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INTRODUCTION

Hypercalcified sponges with a chaetetid 
skeleton are members of the marine sessile 
benthos. Extant members occur in areas 
of very low light or complete darkness in 
subtidal caves, crevices, and tunnels of coral 
reefs, or on cliffs in the upper bathyal zone 
down to a few hundred meters (Vacelet, 
1988) in the Caribbean Sea and Indo-Pacific 
Ocean. There are three basic components 
to extant hypercalcified sponges: (1) a thin 
layer of living tissue, between 1 and 2 mm 
thick; (2) a rigid basal calcareous skeleton 
secreted by the living tissue; and (3) siliceous 
spicules, both megascleres and microscleres, 
secreted by the living tissue and most often 
associated with it. Living tissue extends into 
the calcareous skeleton only a few millime-
ters. The bulk of the skeleton, unless filled 
by secondary calcium carbonate, is hollow 
and during life may have contained seawater. 
However, if the hollow tubules of the basal 
calcareous skeleton were filled with seawater, 
unless protected by a residual organic film, 
the calcium carbonate of the skeleton would 
have been adversely affected because of the 
interaction between calcium carbonate and 
seawater (Clark, 1976). Spicules may also 
occur within the skeleton just beneath the 
layer of living tissue. In some extant taxa, 
spicules are absent, and in others, there is no 
calcareous skeleton (see Treatise Online, Part 
E, Revised, vol. 4, Chapter 2A). 

Reasonable inferences about the func-
tion of morphological features of fossils 
requires careful application of the principles 
of physics to these morphological features 
and/or knowledge of extant representatives 
that are morphologically similar and, pref-
erably, taxonomically related. Movement 
of water to obtain food and expel waste is 

essential to members of the phylum Porifera, 
and thus, the physical principles governing 
the dynamics of fluid flow are useful in 
understanding this primary function (see 
also Treatise Online, Part E, Revised, vol. 
4, Chapter 9F). The extant genera Acan-
thochaetetes, Ceratoporella, and Merlia are 
morphologically similar and, according to 
some authors (Hartman & Goreau, 1970, 
1972; Cuif & Gautret, 1993; Wood, 1990, 
1999), taxonomically related to fossil hyper-
calcified sponges with a chaetetid skeleton. 

Skeletal remains of fossil chaetetids 
consist of two components: pseudomorphs 
of spicules and a basal calcareous skeleton. 
Pseudomorphs of both megascleres and 
microscleres have been recognized. Mega-
scleres are typically simple monaxons, and 
microscleres are commonly small spherical 
objects. Any spicules, or pseudomorphs 
of spicules, present in fossil forms will be 
contained within the calcareous skeleton. 
Because the spicules in extant forms are sili-
ceous, the same is assumed for any spicules 
in fossil forms during life. The calcareous 
skeleton is composed of vertically arranged 
contiguous tubes (tubules), and the tubules 
are most accurately defined as irregular 
polygons in transverse section. Tabulae, 
horizontal partitions, commonly occur 
within the tubules and are readily visible 
in longitudinal and transverse sections (see 
Treatise Online, Part E, Revised, vol. 4, 
Chapter 2A, Fig. 10–11). A foramen (or 
pore) has been observed near the center of 
the tabulae in some extant forms, and may 
be seen in fossil forms (see Treatise Online, 
Part E, Revised, vol. 4, Chapter 2A, Fig. 
29). Features referred to as pseudosepta are 
visible in tangential sections of some tubules 
(see Treatise Online, Part E, Revised, vol. 4, 
Chapter 2A, Fig. 34–35).
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EXTERNAL FEATURES
GROWTH FORM

The chaetetid calcareous skeleton is 
very simple, both externally and inter-
nally. External features include the basal 
layer, astrorhizae, mamelons, chimneys, 
and tubercules, though these structures are 
not always seen. The most obvious aspect 
of the calcareous skeleton is its general 
overall shape, which is very similar to that 
observed in stromatoporoids (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
9B, for a detailed discussion of the shapes 
and growth habits of Paleozoic stromato-
poroids) In chaetetids, there are three basic 
shapes: laminar, domical, and columnar 
(West & Kershaw, 1991), which result in 
a number of variations termed morphotypes 
by Kershaw and West (1991, fig. 1). These 
morphotypes can increase in size, or be 
modified in shape, during life by increasing 
the number of tubules via longitudinal 
fission, intertubular increase, peripheral 
expansion, or the combinations of two or 
more of these three (see Treatise Online, Part 
E, Revised, vol. 4, Chapter 2A). Assuming 
that a laminar accretionary unit (Kershaw 
& West, 1991, fig. 7) is the basic building 
block for all of these morphotypes, environ-
mental conditions become the controlling 
factors. This is not the case in all hypercalci-
fied sponges, namely stromatoporoids. For 
example, Kershaw (1981) has shown that 
some stromatoporoid species in the same 
environment may develop different growth 
forms. Although future studies might indi-
cate there is a genetic difference between 
some or all of these different growth forms 
in fossil chaetetids, our present knowledge 
suggests that the different growth forms are 
largely the result of environmental factors. 

The basic reason for a calcareous skeleton 
in chaetetids is no doubt the same as it is for 
other clonal lower invertebrates that produce 
similar skeletons, namely other sponges (like 
stromatoporoids), corals, and bryozoans. All 
of these groups are suspension feeders, and 
an elevated feeding surface above the sedi-

ment–water interface where the water is less 
turbid and the water velocity slightly higher 
is advantageous (Wildish & Kristmanson, 
1997). Stearn (2010, Treatise Online, Part 
E, Revised, vol. 4, Chapter 9F) has summa-
rized the possible explanations for a calcar-
eous skeleton in stromatoporoids, and these 
explanations can, in general, also be applied 
to chaetetids. 

Given the potential  importance of 
turbidity on the growth form of chaetetids, 
West and Roth (1991) examined the 
insoluble residues (siliciclastic content) of 
chaetetid-bearing, and some associated, 
carbonate rocks. Results of this prelimi-
nary study indicated that the siliciclastic 
content of carbonates containing laminar 
chaetetids was significantly higher than it 
was in carbonates containing domical and 
columnar chaetetids (Tables 1–2). Addi-
tionally, West and Roth (1991) compared 
the siliciclastic content in each of these 
three different chaetetid carbonates (habi-
tats) to an environment represented by 
algal carbonates in which chaetetids were 
absent. There was no significant difference 
between carbonates containing domical and 
columnar chaetetids and algal carbonates 
(Table 2). Based on these results, West and 
Roth (1991) suggested that laminar chae-
tetids grew in turbid (dirty) water habitats, 
and both domical and columnar chaetetids 
competed with phylloid and other algae in 
less turbid (cleaner) water environments. 
Because cleaner water is more favorable for 
photosynthesizing algae, a low siliciclastic 
content would be expected. However, the 

Table 1. Mean values of percent of silicilastics 
(insolubles) in chaetetid habitats (differ-
ent growth forms) and algal environments 

(carbonates) (new).
	 Mean % insolubles	 No. of samples

Laminar	 25.1	 20
Low domical	 6.8	 8
High domical	 6.0	 14
     to columnar
Algal carbonate	 4.3	 44
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fact that carbonates containing domical and 
columnar chaetetids are also low in siliciclas-
tics led West and Roth (1991) to suggest 
that these chaetetids might have contained 
some photosynthesizing symbionts like 
zooxanthellae and competed with the algae 
for space. Supporting this suggestion is the 
reported association between autotrophs 
and bacteria within marine sponges (Wulff, 
2006). Erwin and Thacker (2006) reported 
photosymbionts in reef sponges, and Hill, 
Lopez, and Harriott (2006) reported 
sponge-specific cyanobacterial and other 
bacterial symbionts in Caribbean sponges. 
Such an association could also explain, to 
some extent, the tendency for chaetetids 
in such an environment to develop greater 
vertical than lateral components of growth. 
West (1994) suggested that such symbionts 
might also be responsible for variations 
observed in the tubule geometry of chae-
tetids. Even in cleaner water environments, 
the water at the sediment–water interface 
would be more turbid, and this could 
explain why the initial growth of domical 
and columnar chaetetids was commonly 
an accretionary laminar unit (Kershaw & 
West, 1991). 

GROWTH RATES

Growth rates of 1 mm to 10 mm over 
several years have been suggested for Ptycho-
chaetetes, a Jurassic chaetetid (Fabre & 
Lathuiliere, 2007, p. 1539), but these 
estimates are based on growth rates in corals. 
Estimates and in situ studies of two extant 
species of hypercalcified sponges with a 

chaetetid skeleton provide growth rates for 
these extant forms. The specimens studied 
were low domical and/or laminar forms, and 
the results refer to vertical growth and also 
to lateral expansion of the basal calcareous 
skeleton in Ceratoporella nicholsoni. C. nich-
olsoni was studied in situ by Willenz and 
Hartman (1985) in a reef tunnel off the 
coast of Jamaica for six months (mid-1984 
to early 1985) and continued until 1997 
(Willenz & Hartman, 1999). Oomori and 
others (1998) estimated the rate of growth in 
Acanthochaetetes wellsi using chemical signa-
tures in growth bands as described by Bena-
vides and Druffel (1986). In situ studies 
of Acanthochaetetes wellsi in a dark reef cave 
in the fringing reef of Lizard Island (Great 
Barrier Reef ) were reported by Reitner 
and Gautret (1996). Based on their study 
that lasted 320 days, Reitner and Gautret 
(1996) reported an annual growth rate of 
0.05–0.1 mm for A. wellsi. They further 
noted (p. 193) that the skeleton formed in 
a narrow zone between the basopinacoderm 
and the mature basal skeleton (Fig. 1–2). 
The rate of growth in C. nicholsoni given 
by Dustan and Sacco (1982) and Bena-
vides and Druffel (1986) are relatively the 
same as those based on the long-term in 
situ study of C. nicholsoni in Jamaica that 
provided an average annual growth rate of 
0.21 to 0.23 mm (Willenz & Hartman, 
1999). The basal skeleton of C. nicholsoni 
formed from a layer of basopinacocytes in 
the mesohyl at the interface between the 
living tissue and the aragonitic skeleton 
(Willenz & Hartman, 1989). Studies of 

Table 2. Matrix of results of grouped t-tests of mean values of percentages of siliciclastic content 
(see Table 1); n, number of observations (siliciclastic content); D, difference between groups; 
ND, no difference between groups. Differences and no differences are significant at a prob-

ability of 0.05 (new).
Groups	 Laminar	 Laminar to low domical	 Domical to columnar	 Algal carbonate
	 (n = 20)	 (n = 8)	 (n = 14)	 (n = 44)

1					     Laminar
2	 D				    Laminar to low domical
3	 D	 ND			   Domical to 	columnar
4	 D	 ND	 ND		  Algal carbonates
	 1	 2	 3	 4	 Groups
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C. nicholsoni by Lazareth and others (2000) 
using δ13C revealed similar growth rates, and 
Rosenheim and others (2004) using calcein 
stain reported an average growth rate of 
0.18 mm/yr. However, growth rates vary 
significantly from one individual to another 
and within a given individual through time; 
Willenz and Hartman (1999) reported a 
growth rate of 0.12 mm/yr for small speci-
mens of C. nicholsoni. This is close to the 0.1 
mm/yr rate reported for A. wellsi (Reitner 
& Gautret, 1996). 

These growth rates of hypercalcified 
demosponges with a chaetetid skeleton are 
compared to growth rates reported for other 
clonal invertebrates in Tables 3–5. Table 3 
provides the taxa, age, habitat, growth rate 
in mm/yr, reference, and pertinent remarks 
for hypercalcified and nonhypercalcified 
extant sponges, hermatypic and ahermatypic 
extant corals, and extant bryozoans. For 
some sponges and bryozoans, the data are 
reported as areas, i.e., mm2/yr. Similar data 
for Ordovician, Silurian, and Devonian corals 
are given in Table 4. The same information 
is given in Table 5 for specimens of extant 
hermatypic corals from different water depths 
from the Caribbean and Indo-Pacific. There 
are data for Montastrea annularis, Montastrea 
cavernosa, Porites asteroides, and Siderastrea 
siderea from the Caribbean, and for Astreopora 
myriophthalma, Porites lobata, Goniastrea reti-
formis, Favia speciosa, Porites lutea, and Favia 
pallida from the Indo-Pacific. Two aspects 
of the data in Tables 3 and 5 are particularly 
obvious and important: (1) the growth rate 
of all the other clonal invertebrates listed 
is an order of magnitude greater than the 
growth rate for either of the two hypercalci-
fied sponges (Table 3); and (2) the growth rate 
of extant hermatypic corals varies with water 
depth; often, though not always, the growth is 
slowest in deeper water (Table 5). In Oculina 
varicosa (Table 4), the ahermatypic form of 
this species grows faster in deep, cold water 
than the hermatypic form does in shallow, 
warmer water. 

Fig. 1. Growth in Acanthochaetetes wellsi; vertical sec-
tion of a tubule with living tissue. Tubule is divided 
into six sections: I, spiraster microsclere (SA) crust; II, 
lower dermal layer (DL) with large cells with granules 
(LCG ) and skeletal growth fronts (MZ ); III, choano-
some (CH ) and tylostyle megascleres (TS ); IV, basal 
part with tabula (T ) formation; V, crypt cells (CC ) 
[thesocytes, resting-surviving cells]; and VI, nonliv-
ing basal skeleton (BS), ×22.4 (adapted from Reitner 
& Gautret, 1996, pl. 49,1; with kind permission of 

Springer Science+Business Media).
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Few data are available on the growth rates 
of fossil clonal invertebrates. Dullo (2005) 
provided some data for Pleistocene coral 
specimens, and Ma (1933, 1937a, 1943a, 
1943b, 1943c) and Faul (1943) provided 
data on Ordovician, Silurian, and Devonian 
rugose and tabulate corals. But, there are no 
data on the growth rates of fossil bryozoans 
or hypercalcified, or other fossil, sponges. 
Ma (1934, 1937b) also documented the 
growth rate of numerous extant coral taxa 
from the South Pacific and areas around 
the Japanese islands. To determine the reli-
ability of the growth rates reported for these 
fossil corals by Ma (1943a, 1943b, 1943c) 
and Faul (1943), a comparison was made 
between growth rates of some extant coral 
species reported by Ma (1937b) with those 
reported by Dullo (2005) for the same 
extant species in the same general areas. This 
comparison (Table 6) shows that the growth 
rates reported by Ma (1937b) are very close 
to those reported by Dullo (2005) for the 
same species from the same general area; 

the difference is less than a millimeter. Ma 
(1943a, 1943b, 1943c) and Faul (1943) 
used the same technique in determining the 
growth rates of fossil corals as Ma (1937b) 
used to determine the growth rates of extant 
corals. Thus, given the results in Table 6, and 
the fact that the technique for determining 
the growth rates of both extant and fossil 
corals is the same, the growth rate data for 
fossil corals reported by Ma (1943a, 1943b, 
1943c) and Faul (1943) are reasonable 
growth rate estimates. 

Using the growth rates of fossil corals 
from Ma (1943a, 1943b, 1943c) and Faul 
(1943) and those of some extant corals and 
hypercalcified demosponges, it is possible to 
obtain a rough estimate of the growth rate of 
some fossil hypercalcified sponges, i.e., those 
with a chaetetid skeleton. The proportional 
relationship between the growth rate of an 
extant coral and the growth rate of an extant 
hypercalcified demosponge can be used to 
estimate the growth rate of fossil hypercal-
cified demosponges, if the growth rate of 

Fig. 2. Growth in Acanthochaetetes wellsi (continued); uppermost growing zone of tubule wall, an enlargement 
of the upper part of section II in Figure 1. MP, mucus-rich parts of basal skeleton within the active mineralizing 
front (MZ ) beneath the basal pinacoderm (P ), SA, spiraster microsclere crust, collagenous fibers (CF ) within basal 
skeleton (arrows), large cells with granules (LCG), ×640 (adapted from Reitner & Gautret, 1996, pl. 49,2; with 

kind permission of Springer Science+Business Media).
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fossil corals is known. Extant hypercalcified 
demosponges for which there are data on 
growth rates are Ceratoporella nicholsoni 
and Acanthochaetetes wellsi, both of which 
commonly occur in deeper water, cryptic 
habitats (Table 3). Extant corals from a 
similar habitat, from which there are growth 
rate data, are the ahermatypic corals Oculina 
varicosa and Lophelia pertsua (Table 3). As 

noted in the footnote in Table 4, well over 
50% of the fossil corals measured by Ma 
(1943a, 1943b, 1943c) had a growth rate 
of less than 10 mm/yr, and such a growth 
rate seems appropriate for the calculation 
of an estimate of the growth rate of fossil 
hypercalcified demosponges. Results of these 
calculations are given in Table 7, and the 
estimated growth rate of fossil hypercalcified 

Table 3. Growth rates in mm/yr of extant clonal invertebrates: sponges, corals, and bryozoans;  
for some sponges and bryozoans, data on growth rate was only available in mm2/yr , as noted 

on p. 4 herein (new).
Taxa		 Habitat	 Growth rate 	 Reference	 Remarks

Sponges					   
Raspailia 		 shallow	 1–10 mm/yr	 Kaandorp & 
     inaequalis		 marine	 mean = 5 mm/yr	 Kubler, 2001	
Haliclona 	 	shallow	 52–78 mm/yr; 	 Kaandorp & 	 tolerates low salinity
     oculata		 marine	 mean = 65 mm/yr	 Kubler, 2001	 and silt
Tedania 	  	shallow 	 160–312 mm2/yr; 	 Knott & others, 	 littoral to 100 m
     anhelans		 marine	 mean = 236 mm2/yr	 2006
Acanthochaetetes 	 	cryptic	 0.05–0.1 mm/yr; 	 Reitner &	 water depth =
     wellsi		 marine	 mean = 0.075 mm/yr	 Gautret, 1996	 6–15 m
Ceratoporella 	 	cryptic	 0.12–0.23 mm/yr; 	 Willenz & 	 water depth = 
     nicholsoni		 marine	 mean = 0.175 mm/yr 	 Hartman, 1999	 25–29 m

Corals					   
Hermatypic		 marine	 20–80 mm/yr; 	 Wells, 1957	
			   mean = 50 mm/yr	
Hermatypic		 marine	 9 mm/yr	 Krempf, 1934	
Hermatypic		 marine	 6–25 mm/yr; 	 Vaughn, 1915	 Florida corals
		  reef	 mean = 15.5 mm/yr 
Hermatypic		 marine	 1.1–180 mm/yr; 	 Dullo, 2005,	 Caribbean Province
		  reef	 mean = 25.0 mm/yr	 table 2 
Hermatypic		 marine	 3–165 mm/yr; 	 Dullo, 2005,	 Indo-Pacific Province
		  reef	 mean = 25.7 mm/yr 	 table 2
Oculina varicose	 	 6 m	 11.3 mm/yr	 Reed, 1981	 coastal Florida 
     hermatypic		  reef			   temp. = 24.6° C
Oculina varicose 	 	 80 m	 16.1 mm/yr	 Reed, 1981	 coastal Florida 
     ahermatypic		  bank			   temp. = 16.2° C
Lophelia pertsua 	         deep-water	 5–10 mm/yr; 	 Fosså, Mortensen, 	 water depth = 
     ahermatypic 		 marine	 mean = 	 & Furevik, 2002; 	 39 to 3000 m; 
			   7.5 mm/yr	 Mortensen & Rapp, 1998	 temp. = 6–8° C

Bryozoa					   
Membranipora 		 marine	 720 mm/yr	 McKinney & 	 encrusting kelp
     membrancea			   lateral 	 Jackson, 1989	 0.8–1.2 mm/4–6 hr
Bugula 	 	marine	 7300 mm/yr 	 McKinney & 	 fouling organism
     neritina 			   vertical and lateral	 Jackson, 1989	 20 mm/day
Steginoporella sp.		 marine	 110 mm/yr	 McKinney &	
			   lateral 	 Jackson, 1989
Reptadeonella		 marine	 30–40 mm/yr; lateral	 McKinney &
     costulata 			   mean = 35 mm/yr	 Jackson, 1989
Drepanophora		 marine	 39.6–60 mm2 /yr; 	 McKinney &	 2–3 cm2 (max. size) 
     tuberculatum			   mean = 49.8 mm2/yr	 Jackson, 1989	 in 6 months or less
Disporella		 marine	 20.4–39.6 mm2/yr; 	 McKinney &	 1 cm2 (max. size) 
     fimbriata			   mean = 30 mm2/yr	 Jackson, 1989	 in 3–6 months
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demosponges ranges from 0.02 to 0.2 mm/
yr. The range of measured growth rates for 
extant hypercalcified sponges is 0.05 to 0.23 
mm/yr (Table 3). 

Using the estimated minimum and 
maximum growth rates of fossil hypercalci-
fied demosponges (0.02 mm/yr and 0.2 mm/
yr, respectively), the inferred age of a chae-
tetid mass 2.3 m thick in the Carboniferous 
of southeastern Kansas (Suchy & West, 
2001) is between 11,500 and 115,000 years 
old. Using the average growth rate, 0.05 
mm/yr, of Carboniferous reefs (Table 8), this 
chaetetid mass would be 46,000 years old, 
about halfway between the ages based on the 
estimated annual growth rate of fossil hyper-
calcified demosponges. Because there are a 
number of growth interruptions in these 
Carboniferous chaetetids, these inferred ages 
are probably minimal. 

Regeneration of skeletons of injured 
specimens was initially slower in Cerato-

porella nicholsoni, but increased to a normal 
rate after a year and then increased slightly 
(Willenz & Hartman, 1999, p. 675). 
Lehnert and Reitner (1997) reported that 
lateral regeneration of injured areas of C. 
nicholsoni grew 102 to 154 times faster than 
vertical growth. Assuming a growth rate 
of 0.23 mm/yr for vertical growth, Suchy 
and West (2001, p. 441) calculated that 
lateral growth would then proceed at the 
rate of 23 to 35 mm/yr. This rate of lateral 
expansion of the skeleton may be excessive 
in that, as Willenz and Hartman (1999, p. 
683) noted, Lehnert and Reitner (1997) 
reported the lateral expansion of the soft 
tissue, not the skeleton. Although the lateral 
expansion of the skeleton might have been 
slower, any increase in the lateral growth rate 
over the vertical growth rate would be advan-
tageous as these chaetetid sponges competed 
with other encrusting sessile benthos for 
space on the seafloor. 

Table 4. Growth rates in mm/yr of Paleozoic corals (Ordovician, Silurian, and Devonian) (new).
Taxa	 Age	 Habitat	 Growth rate 	 Reference	 Remarks

Heliolites parvistella	 Ordovician1	 marine	 1.2 mm/yr	 Ma, 1943a, vol. 1	 slowest growth of 122 		
					     specimens of 46 species 	
					     of 14 genera

Columnaria alveolata	 Ordovician1	 marine	 20.0 mm/yr	 Ma, 1943a, vol. 1	 fastest growth of 122 		
					     specimens of 46 species 	
					     of 14 genera

Heliolites parvistella	 Silurian2	 marine	 1.2 mm/yr	 Ma, 1943b, vol. 2	 slowest growth of 545 		
					     specimens of 145 		
					     species of 43 genera

Phaulactis angusta	 Silurian2	 marine	 35.0 mm/yr	 Ma, 1943b, vol. 2	 fastest growth of 545 		
					     specimens of 145 		
					     species of 43 genera

Keriophyllum proliferum	 Devonian3	 marine	 2.0 mm/yr	 Ma, 1943c, vol. 3	 slowest growth of 494 		
					     specimens of 176 		
					     species of 32 genera

Tabulophyllum ellipticum	 Devonian3	 marine	 30.0 mm/yr	 Ma, 1943c, vol. 3	 fastest growth of 494 		
					     specimens of 176 		
					     species of 32 genera

Prismatophyllum sp.4	 Devonian	 marine reef	 1.75 mm/yr	 Faul, 1943	 slowest growth of 33 		
					     specimens of 4 species 		
					     in 1 genus

Prismatophyllum sp.4	 Devonian	 marine reef	 6.2 mm/yr	 Faul, 1943	 fastest growth of 33 		
					     specimens of 4 species 		
					     in 1 genus

187 of the 122 Ordovician specimens (71%) grew less than 10 mm/yr; 2475 of the 545 Silurian specimens (87%) grew less than 10 
mm/yr; 3318 of the 494 Devonian specimens (64%) grew less than 10 mm/yr; 4Prismatophyllum is now Hexagonaria.
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Estimates of the growth rates of fossil 
chaetetids and the ages of chaetetid masses, 
as outlined above, is, of course, equiv-
ocal and may not be realistic. It should 
be remembered that extant hypercalcified 
demosponges, those used in this comparison, 
live in areas of very low light or complete 
darkness in subtidal caves, crevices, and 
tunnels of coral reefs, or on cliffs in the 
upper bathyal zone down to a few hundred 
meters (Vacelet, 1988). Because of their 
minor role in post-Paleozoic reefs, this is 
probably also true for the chaetetid taxa 
during this time interval. During the upper 
Carboniferous, however, they were a major 

constructor of shallow, subtidal reef mounds 
in open marine settings (West, 1988; Suchy 
& West, 2001), and thus their annual 
growth rate may have been much greater. 
The growth rates presented here are simply 
to provide some possible indications of 
longevity and rates of lateral expansion based 
on those rates in extant taxa.

BASAL LAYER

A very thin feature with concentric 
growth lines has been observed covering 
the lower surface in some extant and fossil 
forms with a chaetetid skeleton and has 
also been reported in fossil stromatoporoids 

Table 5. Growth rates in mm/yr for specimens of extant hermatypic corals 
from different water depths from the Caribbean and Indo-Pacific (data from 

Dullo, 2005, table 1).
Taxa	 Habitat	 Growth rate	 Location

Caribbean
Montastrea annularis	 depth < 6 m	 8.2 mm/yr	 inshore Florida
	 M. annularis	 depth > 6 m	 6.3 mm/yr	 offshore Florida
	 M. annularis	 depth = 5 m	 7.4 mm/yr	 Jamaica
	 M. annularis	 depth = 45 m	 1.6 mm/yr	 Jamaica
Montastera cavernosa	 depth = 10 m	 3.6 mm/yr	 Jamaica
	 M. cavernosa	 depth =20 m	 6.8 mm/yr	 Jamaica
	 M. cavernosa	 depth =30 m	 4.1 mm/yr	 Jamaica
Porites asteroides	 depth = 0–1 m	 5.0 mm/yr	 Jamaica
	 P. asteroides	 depth = 5 m	 5.0 mm/yr	 Jamaica
	 P. asteroides	 depth = 10 m	 3.3 mm/yr	 Jamaica
	 P. asteroides	 depth = 30 m	 2.3 mm/yr	 Jamaica
Siderastera siderea	 depth = 10 m	 7.1 mm/yr	 Jamaica
	 S. siderea	 depth = 20 m	 3.0 mm/yr	 Jamaica
	 S. siderea	 depth = 30 m	 3.1 mm/yr	 Jamaica
Average		  4.8 mm/yr

Indo-Pacific
Astreopora myriophthalma	 depth = 6–15 m	 13.0 mm/yr	 Enewetak
	 A. myriophthalma	 depth = 16–25 m	 5.5 mm/yr	 Enewetak
Porites lobata	 depth = 6–15 m	 11.5 mm/yr	 Enewetak
	 P. lobata	 depth = 16–25 m	 6.0 mm/yr	 Enewetak
Porites lutea	 depth = 0–5 m	 13.5 mm/yr	 Enewetak
	 P. lutea	 depth = 6–15 m	 11.0 mm/yr	 Enewetak
	 P. lutea	 depth = 16–25 m	 9.5 mm/yr	 Enewetak
	 P. lutea	 depth = >25 m	 6.0 mm/yr	 Enewetak
Favia pallida	 depth = 0–5 m	 7.5 mm/yr	 Enewetak
	 F. pallida	 depth = 6–15 m	 7.0 mm/yr	 Enewetak
	 F. pallida	 depth = 16–25 m	 7.0 mm/yr	 Enewetak
	 F. pallida	 depth = 26–30 m	 6.5 mm/yr	 Enewetak
Favia speciosa	 depth = 0–5 m	 4.6 mm/yr	 Enewetak
	 F. speciosa	 depth = 6–15m	 8.5 mm/yr	 Enewetak
	 F. speciosa	 depth = 16–25 m	 7.0 mm/yr	 Enewetak
Goniastrea retiformis	 depth = 0–5 m	 10.0 mm/yr	 Enewetak
	 G. retiformis	 depth = 6–15 m	 9.5 mm/yr	 Enewetak
	 G. retiformis	 depth = 16–25 m	 6.0 mm/yr	 Enewetak
Average		  8.3 mm/yr
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(Stearn, 1983). Ceratoporella nicholsoni has 
a “basal and lateral surface of the skeletal 
mass covered by an epitheca showing growth 
lines” (Vacelet, 2002, p. 827). Hartman 
and Goreau (1972, p. 135) stated that in 
young specimens of C. nicholsoni, the basal 
layer (their epitheca) is cup-shaped, and in 
larger specimens, it is restricted to the lower 
surface of the skeleton, commonly obscured 
where the animal is attached to the substrate. 
Whether a basal layer, or something similar, 
is deposited by the sponge upon settlement is 
unknown, but it does occur on the exposed 
edges of the basal calcareous skeleton in 
some chaetetid specimens. 

Invertebrates attach to hard substrates 
in a number of ways, and some demo-
sponges are inferred to use collagenous 
glue (Bromley & Heinberg, 2006, p. 438). 
Other sessile clonal invertebrates, such as 
bryozoans, use an acid mucopolysaccharide 
secretion (Bromley & Heinberg, 2006, 
p. 437). In extant hypercalcified demo-
sponges, the basal layer is mostly composed 
of organic fibers (see Treatise Online, Part 
E, Revised, vol. 4, Chapter 2A, Fig. 24), 
and it is reasonable to suggest that it func-

tioned much like the periostracum in 
mollusks and other invertebrates with an 
exoskeleton of calcium carbonate; namely 
it protected the skeleton from the adverse 
effects of seawater (Clark, 1976). Stearn 
(1983, p. 145) has suggested that in stro-
matoporoids, it functioned to inhibit 
boring organisms from attacking the 
underside of the skeleton. Although it is 
rarely visible macroscopically in fossil chae-
tetids, it has been observed in some speci-
mens and can be differentiated from the 
basal calcareous skeleton in SEM images 
of such specimens (see Treatise Online, Part 
E, Revised, vol. 4, Chapter 2A, Fig. 24). 
Because it is thin, appears to be mostly 
organic in composition, and is exposed 
to seawater, it is often absent because of 
physical, chemical, and biological processes 
during life and after death. Careful study 
of the contact between the basal calcareous 
skeleton and the substrate, of both extant 
and fossil forms, is necessary to determine 
whether a basal layer, or something similar, 
is deposited initially when the sponge colo-
nizes the substrate and becomes part of the 
sessile benthos.

Table 6. Comparison of growth rates in mm/yr of some extant coral taxa from Dullo (2005) 
and Ma (1937b); µ, average value (mean) of the number of measurements; n, number of mea-

surements (new).
Taxa	 Region	 Growth rate	 Reference 

Atlantic				  
Montastera annularis	 Florida and Bahamas	 µ = 5.8 mm/yr (n = 7)	 Ma, 1937b, table 1
     M. annularis	 Florida and Jamaica	 µ = 5.9 mm/yr 	 Dullo, 2005
			   (n = 4, see Table 4 herein) 
Siderastera siderea	 Florida and Bahamas	 µ = 3.5 mm/yr (n = 6)	 Ma, 1937b, table 1
     S. siderea	 Jamaica	 µ = 4.4 mm/yr	 Dullo, 2005
			   (n = 3, see Table 4 herein)

Indo-Pacific				  
Favia pallida	 Japan and South Pacific	 Mean values for different regions	 Ma, 1937b, p. 187
			   range from 2.9-8.3 mm/yr 
     F. pallida	 Enewetak	 µ = 7.0 mm/yr 	 Dullo, 2005
			   (n = 4, see Table 4 herein) 
Favia speciosa	 Japan and South Pacific	 Mean values for different regions	 Ma, 1937b, p. 187
			   range from 3.2–9.2 mm/yr 
     F. speciosa	 Enewetak	 µ = 6.7 mm/yr	 Dullo, 2005
			   (n = 3, see Table 4 herein) 
Goniastrea retiformis	 Japan and South Pacific	 Mean values for different regions	 Ma, 1937b, p. 190
			   range from 2.5–7.7 mm/yr 
     G. retiformis	 Enewetak	 µ = 8.5 mm/yr	 Dullo, 2005
			   (n = 3, see Table 4 herein)
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Table 7. Estimates of growth rates of fossil hypercalcified sponges using the growth rates of ap-
propriate extant corals, hypercalcified sponges, and fossil corals. This table presents the method 
used for estimating growth rates for Paleozoic chaetetids. In part A, the ratio between the growth 
rates of two extant corals, Lophelia pertsua and Oculina varicosa, from a habitat comparable to 
that of two extant hypercalcified sponges, Ceratoporella nicholsoni and Acanthochaetetes wellsi, 
were set equivalent to the growth rate of a Devonian rugose coral with an analogous compound 
growth form, Prismophyllum (now Hexagonaria), relative to an unknown, X. By performing the 
calculations indicated, the results provide an estimate of the growth rate of a Paleozoic chaetetid. 
The same method was used to determine the results in part B, using the average growth rate 
determined for Paleozoic corals from the Ordovician, Silurian, and Devonian, instead of that for 
Prismophyllum, and a second estimate of the growth rate of Paleozoic chaetetids was obtained; 
µ, average value (mean) of the number of measurements; n, number of measurements. See text 

for discussion (p. 6 herein) (new).
A. Results using data for Prismophyllum sp., H. = 2–6 mm/yr; µ = 4 mm/yr (Faul, 1943).

Lophelia pertsua : Ceratoporella nicholsoni = Prismophyllum : X
7.5 : 0.175 = 4 : X
7.5X = 0.175 x 4
X = 0.09 mm/yr
Lophelia pertsua : Acanthochaetetes wellsi =Prismophyllum : X
7.5 : 0.075 = 4 : X
7.5X = 0.075 x 4
X = 0.04 mm/yr
Oculina varicosa : Ceratoporella nicholsoni = Prismophyllum : X
16.1 : 0.175 = 4 : X
16.1X = 0.175 x 4
X = 0.04 mm/yr
Oculina varicosa : Acanthochaetetes wellsi = Prismophyllum : X
16.1 : 0.075 = 4 : X
16.1X = 0.075 x 4
X = 0.02 mm/yr

B. Results using a growth rate of 10 mm/yr based on the data contained in Ma (1943a, 1943b, 1943c) for Paleozoic 
corals from the Ordovician, Silurian, and Devonian.

Lophelia pertsua : Ceratoporella nicholsoni = 10 mm/yr : X
7.5 : 0.175 = 10 : X
7.5X = 0.175 x 10
X = 0.2 mm/yr
Lophelia pertsua : Acanthochaetetes wellsi =10 mm/yr : X
7.5 : 0.075 = 10 : X
7.5X = 0.075 x 10
X = 0.1 mm/yr
Oculina varicosa : Ceratoporella nicholsoni = 10 mm/yr : X
16.1 : 0.175 = 10 : X
16.1X = 0.175 x 10
X = 0.1 mm/yr
Oculina varicosa : Acanthochaetetes wellsi = 10 mm/yr : X
16.1 : 0.075 = 10 : X
16.1X = 0.075 x 10
X = 0.05 mm/yr
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ASTRORHIZAE

These stellate patterns of grooves, called 
astrorhizal canals, are associated with 
the excurrent canal system and are not 
commonly observed on fossil chaetetids. 
When present, they are very shallow grooves 
that are best seen in light with a low angle 
of incidence (see Treatise Online, Part E, 
Revised, vol. 4, Chapter 2A, Fig. 7–8). Indi-
vidual astrorhizal canals may be unbranched 
or show primary and occasionally secondary 
branches. Hartman (1984, p. 306) stated 
that in the extant form Acanthochaetetes 
wellsi, “. . . astrorhizae are shallow, difficult 
to see and not infrequently completely 
absent.” Thus they are rarely present on 
fossil chaetetids. Astrorhizae may occur on 
one or two or none of the fossil chaetetids 
that are numerous in any given stratigraphic 
interval. That is to say, astrorhizae only 
occur rarely, even when fossil chaetetids are 
very abundant and make up the entire rock 
layer. Unlike the astrorhizae in some fossil 
(stromatoporoids) and some extant hypercal-
cified sponges, the astrorhizae in chaetetids 
are confined to the exterior surface of the 
basal calcareous skeleton; they have not 
been observed to extend into the interior 
of this basal skeleton of any of the valid 
chaetetid genera. Cuif and others (1973, 
pl. 1,2) illustrated a longitudinal section 

of astrorhizae in Blastoporella, but neither 
spicules nor spicule pseudomorphs have 
been found in this genus. In general appear-
ance, the astrorhizae in fossil chaetetids 
are most like those described for A. wellsi 
(Hartman & Goreau, 1975; Hartman, 
1984). Astrorhizae are absent in Merlia 
normani (Hartman & Goreau, 1975, p. 
10), and although they may be absent in 
Ceratoporella nicholsoni, when present, the 
grooves are deeper, about a millimeter, and 
cover a larger area (Hartman, 1984, p. 306) 
than in A. wellsi. In fossil chaetetids, the 
astrorhizae cover a circular area of between 
10 and 12 mm in diameter (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 2A, 
Fig. 7.3), values within the range covered 
by astrorhizae in A. wellsi (Hartman, 1984, 
p. 306). Within an area of 10.4 cm2 on 
the surface of a fossil chaetetid, there are 
six astrorhizae (Fig. 3), and the distance 
between the centers of these six range from 
8.25 to 27 mm, averaging 16.2 mm (n = 
15) (Table 9). In extant forms, astrorhizae 
are associated with mamelons, but this is 
not the case in fossil chaetetids. Astrorhizae 
in fossil chaetetids occur on a relatively 
smooth to slightly irregular surface, but 
they have not been observed centered on 
mamelons. As in extant forms, the function 
of this stellate pattern of grooves radiating 
from an osculum are inferred to identify the 

Table 8. Growth rates of Phanerozoic reefs in mm/yr from Dullo (2005, tables 3–4); data 
converted to mm/yr and averaged for each geological period/system (new).

Age	 Average	 Number	 Table 4 data:	 Table 4 data:	 Table 4:
	 growth rate 	 of reefs	 reef growth	 framebuilder growth	 number of reefs

Cenozoic	 0.07 mm/yr	 8			 
Cretaceous	 0.07 mm/yr	 8			 
Jurassic	 0.07 mm/yr	 9	 2.3 mm/yr;	 6 mm/yr; 	 7
			   range: 1.5-4.3 mm/yr	 range: 1–11 mm/yr
Triassic	 0.17 mm/yr	 6			 
Permian	 0.09 mm/yr 	 6	 0.3 mm/yr	 4 mm/yr	 1
Carboniferous*	 0.05 mm/yr 	 6			 
Devonian	 0.11 mm/yr	 7			 
Silurian	 0.07 mm/yr	 4			 
Ordovician	 0.03 mm/yr	 4			 
Cambrian	 0.08 mm/yr	 4			 

*One of these Carboniferous reefs that contains chaetetids is the Horseshoe Atoll Reef Complex in the subsurface of Texas, 
growth of which is estimated at 34.6 m/myr or 0.0346 mm/yr (Dullo, 2005, p. 42, table 3). See also Stafford (1959) and 
Toomey and Winland (1973).
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exhalant canal system in fossil chaetetids. As 
water is moved through the sponge by the 
flagellated collar cells, it is channeled into 
the areas of the astrorhizal canals, thence 
to the osculum (Vogel, 1994, p. 190–191; 
2003, p. 172–173) where it is expelled and 
carried away by the water currents passing 
over the surface of the fossil chaetetid, much 

as occurs in morphologically similar extant 
forms. 

MAMELONS

These features are rounded regular or 
irregular elevations of the exterior surface 
of the chaetetid skeleton. They have been 
observed but are not always present in 

Fig. 3. Six astrorhizae in 10.4 cm2 area on the surface of a chaetetid, Pennsylvanian, upper Carboniferous, Amoret 
Limestone Member, Altamont Limestone, Montgomery County, Kansas; see Table 9 for distances between astro-

rhizae, ×4.1 (new). 



Functional Morphology of Chaetetid-Type Porifera 13

the extant taxa Ceratoporella nicholsoni 
(Hartman & Goreau, 1970; Hartman, 
1 9 8 4 )  a n d  Ac a n t h o c h a e t e t e s  w e l l s i 
(Hartman & Goreau, 1975; Hartman, 
1984). Although astrorhizae occur on 
the mamelons of some specimens, they 
are not present on all mamelons. Astro-
rhizae are part of the exhalant water circu-
lating systems in these sponges, and some 
advantage might be realized if the exhalant 
opening (osculum) is elevated relative to 
the incurrent openings (ostia) (Hartman, 
1984, p. 310). Based on Bernoulli’s Prin-
ciple,  water moving over a U-shaped 
feature is pulled into one opening if the 
other opening is raised slightly above the 
surface of the first opening (see Vogel, 
1994, p. 72; 2003, p. 149). Experiments 
by Boyajian and LaBarbera (1987) based 
on Bernoulli’s Principle, suggested that 
mamelons and associated astrorhizae would 
be advantageous to taxa living in quiet 
water. Stearn (2010, Treatise Online, Part 
E, Revised, vol. 4, Chapter 9F) has pointed 
out the reasons why this cannot be applied 
to all occurrences of forms with astrorhizae 
associated with mamelons in stromatopo-
roids. These same reasons are appropriate 
for fossil chaetetids, as well as for some 
occurrences of extant hypercalcified demo-
sponges with a chaetetid skeleton. For 
example, Hartman (1984, p. 310–311), 
referring to underwater photographs of 
in situ specimens of C. nicholsoni stated: 
“In several photographs a specimen with 
mamelons occurs directly adjacent to one 
without mamelons, indicating that an envi-
ronmental explanation does not apply in 
these populations.” Mamelons are not often 
observed on fossil chaetetids, and on the 
rare occurrences when they are present, it 
is not clear, because of weathering, whether 
or not they possess astrorhizae (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
2A, Fig. 8.4). The tubules composing the 
mamelons may appear larger than those 
elsewhere on the upper exterior surface of 
the basal calcareous skeleton, but this is 
more apparent than real (Fig. 4).

CHIMNEYS

Vertically developed mamelons, with 
an opening (osculum) at or near the apex, 
that extend well beyond the general growth 
surface of fossil chaetetids are referred to 
as chimneys (see Treatise Online, Part E, 
Revised, vol. 4, Chapter 2A, Fig. 9.4–9.5). 
These features have not been recognized in 
extant hypercalcified demosponges with a 
chaetetid skeleton. I have only observed 
chimneys in topotype specimens of a form 
described by Morgan (1924) as Chaetetes 
schucherti from upper Carboniferous lime-
stone in Oklahoma (see Treatise Online, 
Part E, Revised, vol. 4, Chapter 2A, Fig. 
9.4–9.5). Chimneys are not present on the 
holotype (Fig. 5.1) and are not mentioned 
in the original description of this species. 
Morgan (1924, p. 175) noted the pres-
ence of “. . . short, round tubes without 
walls, 3 mm in diameter . . .” (Fig. 5.2) and 
suggested that these holes “. . . may have 
been centers of reproduction, goniopores, 
or they may have been parasitic animals.” 
He noted further that these holes are best 
seen on weathered surfaces (Fig. 5.3). Similar 
holes occur on some topotype specimens and 
they are located: (1) on weathered areas (a 
in Fig. 5.4); (2) near the top of some cylin-
drical projections (chimneys) (b in Fig. 5.4); 
and/or (3) on and around the upper parts of 
domical to irregularly shaped mamelons (c 
in Fig. 5.4). 

At, or near, the top of these chimneys is a 
3 mm diameter opening (Fig. 6.1, Fig. 6.4) 
which, based on vertical sections, extends 
downward 6 to 8 mm to near the base of 
the chimney (Fig. 6.2–6.3, Fig. 6.5). These 
tubes are now filled with an argillaceous 

Table 9. Distance, in mm, between the cen-
ters of the six astrorhizae in the 10.4 cm2 area 
shown in Figure 3; n = 15, µ = 16.2 mm (new).
1–2=15
1–3=17	 2–3=12.5
1–4=22	 2–4=21	 3–4=8.25
1–5=11.5	 2–5=19.5	 3–5=12.25	 4–5=13
1–6=14.5	 2–6=27	 3–6=21	 4–6=20.5	 5–6=8.5
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Fig. 4. Tubules in vertically developed mamelons in topotype specimens of Chaetetes schucherti Morgan, 1924, 
Pennsylvanian, upper Carboniferous, Homer School Limestone Member, Holdenville Formation, Seminole County, 
Oklahoma; 1, longitudinal section of a vertically developed mamelon, note tubule size, ×1; 2, enlarged view of the 
vertically developed mamelon in view 1, ×2; 3, oblique view of the vertically developed mamelon in view 1, ×2.9; 

4, enlarged view of 3, ×4.6; 5, plan view of the exterior of vertically developed mamelons, ×3.8 (new).
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carbonate matrix or sparry calcite. The 
distance between these 3 mm diameter 
openings ranges from 9 to 20 mm and 
averages 12.5 mm (n = 12). This is about 
the same as the average distance, 16.2 mm, 
between the centers of astrorhizae in fossil 
chaetetids (Table 8). Given the similarity 
in spacing, and the fact that astrorhizae 

are considered the area of the exhalant 
water system, it may be suggested that the 
openings at the top of vertically developed 
mamelons, i.e., chimneys, functioned as 
oscula. Openings associated with exhalant 
fluid flow and referred to as chimneys occur 
in the bryozoan Membranipora membra-
nacea (Dassow, 2006). 
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Fig. 5. Circular openings in the upper exterior surface of Chaetetes schucherti Morgan, 1924, Pennsylvanian, up-
per Carboniferous, Homer School Limestone Member, Holdenville Formation, Seminole County, Oklahoma; 1, 
plan view of upper exterior surface of the holotype; light colored circles are the 3 mm holes noted by Morgan, 
1924, ×0.25; 2, part of the upper exterior surface of the holotype showing 3 mm diameter holes; note that some, 
but not all, of these holes are associated with mamelons, ×0.8; 3, same as view 2, but slightly enlarged and of a 
different area; holes in this view are not associated with obvious mamelons, ×0.85; 4, upper exterior surface of 
a topotype specimen showing the location of the 3 mm diameter holes: a, on a weathered area, b, near the top 
of vertically developed mamelons, i.e. chimneys, and c, on and around the upper areas of domical to irregularly 

shaped mamelons, ×0.4 (new).

Although it may be that some verti-
cally developed mamelons were associated 
with the exhalant movement of water, such 
circular openings are not restricted to the 
top of vertically extended mamelons and 
occur elsewhere on the calcareous skeleton 
(Fig. 6.4). It is possible that all, or some, 
of these circular openings are the result of 
an associated symbiotic soft-bodied inver-
tebrate, i.e., sponge, coral, or worm. Holes 
of the same diameter as these, 3 mm, but 
much shallower, only 1 mm, have been 
observed in extant specimens of Ceratoporella 
nicholsoni and are the sites of commensal 
zoanthideans (soft corals) that grew on the 

surface of the sponge (Hartman & Goreau, 
1970, p. 209). Smaller holes, 1.5 to 2.5 mm 
in diameter, also occur in extant specimens 
of C. nicholsoni (Hartman, 1984, p. 311) 
and are attributed to Siphonodictyon, an 
excavating member of the boring clionid 
sponges (Hartman, 1984, p. 311). Rützler 
(1971, p. 1) noted that he had frequently 
observed the deep-yellow sponge chimneys 
of Siphonodictyon protruding from living 
coral heads. Hydroids are also known to be 
symbiotic on, or inside of, sponges (Puce & 
others, 2005). 

Tubules that surround the circular 
tubes in Chaetetes schucherti radiate out 
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from the tubes a distance of from 5 to 
10 mm and then turn upward (Morgan, 
1924, p. 175). This same arrangement 
occurs in topotype specimens with mame-
lons,  including those with a circular 
opening at the top, i.e., chimneys (Fig. 
7). The vertically extended mamelons 
were constructed by tubules that fanned 

out as they grew upward, and the circular 
openings associated with some mame-
lons appear to have been excavated later. 
Tubules associated with these circular 
openings do not appear to be distorted; 
the re  i s  noth ing  tha t  re s emble s  the 
abnormal growth around the suggested 
vermiform symbiotics illustrated by West 
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Fig. 6. Chimneys in topotype specimens of Chaetetes schucherti Morgan, 1924, Pennsylvanian, upper Carbonifer-
ous, Homer School Limestone Member, Holdenville Formation, Seminole County, Oklahoma; 1, plan view of 
chimneys, the one in the left center is slightly abraded, ×1.85; 2, longitudinal section of chimney showing the 
depth of a partially filled hole at the top of the vertically developed mamelon with a chimney, ×1.25; 3, enlarged 
view of the upper part of the chimney with the partially filled hole in view 2, ×2; 4, plan view of two adjacent 
chimneys, ×1.9; 5, longitudinal section of the two adjacent chimneys seen in plan view in view 4, ×2.15 (new).
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and Cl ark  (1984, pl.  2,F ). Although 
some of these circular openings could 
have been oscula, others were excavated 
after skeletal growth, but before death; 
they could also be postmortem features.

TUBERCULES

These structures that resemble tiny spines 
are small, slightly raised, calcareous projec-
tions. They occur at the junction between 
two or more tubules at the top of the basal 
calcareous skeleton, where the thin soft 
tissue is presumed to have been in contact 
with the skeleton. These have been observed 
in Merlia normani (Hajdu & van Soest, 
2002) and in some well-preserved fossil 
chaetetid skeletons (see Treatise Online, 
Part E, Revised, vol. 4, Chapter 2A, Fig. 
9.2–9.3). Perhaps they have had some 
value in helping anchor the thin layer of 
soft tissue to the basal calcareous skeleton. 
However, it is more likely that they are 
simply the result of the arrangement of the 
calcite crystals from which the basal skeleton 
is/was constructed. The microstructure and 
mineralogy of Merlia and fossil chaetetids 
is considered to be penicillate Mg calcite 
(Finks & Rigby, 2004; see Treatise Online, 
Part E, Revised, vol. 4, Chapter 2A, Table 2). 
Water-jet Mg calcite has also been used to 
describe the microstructure and mineralogy 
(Cuif & Gautret, 1993; Hooper & van 
Soest, 2002a; and see Treatise Online, Part 
E, Revised, vol. 4, Chapter 2A, Table 2). In 
either case, the calcite crystals that compose 
the walls of the tubules fan outward at a 
relatively high angle (see Cuif & Gautret, 
1993). As the walls of two or more tubules 
come into contact and join, the merging 
of bundles of crystals in each could result 
in a projection above the adjacent walls 
of the tubules producing tubercules. For 
example, the upper edges of the tubules in 
Acanthochaetetes wellsi are crenulated, and 
each crenulation corresponds to upwardly 
directed undulations of the lamellar crystal-
line units of calcite that make up the walls 
of the tubules (Hartman & Goreau, 1975, 
p. 3).

INTERNAL FEATURES
TUBULES

The chaetetid skeleton is dominantly 
composed of tubules. In longitudinal 
section, they are more or less straight, but in 
transverse section, they exhibit meandroid- 
to irregularly polygonal–shaped outlines 
(see Treatise Online, Part E, Revised, vol. 
4, Chapter 2A, Fig. 10–11, Fig. 25–26). 
Co-joining of walls with adjacent tubules 
results in a honeycomb-like construction, 
although the tubules have a much more 
irregular profile in transverse section. To 
attempt to understand the role of the 
tubules in chaetetid skeletons of hypercalci-
fied demosponges, it is useful to examine 
the relationship between the tubules that 
compose the basal calcareous skeleton and 
the soft, living tissue in extant taxa. 

Initiation of a calcareous skeleton in chae-
tetids would have provided a stable, rigid 
platform for the efficient functioning of the 
aquiferous system, an advantage in some 
environments. However, if the environment 
provided such substrates, as is common in 
environments with firm to hard surfaces, i.e., 
reefs, a rigid platform may have been readily 
available in the form of dead or diseased 
surfaces of other clonal organisms, such as 
corals and bryozoans. In environments with 
soft, loose substrates, similar colonization 
sites would have been provided by the shells 
of other invertebrates, such as mollusks and 
brachiopods. Glaessner (1962) suggested 
that initially a skeleton could have been 
the means by which organisms disposed 
of metabolic waste products; in the case of 
most invertebrate skeletons, one such waste 
product is calcium. Similarly, Simkiss (1977) 
noted the harmfulness of excessive levels of 
Ca in cells and suggested that the excretion 
of such excessive Ca led to biocalcifica-
tion as the cells detoxified. More recently, 
Reitner and Gautret (1996, p. 193), refer-
ring to Acanthochaetetes wellsi, stated that the 
“. . . main controlling factor of calcification 
is the deposition of a physiological surplus of 
Ca2+, a toxic metabolic waste product.” This 
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could result in a basal calcareous skeleton in 
chaetetids, at least initially, because, based on 
studies of extant forms such as Ceratoporella, 
Acanthochaetetes, and Merlia, the only part 
of the calcareous skeleton that contains 
living tissue is the uppermost millimeter or 
two. The bulk of domical, columnar, and 

some laminar chaetetid skeletons in extant 
taxa (and inferred in fossil forms) appear 
to have little, if anything, to do with the 
living tissue. Over time, there may have 
been some genetic component that favored 
the development of a basal calcareous skel-
eton (see Kirkpatrick, 1911, p. 690–691). 

Fig. 7. Arrangement of tubules in vertically developed mamelons with and without circular openings, Chaetetes 
schucherti Morgan, 1924, Pennsylvanian, upper Carboniferous, Homer School Limestone Member, Holdenville 
Formation, Seminole County, Oklahoma; 1, longitudinal section of vertically developed mamelon with a tube 
(chimney) in a topotype specimen, ×0.9; 2, enlargement of upper part of chimney figured in view 1, ×3; 3, 
transverse thin section of tube in vertically developed mamelon (chimney) in the holotype, tube filled with sparry 
calcite, ×6.7; 4, longitudinal section of vertically developed mamelons with shallow tube (chimney) in a topotype 

specimen, ×5; 5, longitudinal section in a vertically developed mamelon in a topotype specimen, ×5 (new).
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For example, lateral expansion of such a 
skeleton would permit the sponge to domi-
nate more of the substrate and provide a 
larger base for upward (vertical) growth yet 
still remain a fairly stable structure. Lateral 
expansion and upward growth from a smaller 
base occurs in fossil chaetetids (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
2A, Fig. 14.3–14.4, Fig. 15.2). Something 
similar has been documented in Ceratoporella 
nicholsoni, an extant taxon, where the young 
forms are cone shaped or pedunculate, and 
the mature forms are massive and mound 
shaped (Vacelet, 2002, p. 827). Hartman 
and Goreau (1975, p. 3) also reported a 
stalked condition in some specimens of A. 
wellsi, supporting a tendency, in some cases, 
for upward growth. An example of an extant 
pedunculate specimen of Acanthochaetetes 
sp. can be seen in Treatise Online, Part E, 
Revised, vol. 4, Chapter 2A, Figure 6.1. With 
vertical growth of the skeleton, the thin layer 
of living tissue would be positioned higher in 
the water column. Such a position would be 
advantageous for an organism that depends 
on dissolved and suspended matter in the 
water it pumps through its pores.

The tubule walls of Acanthochaetetes 
wellsi, Ceratoporella nicholsoni, and Merlia 
normani, all extant taxa, are either aragonite 
or Mg calcite. Arrangement of the crystals 
of these minerals produces either a penicil-
late (water-jet) or lamellar microstructure 
(see Treatise Online, Part E, Revised, vol. 4, 
Chapter 2A, Table 2) in these taxa. In most 
fossil chaetetids, the original mineralogy has, 
as a result of taphonomic processes (recrys-
tallization), changed to low Mg calcite. But 
the original mineralogy is inferred to have 
been Mg calcite, and the microstructure is 
penicillate, as in the extant genus Merlia. 
The basal calcareous skeleton of Pennsyl-
vanian chaetetids preserved in asphalt in 
Oklahoma was reported by Squires (1973; 
see also Treatise Online, Part E, Revised, 
vol. 4, Chapter 2A) to contain 5 mol% Mg 
calcite, but unfortunately he did not docu-
ment the microstructure of the tubule walls 
in these specimens.

Reitner and Gautret (1996, pl. 49,1) 
illustrated the relationship between the 
thin layer of living tissue and the tubules 
of the basal calcareous skeleton in Acantho-
chaetetes wellsi. The living tissue is confined 
to the space above the outermost horizontal 
partition (tabulae) in the tubule and is 1.2 
to 2.0 mm thick (Hartman & Goreau, 
1975, p. 3). In Merlia normani, the rela-
tionship between the soft tissue and the 
basal calcareous skeleton is similar, with a 
thin layer of living tissue that contains the 
choanosomal tissue and spicules (Hajdu 
& van Soest, 2002, p. 691–692). The 
living tissue in Ceratoporella nicholsoni is 
1.5 mm thick and extends into tubules 
that lack horizontal partitions (tabulae) 
(Vacelet, 2002, p. 827). The innermost 
parts of the tubules in this species are filled 
with aragonite, and the soft tissue in the 
outermost part of “each (tubule) [calicular 
unit of Vacelet] corresponds to a single 
inhalant and exhalant canal” (Vacelet, 
2002, p. 827). Essentially, the basal calcar-
eous skeleton is a pitted platform composed 
of tubules (pits) with a horizontal partition 
upon which the thin layer of living tissue 
rests and is somewhat protected. Kirk-
patrick (1911, p. 690) suggested support 
and shelter for the function of this pitted 
outer surface in Merlia normani. Given the 
similarity of the basal calcareous skeletons 
in fossil chaetetids to those in extant taxa, 
one can safely assume a similar function for 
the skeleton of the fossils.

TABULAE

The tabulae are horizontal partitions that 
subdivide the tubules in some fossil and 
extant chaetetid skeletons and are commonly 
thinner than the tubule walls (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 
2A, Fig. 27–28). These discrete calcareous 
plates are generally flat or slightly curved and 
parallel to the growth surface in both fossil 
and extant specimens, where they occur. The 
outermost tabula, in extant forms, forms a 
floor for the overlying thin layer of living 
tissue (see Reitner & Gautret, 1996, pl. 
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49,1). Thus the tabula function as the base 
upon which the soft tissue rests, and they 
may or may not be perforated by a foramen 
that may or may not be subsequently infilled 
with calcite. The space containing the soft 
living tissue and the spaces between succes-
sive tabulae below the living tissue in extant 
specimens are referred to as crypts. Tabulae 
in Acanthochaetetes wellsi are irregularly 
spaced, may be slightly convex, horizontal, 
or slightly concave, and do not necessarily 
occur at the same level in adjacent tubules; 
however, they may be at the same level in a 
few tubules in a limited area (Hartman & 
Goreau, 1975, p. 3). This also applies to 
fossil chaetetids (West & Clark, 1984), 
and in some fossil specimens, the tabulae 
are incomplete. This incompleteness could 
be due to an opening where perforated by a 
foramen or produced by dissolution.

The space beneath the tabulae upon 
which the living tissues is supported and 
the next lower tabulae often contain crypt 
cells, also known as archaeocytes, thesocytes, 
gemmules, resting, or surviving cells. All 
of these terms refer to a resistant asexual 
reproductive body (see Boury-Esnault & 
Rützler, 1997, p. 10–18). Thus, they are 
similar to resting spores that some fungi 
and plants produce during adverse times, 
and they are capable of generating a fully 
functioning organism under favorable condi-
tions. These crypt cells may occur in one 
or more of the intertabular spaces (crypts) 
below the outermost tabulae that support 
the currently live tissue. In Merlia normani, 
there may be as many as five of these inter-
tabular storage spaces filled with crypt cells 
in any given tubule (Kirkpatrick, 1911, pl. 
32,9–10). Archaeocytes in M. normani are 
well illustrated by Reitner (1992, p. 239, 
fig. 66e). It is unlikely that crypt cells will 
be preserved in fossil chaetetids, and they 
have not been reported in fossil specimens. 
However, it is possible that if a living chae-
tetid were smothered by a sudden influx 
of sediment and the thin layer of living 
tissue were preserved, crypt cells could be 
preserved.

It is suggested that tabulae were gener-
ated during stressful times when the sponge 
produced and sealed off gemmules to protect 
them until more favorable conditions 
returned. Hartman and Goreau (1975, 
p. 3) noted that it is characteristic of Acan-
thochaetetes wellsi to die back for unknown 
intervals of time, perhaps erratically, and for 
new groups of tubules (calicles of Hartman 
& Goreau, 1975) to appear at a level above 
the previous living surface with three or 
more generations of dead, flattened masses 
of skeleton overlying one another. This same 
behavior can be inferred through studies of 
the different growth forms and occurrences 
of fossil chaetetids. Because tabulae do not 
necessarily occur at the same level in adja-
cent tubules, each tubule, or in some cases, 
small groups of tubules, are responding to 
unfavorable conditions by producing tabulae 
at different times and places across the 
living surface. Likewise, the irregularity in 
spacing between tabulae in adjacent tubules 
suggests a response by individual tubules to 
environmental conditions that results in the 
production of tabulae. 

Based on current understanding, it 
appears that the primary function of tabulae 
represented a platform to support the layer 
of living tissue and a secondary function of 
older tabulae is/was to protect the asexual 
reproductive bodies during unfavorable 
environmental episodes. It would seem 
that tubules might have also provide some 
strength and stability to the skeleton, but 
with each tubule sharing one or more of 
its walls with adjacent tubules, there seems 
to have been little need for additional rein-
forcement. 

As noted above, the basal calcareous skel-
eton of some chaetetid skeletons looks very 
much like the honeycombs constructed by 
bees. There is also a striking resemblance 
between these sponge skeletons and the 
structure of mycelium, the typical vegetative 
structure of some fungi, and, to some extent, 
in the sheetlike growth form of some tree 
fungi (Fig. 8–9). Fungi and sponges with a 
chaetetid skeleton are fairly simple organ-
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isms, and perhaps it is not surprising that 
both generate somewhat similar structures 
to house and protect asexual reproductive 
bodies.

PORE (FORAMEN)

A more or less circular opening near the 
center of individual tabulae in hypercalci-
fied demosponges with a chaetetid skeleton 
is referred to as a pore, or foramen. Kirk-
patrick (1911) called such an opening a 
foramen, and that term is defined by Boury-
Esnault and Rützler (1997, p. 39, fig. 208) 
as a “circular pore in laminae connecting 
adjoining interlamellar spaces.” By laminae, 
they appear to mean tabulae, because they 
identify the foramen as being in a tabula 
in Boury-Esnault and Rützler (1997, p. 
39, fig. 208). Tabulae in Acanthochaetetes 
wellsi are continuous and lack a foramen 
(Hartman & Goreau, 1975), but a foramen 
is present in the tabulae of Merlia normani 
(Kirkpatrick, 1911; Reitner, 1992, p. 239, 
fig. 66e). The occurrence of incomplete 
tabulae in fossil chaetetids might suggest the 
occurrence of foramina, but there are other 
explanations for incomplete tabulae in fossil 
chaetetids, as noted above. What has been 
identified as a foramen in a fossil chaetetid is 
illustrated in Treatise Online, Part E, Revised, 
vol. 4, Chapter 2A, Figure 29. Tubular spaces 
between tabulae contain gemmules in some 
extant forms; the same may be reasonably 
inferred for fossil chaetetids. A foramen 
would permit the movement and/or exchange 
of cellular matter and also for egress of the 
asexual reproductive bodies to the surface of 
the basal calcareous skeleton with the return 
of favorable environmental conditions. There 
seems to be no other reasonable explanation 
for its existence, and the fact that such an 
opening has not been documented in A. wellsi 
indicates that it may not have been essential 
for regenerative growth. 

Before we are able to more fully understand 
fossil chaetetids, the reproductive biology 
and larval history of the extant hypercalcified 
demosponges with chaetetid skeletons needs 
to be better known. As Reitner (1991, p. 

208) stated relative to sponges with a basal 
calcareous skeleton “. . . we must know more 
about the ontogeny of young sponges after 
settlement of the larva.”

PSEUDOSEPTA

Features that are apparently known only 
from fossils with a chaetetid skeleton are 
pseudosepta (see West & Clark, 1984). 
These calcareous structures are associated 
with longitudinal fission, one of the three 
ways the number of tubules in the basal 
calcareous skeleton may be increased. Pseu-
dosepta first appear as small, slightly raised 
areas (nodes) on the interior wall of the 
tubule (see Treatise Online, Part E, Revised, 
vol. 4, Chapter 2A, Fig. 34–35). One or 
more nodes may occur in any given tubule, 
which divides it into equal or unequal parts. 
With upward growth, the nodes expand 
outward and upward, parallel to the direc-
tion of the growth axis, resulting in septa-
like features. As two pseudosepta within 
a tubule approach each other, the parent 
tubule increases in size. Eventually, the 
pseudosepta may extend across the tubule, 
or merge with others, subdividing the orig-
inal tubule into two or more new tubules. 
Generally, the division of the parent tubule 
is along its shortest horizontal dimension. 
Therefore, pseudosepta are associated with 
the growth and expansion of the basal calcar-
eous skeleton.

SPICULES

These features are a component of the 
mineral skeleton, typically composed of 
silica in extant forms, but when observed 
in fossil forms, they are pseudomorphs of 
calcite, pyrite, or iron oxide (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 2A, 
Fig. 36–38). In extant forms, and some fossil 
chaetetids, there are both megascleres and 
microscleres. In the extant taxa, Acantho-
chaetetes wellsi, Ceratoporella nicholsoni, and 
Merlia normani, spicules are largely confined 
to the thin layer of soft tissue. Hartman and 
Goreau (1975, p. 4) stated that siliceous 
spicules are not incorporated into the basal 
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calcareous skeleton of A. wellsi, but Rützler 
and Vacelet (2002, p. 277) indicated that 
some microscleres that adhere to the tubule 
walls may be incorporated into the skeleton 
during fossilization. Although some spicules 
are trapped in the tubule walls of C. nichol-
soni, they are progressively dissolved in the 
basal calcareous skeleton (Vacelet, 2002, p. 
827). In M. normani, the megascleres occur 
as bundles along the sides and bottom of the 
open crypts, but rarely in the lower crypts 
(Kirkpatrick, 1911, p. 670, fig. 2, pl. 33,3). 

Microscleres in this species are contained 
along the surface of the soft living tissue 
(Kirkpatrick, 1911, p. 670, pl. 33,3). Because 
siliceous spicules are rarely incorporated into 
the basal calcareous skeleton of extant forms, 
they are commonly absent in fossil chaetetids. 
When they do occur in fossils, they are pseu-
domorphs, because of the ease with which 
siliceous spicules are dissolved, as noted in 
extant taxa. Megascleres in fossil chaetetids 
are thin tylostyle-like features (see Treatise 
Online, Part E, Revised, vol. 4, Chapter 2A, 
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Fig. 8. Comparison of form and structure of laminar chaetetid skeletons with the form and structure of some extant 
shelf fungi; 1, upper surface of the basic form of an extant shelf fungi, ×0.4; 2, oblique view of a laminar chaetetid 
skeleton, Pennsylvanian, upper Carboniferous, Myrick Station Limestone, Pawnee Limestone, Bourbon County, 
Kansas, compare with view 1, ×0.2; 3, lateral view of extant shelf fungi figured in view 1, ×0.5; 4, longitudinal 
section of chaetetid skeleton figured in view 2, the thin, arcuate white lines are the laminar chaetetid skeleton with 
darker matrix below, compare with view 3, ×0.3; 5, lower surface of an extant shelf fungi showing the irregular 
polygons that compose the mycelium, ×7; 6, upper surface of a chaetetid skeleton, Moscovian, upper Carbonifer-

ous, Moscow Basin, Russia, compare with view 5, ×2 (new).
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Fig. 36–37), and microscleres are more or 
less dark spheres, commonly seen as circles 
in sectioned specimens (see Treatise Online, 
Part E, Revised, vol. 4, Chapter 2A, Fig. 38). 

The main purpose of megascleres is the 
maintenance of rigidity in the sponge soft 
tissue (Bergquist, 1978; Koehl, 1982). 
Although it might seem that soft sponge 
tissue containing siliceous spicules would be 
a deterrent to a number of sponge predators, 
this is not necessarily the case. Bergquist 
(1978, p. 94) noted that grazing of sponges 
by opistobranchs, echinoderms, fish, and 
turtles is common, and that any defense 
against predation is biochemical. Peters and 
others (2006) concluded chemical defense 

explained the unpalatability of the sponges 
they studied. Finks (2003a, p. 214–216) 
suggested that spicules provided protection 
and a structural advantage. Finks suggested 
they were protected against predation, but 
also discouraged the settlement of larvae of 
sessile organisms. Jones, Blum, and Pawlik 
(2005) have studied the relationship between 
chemical and physical defenses against 
consumers of some marine sponges and 
concluded that in some cases, the spicules 
are a deterrent to predation. How much of 
the above is applicable to extant hypercalci-
fied demosponges with a chaetetid skeleton, 
and thus potentially to fossil chaetetids, is 
presently unknown. 

Fig. 9. Comparison of form and structure of laminar chaetetid skeletons with the form and structure of some extant 
shelf fungi (continued); 1, lateral view of a chaetetid skeleton, Moscovian, upper Carboniferous, Moscow Basin, 
Russia, ×1.75 (new); 2, lateral view of the mycelium of the extant shelf fungi figured in view Fig. 8.5, compare 
with view 1, ×4 (new); 3, upper surface of Meandriptera zardinii, Carnian, Upper Triassic, St. Cassiano beds near 
Cortina d’Ampezo, Italy, showing the meandroid shape of the tubules, ×4 (adapted from Dieci & others, 1977, 
pl. 1,2a; courtesy of Bollettino della Società Paleontologica, Italiana); 4, lower surface of an extant shelf fungi 

showing the meandroid structure of the mycelium, compare with view 3, ×5 (new).
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