astrosclera cuifi*, Norian, Upper Triassic, Turkey, ×220 (adapted from Wörheide, 1998, pl. 30,6); 6, thin section of the spherulitic skeleton with a single sub-acanthostyle between several spherulites in *Astrosclera cuifi*, Norian, Upper Triassic, Turkey, ×467 (adapted from Wörheide, 1998, pl. 30,8; views 2–6 with kind permission of Springer Science+Business Media).
2. Bioerosion represented by micro-, meso-, and macroborings, including borings by acrothoracian barnacles (see Treatise Online, Part E, Revised, vol. 4, Chapter 2E, Fig. 40.3; West & Clark, 1984).

3. Transportation as indicated by abraded surfaces and fragmentation.

4. Infilling of skeletal cavities by sediment and/or cement.

5. Recrystallization (coalescence, euhedralization, micritization).

6. Compression, which produces diagenetic fragmentation.

7. Cementation (micro-dogtooth spar and mosaic calcite).

8. Stylostatization.


10. Cleavage.

11. Dissolution.

12. Ferruginization, e.g., pyritization.

Rodríguez (2004, p. 151) pointed out that some of these processes began even before the death of the coral polyps. The same is also true for extant chaetetids in that alteration of the skeleton begins before the death of the organism, as noted by Reitner and Gautret (1996); and it is safe to assume that the same was true for fossil chaetetids.

As noted previously, not all extant hypercalcified demosponges contain spicules during life. Silica-poor water and other environmental factors may preclude the formation of spicules in some extant taxa. When spicules are present, most of them are contained in the soft tissue of extant taxa and are not always incorporated into the calcareous skeleton (Kirkpatrick, 1911; Hartman & Goreau, 1975). Additionally, silica is unstable in the presence of calcium carbonate and siliceous spicules are commonly corroded away in older parts of the calcareous skeleton of still-living taxa (Hartman & Goreau, 1970, 1972). Perhaps, as growth continues, it is more economical to recycle the silica in old spicules than extract it from seawater, given that the silica content in the world ocean may have been low. Ocean water today is undersaturated in silica (Broecker, 1974, p. 33) and averages 2 ppm (Armstrong, 1965, cited in Kennish, 1989, p. 60). Broecker (1974, p. 33) further indicated that hydrous silica dioxide, opal, would readily dissolve in seawater unless protected by some insoluble substance, such as an organic covering. Given the environmental factors that affect spicule formation in living taxa, and taphonomic processes that remove any that do occur, it is not surprising that spicules are relatively rare in fossil forms, and that when they are present, they occur as pseudomorphs (Fig. 36–38). This is unfortunate because spicule composition and morphology are the primary skeletal features upon which sponge systematics is based (Fig. 48.1). Thus, in most fossil specimens of hypercalcified demosponges with a chaetetid skeleton, only the calcareous skeleton is left, and the features it exhibits are less useful for systematic studies. These less useful features are, in order of importance: (1) original mineralogy and microstructure of the calcareous skeleton; and (2) skeletal features such as (a) the size, shape, and arrangement of tubules in transverse section; (b) thickness of walls and tabulae; and (c) spacing of tabulae (Fig. 48.1). Taphonomic processes that alter these features can have a significant negative impact on systematic studies.

Hypercalcified demosponges with a chaetetid skeleton are composed of aragonite or Mg calcite with different microstructures (Table 2) and are thus highly susceptible to diagenetic processes such as recrystallization and replacement (Fig. 41; and see Fig. 49). These diagenetic processes can alter the original mineralogy and microstructure of the skeleton, thus reducing, or eliminating, their systematic usefulness. Although the basic
FIG. 44. (For explanation, see facing page).
microstructure may remain unchanged in Mesozoic and some upper Paleozoic forms (Fig. 43–47), the size and chemical composition of the crystals forming that structure may change (Cuif & Gautret, 1987; Gautret & Razgallah, 1987; Gautret, Vacelet, & Cuif, 1991; Mastandrea & Russo, 1995; Dauphin, Gautret, & Cuif, 1996). However, even the microstructure of these more recent (Mesozoic) forms can be muted or destroyed (Veizer & Wendt, 1976). Additionally, a diagenetically altered microstructure may mimic the original microstructure in other taxa. For example, micritization can produce a granular microstructure in some taxa, when it was not the original microstructure of the skeleton. Thus, it becomes difficult to separate such diagenetically produced skeletons with a granular microstructure from those in which the original microstructure was/is granular. Gautret (1987) addressed this issue in some extant and Triassic hypercalcified demosponges, and he differentiated between diagenetically produced and original granular microstructural skeletons, using the chemical composition of the skeletons. Along with studies of the major-element composition of chaetetid skeletons (Gautret, 1987), more recent studies have focused on the minor-element and amino acid content of these skeletons (Gautret & Marin, 1993; Marin & Gautret, 1993) as a way of evaluating the effects of diagenesis.

Diagenesis has almost completely destroyed the original microstructure of lower and middle Paleozoic hypercalcified demosponges with a chaetetid skeleton. When careful and detailed studies of the microstructure of chaetetid skeletons is accomplished, the results will probably be much like those reported by Stearn (1966) and Riding (1974) for stromatoporoids. Only future studies will determine how useful elemental and amino acid compositions of the calcareous skeletons of Paleozoic hypercalcified demosponges will be in learning more about their original composition and microstructure.

With spicules absent or rarely preserved as pseudomorphs, and lacking information on the original composition and microstructure of the calcareous skeleton, the taphonomic impact on the readily visible skeletal features such as tubules, walls,
Fig. 45. Fascicular fibrous water-jet microstructure, Pennsylvanian, lower Carboniferous; 1, SEM of a tangentially fractured chaetetid skeleton, Moscovian, Moscow Basin, Russia, ×50 (new); 2, enlarged view as seen in an SEM of a longitudinally fractured chaetetid skeleton, Moscovian, Moscow Basin, Russia, ×60 (new); 3, longitudinal thin section of a chaetetid skeleton, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas, ×65 (adapted from Mathewson, 1977, pl. 7.1; courtesy of Kansas State University).
Fig. 46. Fascicular fibrous water-jet microstructure, Pennsylvanian, lower Carboniferous (continued); 1, polished and etched longitudinal section of *Chaetetes cylindraceus*, Carboniferous, near Moscow, Russia, ×200 (adapted from Gautret, Vacelet, & Cuif, 1991, pl. III, 1); 2, polished and etched transverse section of *Chaetetes cylindraceus*, Carboniferous, near Moscow, Russia; note the junction of two microstructural units along a diagonal from the upper right to the lower left, ×200 (adapted from Gautret, Vacelet, & Cuif, 1991, pl. III, 2); 3, interpretive sketch of the microstructure of *Chaetetes cylindraceus*, Carboniferous, near Moscow, Russia; a, longitudinal section, b, transverse section; compare a to views 1 and 2, ×80 (adapted from Gautret, Vacelet, & Cuif, 1991, p. 297, fig. 1; all views courtesy of *Publications Scientifiques du Muséum national d'Histoire naturelle, Paris*).
Fig. 47. Fascicular fibrous penicillate microstructure (clinogonal) in extant and fossil ceratoporellid chaetetids; 1, SEM of the fascicular fibrous penicillate microstructure (clinogonal) in a fractured surface near the growing tip of a tubule in an extant specimen of Ceratoporella nicholsoni, West Indian Caribbean, ×300 (adapted from Hartman & Goreau, 1972, fig. 4; courtesy of Transactions of the Connecticut Academy of Arts and Sciences); 2, SEM of the aragonitic epitaxial backfill that results in the fascicular fibrous penicillate microstructure in a fractured surface of an extant specimen of Ceratoporella nicholsoni, Jamaica, ×135 (adapted from Wood, 1991, p. 329, fig. 5a, with kind permission of Springer Science+Business Media); 3, SEM of the aragonitic fascicular fibrous penicillate microstructure (clinogonal) in a fractured surface of Atrochaetetes medius, Upper Triassic, Italy, ×375 (adapted from Wendt, 1984, p. 331, pl. 1.6; courtesy of Paleontological Research Institution, Ithaca, New York).
Fig. 48. Categories of skeletal features and potential results of diagenetic processes: 1, three categories of skeletal features used in systematic studies of chaetetid sponges: P, primary, the composition and morphology of mega- and microscleres; S, secondary and includes the original mineralogy and microstructure; and T, tertiary and includes size, shape and arrangement of tubules in transverse section, thickness of walls and tabulae, and spacing of tabulae (adapted from Wood, 1987, p. 52, fig. 21); 2–5, diagrams illustrating the potential diagenetic affects on the skeletons of chaetetid sponges: 2, the original, as depicted, may be affected by the addition and/or subtraction of minerals via interstitial fluids associated with recrystallization, replacement or both (new); 3, results to the original if the walls and tabulae are thickened and intertubular space reduced by deposition of additional inorganic minerals from interstitial fluids (new); 4, results to the original if the spicules are dissolved, the walls and tabulae reduced in thickness, and the intertubular space increased through dissolution via interstitial fluids (new); 5, results if the spicules are dissolved, and the original mineralogy and microstructure is muted or destroyed by recrystallization and/or replacement (new).
Fig. 49. (For explanation, see facing page).
tabulae must now be examined. Although taphonomic processes rarely modify these features of the calcareous skeleton beyond recognition, they can make it difficult, if not impossible, to separate the mineral component of the original skeleton from that produced taphonomically. There are three areas of mineralization in the calcareous skeleton of *Acanthochaetetes wellsi* (see above, p. 37), a species that is a reasonable analogue for chaetetid skeletons. One of these, the older parts of the calcareous skeleton between tabulae, is especially important relative to skeletal features. Necrotic (before death) change occurs within this area, because decaying soft sponge tissue produces ammonia (*Reitner & Gautret*, 1996), creating an environment for the precipitation of calcium carbonate. Such mineralization can increase skeletal features such as wall and tabulae thicknesses, alter the cross-sectional shape of the tubules, and ultimately fill the space completely with precipitated calcium carbonate. Furthermore, it is reasonable to suggest that other processes might produce an acidic environment that could lead to the dissolution of tubule walls and tabulae. Such dissolution would decrease the thickness of the walls and tabulae, and it could even remove tabulae, consequently affecting the distance between tabulae, as well as altering the cross-sectional shape of the tubules. Thus, the size, shape, and arrangement of the tubules and the thicknesses of the walls and tabulae can be altered during life. After death, and during and after final burial, diagenetic processes (physical, chemical, and biological) continue to modify and/or destroy chaetetid skeletons through dissolution and/or chemical precipitation (Fig. 48.2–48.4; *West*, 1994, p. 401). For example, partial or complete recrystallization and/or silification of chaetetid skeletons is commonly observed in some Carboniferous specimens (Fig. 49–50).

As noted above, systematic studies require primary features (spicules, which are commonly absent) and secondary features (the mineralogical composition and microstructure of the calcareous skeleton). These secondary features are, in numerous cases,
FIG. 50. Examples of diagenetically altered chaetetid skeletons (continued); 1, SEM of a transverse surface, showing the increase in tubule wall thickness by the addition of mineral deposits in Chaetetes radians, Moscovian, upper Carboniferous, near Moscow, Russia, ×30 (new); 2, SEM of the upper right corner of view 1, note how this diagenetic process affects the cross-section shape of the tubules, ×60 (new).

Fig. 51. Similarities and differences between the cross-sectional areas of the tubules from some Carboniferous species of chaetetids; 1, SEM of transverse surface, showing cross-sectional area (cross-sectional area of a single tubule is illustrated by the white area near center of the left margin, white arrow) of tubules in Chaetetes radians FISCHER VON WALDHEIM, 1830, Moscovian, near Podolsk, south of Moscow, Russia, ×20 (new); 2, matrix showing the results of grouped T-tests of the cross-sectional areas of the tubules in eight different Carboniferous species (designated by *): (a) groups 8 and 9 are from two different thin sections from the same stratigraphic and geographic locality of Chaetetes milleporaceous* MILNE-EDWARDS & HAMME, 1851; (b) groups 21 and 22 are two different areas from the same thin section of the holotype of Chaetetes schucherti* MORGAN, 1924; (c) group 28 is from a thin section of the holotype of Chaetetes eximius* MOORE & JEFFORDS, 1945; (d) group 40 is from a thin section of a paratype of Chaetetes subtilis* MOORE & JEFFORDS, 1945; (e) group 41 is from a thin section of the holotype of Chaetetes favosus* MOORE & JEFFORDS, 1945; (f) group 14 is from a thin section of a chaetetid, Chesterian, lower Carboniferous, Kentucky; (g) groups 16 and 20 are of two different thin sections of Chaetetes radians FISCHER VON WALDHEIM, 1830, presumably from the same stratigraphic and geographic locality; and (h) groups 17 and 18 are two different areas on the same thin section of Chaetetes depressus* (Fleming, 1828); D, the groups are different; ND, there is no difference between the groups; D', the same species are different from themselves, although the expected results are that there would be no difference. Significant results are that there are: (1) no differences between: (a) C. milleporaceous* (group 9) and C. schucherti* (group 21); (b) C. eximius* (group 28) and C. schucherti* (group 22); (c) C. favosus* (group 41) and C. schucherti* (group 22); (d) C. milleporaceous* (group 8) and the lower Carboniferous chaetetid (group 14); (e) C. milleporaceous* (group 9) and C. radians (group 16); (f) C. radians (group 20) and C. schucherti* (group 22), C. eximius* (group 28) and C. favosus* (group 41); (g) C. depressus* (group 17) and the lower Carboniferous chaetetid (group 14); and (h) C. depressus* (group 18) and C. schucherti* (group 22). C. eximius* (group 28), and C. radians (group 20); and (2) that there are differences (D') between groups 8 and 9, both C. milleporaceous*; groups 21 and 22, both C. schucherti*; and groups 17 and 18, both C. depressus* (adapted from West, 1994, p. 405, fig. 4; courtesy of E. Schweizerbart Science Publishers).
Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>C. milleporaceous</th>
<th>C. schucherti</th>
<th>C. eximus</th>
<th>C. subtilis</th>
<th>C. favosus</th>
<th>C. sp. Chesterian</th>
<th>C. radians</th>
<th>C. depressus</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>D²</td>
<td>D¹</td>
<td>ND</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>D</td>
<td>D¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td></td>
<td>C. eximus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C. subtilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td>D</td>
<td>D</td>
<td>C. favosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ND</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C. sp. Chesterian</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>ND</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td>ND</td>
<td>D</td>
<td>ND</td>
<td>D¹</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>D</td>
<td>ND</td>
<td>ND</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D¹</td>
</tr>
</tbody>
</table>

*Fig. 51. (For explanation, see facing page).*
extensively modified and, along with absent spicules, are of little value systematically. Therefore, one is left examining the skeletal features of chaetetid skeletons, and these are unreliable because such skeletons are polyphyletic (West, 1994). For example, hypercalcified sponges with a chaetetid skeleton occur in at least three orders of the Demospongiae (Hadromerida, Poecilosclerida, and Agelasida) and possibly more. Additionally, taphonomic processes further complicate systematic studies, because they modify such skeletal features as the cross-sectional area of tubules, to the extent that they have little significance (West, 1994, 1995; Fig. 51–52).

![Image 1: Upper surface (transverse section) of polished and etched surface of laminar chaetetid, ×0.4 (new).](image1)

![Image 2: Outline of polished and etched surface of specimen in view 1, with superimposed polar coordinates from 270° to 360° (10 rays 10° apart) and 6 arcs, each 13 mm apart.](image2)

![Image 3: Print of a transverse acetate peel print of the area at point 310-5, an example of the 100 tubules for which the cross-sectional area was obtained at each ray-arc intersection, ×30.](image3)

![Image 4: Sample sites along ray 310 with the one at arc 5 indicated by a black arrow.](image4)

![Image 5: Matrix of T-tests comparing the 6 sample sites along ray 310. ND, no difference between sites; D, there is a difference between sites; expected results are that there would be no differences between any of the sites.](image5)

Fig. 52. Similarities and differences between the cross-sectional areas of the tubules from a single laminar chaetetid, Pennsylvanian, lower Carboniferous, Amoret Limestone Member, Altamont Limestone, Montgomery County, Kansas: 1, upper surface (transverse section) of polished and etched surface of laminar chaetetid, ×0.4 (new); 2, outline of polished and etched surface of specimen in view 1, with superimposed polar coordinates from 270° to 360° (10 rays 10° apart) and 6 arcs, each 13 mm apart; 3, print of a transverse acetate peel print of the area at point 310-5, an example of the 100 tubules for which the cross-sectional area was obtained at each ray-arc intersection, ×30; 4, sample sites along ray 310 with the one at arc 5 indicated by a black arrow; 5, matrix of T-tests comparing the 6 sample sites along ray 310, ND, no difference between sites; D, there is a difference between sites; expected results are that there would be no differences between any of the sites (new).
ACKNOWLEDGMENTS

Over the years, numerous individuals from many parts of the world have contributed to my efforts to learn more about chaetetid sponges, and I sincerely thank all of them. Authors and publishers who have permitted use of copyrighted illustrations are listed below, and their cooperation is greatly appreciated: N. Boury-Esnault; E. Brosius; J.-P. Cuif; G. Díecu; J.-C. Fischer; P. Gautret; W. Hartman; J. Kaźmierczak; S. Kershaw; R. Kirkpatrick; J. Mathewson; K. Miller; J. Reitner; P. Taylor; M.-J. Uriz; J. Vacelet; J. Wendt; R. Wood; G. Wörheide; and Annales de Paléontologie (Invertébrés), Elsevier Masson SAS; Berliner Geowissenschaftliche Abhandlungen, Free University, Berlin; Bollettino della Società Paleontologica Italiana; CNRS, Paris; E. Schweizerbart’sche Verlags- und Buchhandlung; Zeitschrift für Paläontologie, Stuttgart; The Natural History Museum, London; Paleontological Research Institution, Ithaca, New York; Publications Scientifiques du Muséum national d’Histoire naturelle, Paris; Real Sociedad Española de Historia Natural, Sección Geológica, Madrid, Spain; Springer Science+Business Media; Transactions of the Connecticut Academy of Arts and Sciences; Yale Peabody Museum of Natural History. I am particularly indebted to the Coordinating Author of this volume, Barry Webby, for his sage advice, continuous support, and careful attention to detail. Unless otherwise noted, the many SEM images are due to the technical expertise and photographic skills of George R. Clark II. I am greatly indebted to the excellent and timely assistance of the staff of the Interlibrary Loan Department of Hale Library at Kansas State University. Financial assistance from the Petroleum Research Fund of the American Chemical Society, the National Science Foundation, the Kansas Geological Survey, and the Bureau of General Research at Kansas State University are gratefully acknowledged. I am especially grateful for the financial support for research in Japan and China, which was provided by the Japanese Society for the Promotion of Science and the Nanjing Institute of Geology and Paleontology, respectively.

REFERENCES

Barrier, Pascal, Helmut Zibrowius, Pierre Loizouet, Christian Montenat, Philippe Ott d’Estevou, Francis-


Bizzarini, Fabrizio, & Giampietro Braga. 1988. Os-...


Erwin, P. M., & R. W. Thacker. 2006. Incidence and importance of photosynthetic symbionts in


James, U. P. 1881. On the monticuloporoid corals of the Cincinnati Group, with a critical revision of the species. The Paleontologist 5:33–44.


Ma Ting Ying. H. 1943a. The climate and the relative positions of Eurasia and North America during the Ordovician period as determined by the growth rate of corals, Research on the Past Climate and Continental Drift, vol. 1. Published by the author. Yungan, Fukien, China. 34 p.

Ma Ting Ying. H. 1943b. The climate and the relative positions of continents during the Silurian period as determined by the growth rate of corals, research on the past climate and continental drift, vol. 2. Published by the author. Yungan, Fukien, China. 88 p.

Ma Ting Ying. H. 1943c. The climate and the relative positions of continents during the Devonian period, research on the past climate and continental drift, vol. 3. Published by the author. Yungan, Fukien, China. 92 p.


May, Andreas. 2008. Corals (Anthozoa, Tabulata and Rugosa) and chaetetids (Porifera) from the Devonian of the Semara area (Morocco) at the Museo Geominero (Madrid, Spain), and their biogeographic significance. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre 30:1–12.


Nowinski, A., & E. Sarnecka. 2003. Sclerospongiae, Echinodermen, und Mollusken aus dem japa-


Reitner, Joachim, & Theo S. Engeser. 1989. Chae-
tosclera kripstini n. gen. n. sp. (Halichondrida, 
demospongiae) aus dem Unterkern der Cassianer-
Schichten (Dolomiten, Italien). Mitteilungen der 
Geologisch-Paläontologische Institut der Universität 
Hamburg 68:159–165, 1 pl.
Reitner, Joachim, & Pascale Gautret. 1996. Skeletal for-
mation in the modern but ultraconservative chaetetid 
sponge Spirastrella (Acanthochaetetes) wellsi (Demo-
Reitner, Joachim, & Felix Schlagintweit. 1990. Cal-
cisuberites stromatoporoides n. gen. n. sp., ein neues 
Taxon der Hadromerida (Demospongiae, Porifera) 
mit einem kalkigen Basalskelett aus der tethyalen 
Unterkreide. Berliner Geowissenschaftliche Abhan-
dlungen (Reihe A)124:247–257.
Reitner, Joachim, & Gert Wörheide. 2002. Non-
lithistid fossil Demospongiae—Origins of their 
palaeobiodiversity and highlights in history of pres-
ervation. In J. N. A. Hooper & R. W. M. van Soest, eds., 
Plenum Publishers. New York, Boston, Dordrecht, 
Reitner, Joachim, Gert Wörheide, Robert Lange, 
& Gabriela Schumann-Kindel. 2001. Coralline 
demosponges—A geological portrait. Bulletin of 
the Tohoku University Museum 1:219–235.
Reitner, Joachim, Gert Wörheide, Robert Lange, 
& Volker Thiel. 1997. Biominalization of calcified 
skeletons in three Pacific coralline demosponges—An 
approach to the evolution of basal skeletons. Courier 
Riding, Robert. 1974. Stromatoporoid diagenesis: 
Outline of alteration effects. Geological Magazine 
Riding, Robert. 2004. Selenopora is a chaetetid sponge, 
Rios, J. M., & Y. A. Almela. 1944. Un chaetetido del 
Eoceno español. Notas y Comunicaciones Instituto 
Rodriguez, S. 2004. Taphonomic alterations in upper 
Visean disseminated rugose corals from the Sierra 
del Castillo Unit (Carboniferous, Cordoba, Spain). 
Palaeogeography, Palaeoclimatology, Palaeoecology 
Rosenheim, Brad E., Peter K. Swart, Simon R. Thor-
rold, Philippe Willenz, Lorraine Berry, & Christo-
pher Latkoczy. 2004. High-resolution Sr/Ca records 
in sclerosponges calibrated to temperature in situ. 
Rützler, Klaus. 1965. Systematik und ökologie der Poriferen 
aus littoral-schattengebieten der Nordadria. Zeitschrift 
für Morphologie und Ökologie der Tiere 55:1–82.
Rützler, Klaus. 1970. Spatial competition among 
Rützler, Klaus. 1971. Bredin-Arbould-Smithsonian 
Biological survey of Dominica: Burrowing sponges, 
genus Siphonodictyon Bergquist, from the Caribbean. 
Smithsonian Contributions to Zoology 77:37 p.
Rützler, Klaus. 1990. Associations between Caribbean 
sponges and photosynthetic organisms. In K. Rützler, 
ed., New Perspectives in Sponge Biology. Smithsonian 
Introduction to Fossil Hypercalcified Chaetetid-Type Porifera

Rützler, Klaus, & Jean Vacelet. 2002. Family Acantho-
chaetetidae Fischer, 1970. In J. N. A. Hooper & R.
W. M. van Soest, eds., Systema Porifera, vol. 1. Klu-
wer Academic/Plenum Publishers. New York, Boston,

Sandberg, Philip A. 1983. A oscillating trend in Pha-
nerozoic non-skeletal carbonate mineralogy. Nature
305:19–22.

Sandberg, Philip A. 1984. Recognition criteria for
calcitized skeletal and non-skeletal aragonites. Pal-

Sandberg, Philip A. 1985. Nonskeletal aragonite and
pCO₂ in the Phanerozoic and Proterozoic. In E. T.
Sundquist & W. S. Broecker, eds., The Carbon Cycle
and Atmospheric CO₂: Natural Variations, Archean
to Present. Geophysical Monograph 32. American

Sando, William J. 1975. Coelenterata of the Amsden
Formation (Mississippian and Pennsylvanian) of
Wyoming. United States Geological Survey Profes-
sional Paper 848-C:30 p., 6 fig., 10 tables.

Sano, H. 2006. Impact of long-term climate change
and sea-level fluctuation on Mississippian to Permian
mid-oceanic atoll sedimentation (Akiyoshi Limestone
Group) Japan. Palaeogeography, Palaeoclimatology,

of Carboniferous-Permian mid-oceanic seamount-
capping buildup to global cooling and sea-level change:
Akiyoshi, Japan. Palaeogeography, Palaeo-

Sara, M., & J. Vacelet. 1973. Ecologie des Demo-
sponges. In P. Grassé, ed., Traité de Zoologie Anato-
mie, Systematique, Biologie, Tome III: Spongiaires,
Fascicule 1, Anatomie, Physiologie, Systematique,

Saunders, W. B., & C. W. Thayer. 1987. A cryptic
intertidal brachiopod/sclerosponge community in
Palau, W. Caroline Islands. Geological Society of
America Abstracts with Program 19:829.

Schnorf-Stenier, Alice. 1963. Sur quelques “Chaeteti-
da” du Valanginien du Jura. Ecologiae Geologicae

Scholle, Peter A., & Dana S. Ulmer-Scholle. 2002. A
color guide to the petrography of carbonate rocks:
Grains, textures, porosity, diagenesis. American As-
Schumacher, H., & M. Plewka. 1981. Mechanical
resistance of reefbuilders through time. Oecologia

Scrutton, Colin T. 1997. The Palaeozoic corals, I: Ori-
gins and relationships. Proceedings of the Yorkshire

Scrutton, Colin T. 1998. The Palaeozoic corals, II:
Structure, variation and palaeoecology. Proceedings
of the Yorkshire Geological Society 52:1–57.

Triassic (Norian) hypercalcified sponges from the
Musandam Peninsula (United Arab Emirates and

marine animal genera. Bulletins of American Pale-

Shen Jian-wei, & G. E. Webb. 2008. The role of
microbes in reef-building communities of the Can-
nindah limestone (Mississippian), Monjo region,


Soest, R. W. M. van. 1984. Deficient Merlia normani
Kirkpatrick, 1908 from the Curacao reefs, with a
discussion on the phylogenetic interpretation of scler-

Soest, R. W. M. van, Nicole Boury-Esnault, Dorte
Checked January 2010.

Sokolov, B. S. 1939. Stratigraphisches knew znachenie i
tipy Chaetetidae karbona SSSR [Stratigraphical im-
portance and types of Chaetetidae of the Carboniferous
of the USSR]. Akademiya Nauk SSSR, Doklady

Sokolov, B. S. 1947. Novy rod Fastulimurina gen. nov.
iz gruppy Chaetetida [Fastulimurina nov. gen., genus
of the group Chaetetida]. Akademiya Nauk SSSR,

Sokolov, B. S. 1950. Khetetidy karbona severo-
vestochnoy Ukrainy i sopredelnykh oblastey
[Carboniferous Chaetetidae of southeastern
Ukraine and contiguous regions]. Vsesoyuznogo
Neftyanogo Nauchno-Issledovatelskogo Geolo-
Grazvedochnogo Instituta (VNIGRI), Trudy, Len-
grad (new series) 27:144 p.

Sokolov, B. S. 1955. Tabulyaty paleozoys Evrops-
koj chasti SSSR. Vvedenie: Obshchie voprosy
sistematiki i istorii razvitiya tabulyaty (s karakter-
istikoi morfolologicheski blizkikh grup) [Paleozoic
Tabulata of the European parts of the USSR: In-
troduction to the general study of the systematics
and development of the tabulates]. Vsesoyuznogo
Neftyanogo Nauchno-Issledovatelskogo Geolo-
Grazvedochnogo Instituta (VNIGRI), Trudy, Len-
grad (new series) 85:527 p.

Sokolov, B. S. 1962. Gruppa Chaetetida, podklass
Tabulata, podklass Heliolitoidea [Group Chaeto-
tida, subclass Tabulata, subclass Heliolithoida].
In Yu. A. Orlov, ed., Osnovy paleontologii [Fund-
amentals of Paleontology], vol. 2, B. S. Sokolov,
by Israel Program for Scientific Translations, 1971,

Solovjeva, V. V. 1980. Nekotorye novye mezozoiskie
khketetidy i ih mikrostruktura [Some new Mes-
zoic Chaetetidae and their microstructure]. Pale-
onologischeskiy Zhurnal [Paleontological Journal]
1980(4):29–38. English translation in Paleontologi-

Sorauf, James E. 2000. Coralomorphs. In A. J. Wright,
G. C. Young, J. A Talent, and J. R. Laurie, eds., Pa-
laeobiogeography of Australasian faunas and floras.
Memoir of the Association of Australasian Paleo-

Soto, Francisco, Isabel Méndez-Bedia, & Esperan-
arrecifales del Devónico de la Cordillera Cantábrica (No de España). Revista Española de Paleontología 9(1):29–36, 4 fig.
Toomey, Donald F., & H. Dale Winland. 1973. Rock and biotic facies associated with Middle Pennsyl-

Topsent, E. 1928. Spongiaires de l'Atlantique et de la Méditerranéenne provenant des croisieres du Prince Albert 1er de Monaco. Résultats des campagnes scientifiques accomplies par le Prince Albert 1er de Monaco 74:1–376.


Vacelet, Jean, & Maria-J. Uriz. 1991. Deficient spiculation in a new species of Meridla (Merellida, Demyso-


