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INTRODUCTION
Many sponges that secrete a rigid skeleton 

composed of calcium carbonate, which may 
be aragonite or calcite (high- or low-Mg 
calcite), are included in the hypercalcified 
sponges in Termier and Termier (1973, 
1977). Additionally, different types of 
spicular skeletons of calcite or siliceous 
mineralogy may be embedded within the 
rigid skeletons. Sponges with chambered 
construction are included in the group, 
termed Sphinctozoa, and those noncham-
bered representatives are included in the 
group termed Inozoa. These two groups were 
united in classic works in the Pharetronida 
(a division now regarded as obsolete; see 
Webby, 2010: Treatise Online, Chapter 8, 
Glossary, p. 14). Because of the polyphyletic 
nature of both of these groups, these terms 
cannot be used as systematic categories for 
classification of these sponges. The terms 
Sphinctozoa and Inozoa are used here for 
morphologically chambered or noncham-
bered sponges, respectively, without taking 
their systematic position into consideration. 

The  chambered  Sph inc tozoa  and 
nonchambered Inozoa have been previously 
assigned to the Calcispongiae but are now 
largely included in the Demospongiae. They 
represent polyphyletic hypercalcified sponge 
groups and range stratigraphically from the 
Cambrian to the Recent. Their external and 
internal morphology, occurrence of spicules, 
mineralogy and microstructure of their rigid 
skeletons, their roles as reef builders, their 
stratigraphic record and geographic distribu-
tion, patterns of evolution and extinction, 
and a short review of the classification are 
discussed. A list of known sphinctozoan 
and inozoan genera, with their stratigraphic 
occurrences, are also presented here (p. 
67–75). 

Hypercalc i f ied sponges ,  including 
sphinctozoans, inozoans, stromatoporoids, 
archaeocyaths, and chaetetids are important 
groups of carbonate-producing invertebrates 
occurring in Phanerozoic reef ecosystems 
and in shallow-water biotopes. Archaeocy-
aths in the Cambrian, stromatoporoids in 
the Ordovician to Devonian, and inozoans, 
sphinctozoans, and chaetetids in the late 
Paleozoic and Mesozoic, particularly in the 
Permian and Triassic, are the main inhabit-
ants of shallow-water biotopes and reef-
building organisms. 

The evolution of inozoan and sphincto-
zoan hypercalcified sponges was influenced 
by two significant events, one at the end of 
the Paleozoic era and the other at the end 
of the Triassic period, and by several other 
relatively minor extinction events. More 
than 90% of sponge genera became extinct 
during both of those major events, and no 
described Permian sponge species have been 
recognized in pioneer Middle Triassic reefs. 
However, several morphologically identical 
or similar genera, the so-called Lazarus taxa 
(Jablonski, 1986), reappear in the Upper 
Triassic (Norian) record. The event at the 
end of the Triassic was also dramatic for 
both the inozoans and sphinctozoans, for 
almost all documented sponge taxa in those 
groups became extinct. Only one genus of 
sphinctozoan, Stylothalamia, survived the 
Triassic-Jurassic boundary event. Again, 
morphologically identical or similar sphinc-
tozoan and inozoan taxa reappear in the 
Upper Jurassic record.

HISTORY

Because most Recent sponges bear skeletal 
components composed of spongin or spic-
ules, fossil sponges with a rigid skeleton but 
without spicules (due to their initial lack or 
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to loss related to recrystallization) have been 
assigned to different groups of organisms. 
For example, the stromatoporoids have been 
assigned to hydrozoans. Some have been 
classified as a separate phylum (phylum 
Archaeocyatha) or to other fossil groups, like 
the Chaetetida. All of these groups are now 
included in the Porifera (Hooper, van Soest, 
& Debrenne, 2002; Stromatoporoidea: 
Stearn, 1972, 1975, 2010b; Vacelet, 1985; 
Wood, 1987, 1990a; Stearn & Pickett, 
1994; Stearn & others, 1999; Cook, 2002; 
Archaeocyatha: Hartman & Goreau, 1970, 
1975; Gray, 1980; Debrenne & Vacelet, 
1984; Rigby & others, 1993; Debrenne & 
Zhuravlev, 1994; Debrenne, Zhuravlev, 
& Kruse, 2002; Chaetetida: Reitner & 
Wörheide, 2002; West, 2011). 

The so-called Pharetronida [including the 
chambered Sphinctozoa Steinmann (1882) 
or Thalamida de Laubenfels (1955), and 
nonchambered Inozoa Steinmann (1882), 
sponges with a rigid calcareous skeleton] 
were generally attributed to the Calcispon-
giae in the past. No special attention was 
paid to their spicular skeletons, which may 
have been embedded within the calcareous 
rigid skeleton in some representatives of 
both groups. Detailed investigations during 
the last half-century, especially those investi-
gations including scanning electron micros-
copy, have shown that both the sphincto-
zoans and inozoans groups are polyphyletic 
in origin. Both appeared for the first time 
in the Cambrian and occur in the geologic 
record up to the Recent. Because of their 
significantly different morphologies, the 
Sphinctozoa and Inozoa are treated sepa-
rately on the following pages.

SPHINCTOZOANS

Chambered skeletal construction, with 
or without spicular skeletons, and with 
different skeletal mineralogy (aragonitic and 
calcitic) and microstructure, has developed 
independently several times in different 
sponge groups during the geologic past. 
For example, archaeocyathan chambered 
sponges are known from the Cambrian and 

later (e.g., Archaeosycon, Cerbicanicyathus: 
Debrenne, Zhuravlev, & Rozanov, 1989; 
Debrenne & Wood, 1990; Debrenne, 
1992; Zhuravlev, 1989). Other examples 
might include the Silurian agelasid demo-
sponges Nematosalpinx and Aphrosalpinx 
(Myagkova, 1955a, 1955b; Rigby, Nitecki, 
& others, 1994; Finks & Rigby, 2004c), the 
Cambrian heteractinid chambered sponges 
Nucha, Wagima, and Jawonya (Pickett & 
Jell, 1983; Kruse, 1987; Pickett, 2002), 
the Jurassic–Cretaceous calcisponge cham-
bered sponges Barroisia Munier-Chalmas 
in Steinmann, 1882, and Muellerithalamia 
Reitner, 1987b, among others, along with 
the hexactinellid chambered sponges (Case­
aria Quenstedt, 1858, Dracolychnos Wu 
& Xiao, 1989; Rigby, Wu, & Fan, 1998, 
Triassic–Jurassic), and demosponge cham-
bered sponges (e.g., Celyphia Pomel, 1872; 
Radiocella Senowbari-Daryan & Wurm, 
1994). These may be the majority of late 
Paleozoic and Mesozoic chambered sponges. 
Because of the lack of rigid calcareous skel-
etons, representatives of chambered hexac-
tinellids and lithistid demosponges (Radio­
cella) are not treated in this chapter, nor are 
chambered archaeocyaths discussed here. 

EXTERNAL MORPHOLOGY

We include in the term external morphology 
all features of sphinctozoan sponges that are 
visible and recognizable from the skeletal exte-
rior. External features of sphinctozoan sponges 
include: (1) outer segmentation; (2) sponge 
shape; (3) chamber shape; (4) arrangement of 
the chambers; (5) inhalant canals or ostia in 
exowalls and their patterns; and (6) exhalant 
canals or oscula. The major morphological 
elements of sphinctozoan sponge skeletons are 
shown in Figure 1.

Outer Segmentation

Chambered organization is the most impor-
tant characteristic feature of sphinctozoan 
sponges, separating them from other hyper-
calcified sponge groups. Outer segmentation 
corresponds generally to internal segmen-
tation. However, due to overlap of earlier 
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Fig. 1. Major morphological skeletal elements of sphinctozoan sponges. On the right, main characteristic features 
of the porate forms, and on the left, aporate forms. Of the filling skeleton structures, only the reticular type, on 
the right, and the vesicular type, on the left, are shown in the interior of the last chamber. Skeletal elements like 
those in the aporate sponges may also occur in porate representatives (adapted from Senowbari-Daryan, 1990).

chambers by younger, later chambers in some 
representatives, especially those taxa with 
crescentlike chambers (e.g., the Triassic genus 
Senowbaridaryana, Fig. 2–3, or Zardinia, Fig. 

4), outer segmentation may be totally lacking 
or hard to recognize. The chambered sphinc-
tozoan construction of such sponges is recog-
nizable only after cutting into their skeletons 
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in longitudinal sections. Transverse sections 
of such sponges appear as several concentric 
circular walls arranged one inside the other. 
Outer annulation of skeletons, which generally 
reflects growth stages, does not consistently 
indicate internal segmentation. 

Single-chambered sphinctozoans are 
very rare, but have been reported from the 
Cambrian of Australia (Nucha Pickett & 
Jell, 1983; Blastulospongia Pickett & Jell, 
1983; Jawonya Kruse, 1983; Wagima Kruse, 
1987; and later only from the Upper Triassic 
of Vancouver Island, Canada, as the species 
Nucha? vancouverensis Stanley, 1998). 

Sponge Shape

Those multichambered sphinctozoan 
sponges with a constant chamber diam-
eter are usually cylindrical in shape (Fig. 
5.3–5.7). Club-shaped skeletons occur in 
some taxa (e.g., the Permian species Lemonea 
conica Senowbari-Daryan, 1990, or Senow­
baridaryana conica, Fig. 3, Fig. 6), where 
the sponge or chamber diameters increase 
during sponge growth. Representatives 
of sheetlike or flattened forms also occur 
with hemispherical chambers arranged in 
one layer (e.g., the Permian genus Neogua­
dalupia Zhang, 1987) or two layers (e.g., 
Platythalmiella Senowbari-Daryan & Rigby, 
1988), or occur with tubelike chambers 
(e.g., the Permian genus Subascosymplegma 
Deng, 1981) (Fig. 5.10, Fig. 7). Aggregate 
forms composed of clusters of chambers 
(e.g., Permian Exaulipora Rigby, Senowbari-
Daryan, & Liu, 1998; see Fig. 5.8, Fig. 8), 
or irregularly shaped sphinctozoans (e.g., 
?Polysiphonaria Finks, 1997) occur also in 
Permian and Triassic deposits. Sphincto-
zoans are usually single, unbranched stems. 
Dichotomously branched taxa (e.g., Nevada­
thalamia ramosa Senowbari-Daryan & Reid, 
1987) or rejuvenated skeletons are rare 
(e.g., Panormida priscae Senowbari-Daryan, 
1980b; Fig. 9). Marginal displacements 
of chamber walls have been observed, for 
example, in the Triassic species Vesicocaulis 
reticuliformis Jablonsky, 1972 (Senowbari-
Daryan, 1990). 

Shape of Chambers

Spherical to hemispherical chambers are 
the most common shapes in sphinctozoan 
sponges, as, for example, in some species of 
Colospongia or Sollasia (Fig. 10–11). Other 
chambers may be barrel shaped, as in some 
species of Amblysiphonella, or crescentlike, 
as in Cryptocoelia (Fig. 12) or Zardinia 
(Fig. 4). Chambers that are flattened rect-
angular (Enoplocoelia, Tolminothalamia), 
funnel shaped (Panormida, Fig. 9) or tube-
like (Cinnabaria or Subascosymplegma, Fig. 
7) occur also in other chambered sponges.

Fig. 2. Senowbaridaryana hydriotica Senowbari-Daryan, 
1990. Outer segmentation of this porate and siphonate 
sphinctozoan is totally lacking, but the chambered 
construction can be seen after cutting the specimen in 
longitudinal section. Crescentlike chambers contain 
reticular filling skeleton; Carnian, Triassic, Hydra, 
Greece, ×1.7 (Senowbari-Daryan & Schäfer, 1983). 
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Arrangement of Chambers

The arrangement of chambers in multi-
branched sphinctozoans may be monili-
form. In asiphonate species, hemispherical 
to subspherical chambers are arranged one 
above the other, as, for example, in the 
porate genus Colospongia (Fig. 10) or the 
aporate genus Sollasia (Fig. 11). Chamber 
arrangement may be catenulate, where ring-
like chambers are stacked one above the 
other in siphonate species, as in the porate 
genera Amblysiphonella (Fig. 13) and Poly­
tholosia or in the aporate genus Girtyocoelia 
(Fig. 14). Occurrences of several egg-shaped 
or cystlike chambers, arranged in one or 
more glomerate layers (like kernels of an ear 
of corn) around a spongocoel, are known 
from chambered sponges with either arago-

nitic or Mg-calcitic skeletons (Fig. 5.5–5.6, 
Fig. 6, Fig. 15–16). A glomerate arrange-
ment of the chambers was developed very 
early in calcitic chambered sponges, in the 
Cambrian chambered archaeocyath genus 
Polythalamia Debrenne & Wood (1990; 
see also Finks & Rigby, 2004c, p. 695, fig. 
459,2a–c) and in the Silurian genera Palaeo­
scheda Myagkova (1955a) and Aphrosalpinx 
Myagkova (1955b; see Rigby, Nitecki, 
& others, 1994). Arrangement of cystlike 
chambers in one or more layers around the 
spongocoel occurs also in Carboniferous 
and Permian taxa and again, once more, in 
Norian forms. For example, the Carbon-
iferous and Permian genus Discosiphonella 
Inai, 1936, is characterized by one layer of 
cystlike chambers around the spongocoel, 
and the contemporaneous Cystothalamia 

Fig. 3. Senowbaridaryana conica (Senowbari-Daryan & Schäfer, 1986). Marginal axial section through the conical 
sponge. Diameters of crescentlike chambers increase rapidly during growth of the sponge. The chamber interiors 
contain small tubes that are more or less parallel to the axis of the sponge; Norian, Triassic, Sicily, ×3 (Senowbari-

Daryan & Schäfer, 1986). 
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Girty (1908a) or Diecithalamia Senowbari-
Daryan (1990; Fig. 15) by more layers of 
chambers around the spongocoel (Garicía-
Bellido, Senowbari-Daryan, & Rigby, 
2004). Discosiphonella,  as an example 
of a so-called Lazarus fauna (Jablonski, 
1986), is not known from the Lower and 
Middle Triassic but appears again in the 
Norian Upper Triassic (Senowbari-Daryan 
& Link, 1998). The Ladinian–Carnian, 
Mg-calcitic sphinctozoan genus Alpinotha­
lamia Senowbari-Daryan, 1990 (Fig. 16) 

is also characterized by chambers that are 
arranged in more than one layer around the 
spongocoel. Glomerate arrangement of the 
cystlike chambers around the spongocoel 
occurs also in the Jurassic calcisponge genus 
Thalamopora (Römer, 1840). 

Inhalant Canals or Ostia in Exowalls 
and Their Patterns

Two kinds of inhalant canal systems are 
recognized in sphinctozoan sponges, based 
on their sizes and their distribution patterns 

Fig. 4. Zardinia cylindrica Senowbari-Daryan & Schäfer, 1983. Longitudinal section of sponge, with Mg-calcite 
mineralogy, exhibiting a retrosiphonate type of spongocoel and crescentlike chambers; because of overlap of older 
chambers by younger ones, the exowalls are thicker than interwalls and endowalls; Z. cylindrica, like other species 
of the genus, is characterized by tubular canals that diverge upward and outward through internal filling skeleton 
and chamber walls, to open in exterior of sponge; Carnian, Triassic, Hydra, Greece, ×3 (Senowbari-Daryan & 

Schäfer, 1983).
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in the exowall. These systems were termed 
porate and aporate by Seilacher (1962). 
The porate type is characterized by small 
openings, termed pores (or exopores), that 
are usually less than 1 mm in diameter and 
are evenly distributed in the external wall. 
The numbers of such pores may reach 100 
or more in a single chamber. These pores 
may have circular or oval cross sections. In 
some genera, such as in the Triassic genus 
Nevadathalamia or the Recent Vaceletia, 
spinelike elements may extend into the inte-
rior of the pores. Most pores, however, are 
simple, though dichotomously branched, 
multibranched, and labyrinthic-branched 
pore systems occur in some genera (Fig. 
17). 

The Permian species Follicatena permica 
Senowbari-Daryan, 1990 (Fig. 18), which 
has a chamber construction like that of Colo­
spongia, has chamber walls with screenlike 
cribribulla, each with numerous small open-
ings termed cribripores (bullipores). Pores 

combined with ostia, sometimes termed 
ostial pores (as in the Upper Triassic species 
Colospongia dubia Laube, see Senowbari-
Daryan, 1990, pl. 40,8–9; Finks & Rigby, 
2004c, fig. 462,2a), or pores combined 
with cribribulla with cribripores (as in the 
Upper Triassic species Colospongia wahleni 
Senowbari-Daryan & Stanley, 1988), are 
known from exceptional examples. 

Aporate sphinctozoans are character-
ized by chamber walls with large openings, 
termed ostia, which are usually larger than 
1 mm in diameter, and usually fewer than 
10 ostia occur per chamber. The ostia may 
be depressed or have elevated rims, or even 
have rims that are extended, tubelike, as, 
for example, in Girtyocoelia (Fig. 14). The 
latter openings are called exaules (sing., 
exaulos). The exaulos tube may be perfo-
rated with exaulos pores, as, for example, 
in the Permian genus Exaulipora Rigby, 
Senowbari-Daryan, & Liu, 1988 (Fig. 8), or 
it may be aporate, as in Girtyocoelia (Fig. 14). 

1

8 9
10

765432

Fig. 5. Main growth shapes of sphinctozoan sponges. 1, Single chambered (e.g., the heteractind genus Blastulospongia 
Pickett & Jell); 2, moniliform (e.g., Celyphia Pomel); 3, moniliform (e.g., Colospongia Laube); 4, catenulate (e.g., 
Amblysiphonella Steinmann); 5, monoglomerate (e.g., Discosiphonella Inai); 6, polyglomerate (e.g., Cystothalamia 
Girty); 7, stratiform (e.g., Lemonea Senowbari-Daryan); 8, uviform (e.g., Uvanella Ott); 9, platyform, stratiform 
(e.g., Neoguadalupia Zhang); and 10, platyform, tubular (e.g., Subascosymplegma Deng) (adapted from Senowbari-

Daryan, 1990). 
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Fig. 6. Reconstruction of Lemonea conica Senowbari-Daryan showing the conical shape of the sponge, bundles of 
spongocoels, and the stratiform chambers arranged radially around the spongocoels; chamber walls are perforated, 

but the pores are not shown; schematic, not to scale (Senowbari-Daryan, 1990). 
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The inner end of some exaules in aporate 
forms may have screenlike cribribulla, like 
those in some of the porate sphinctozoans, 
such as in Exaulipora (Fig. 8). 

Exhalant Canals or Oscula

The tops of some siphonate sphinctozoan 
sponges, like Amblysiphonella, may have a 
single large opening, an osculum, or several 
openings, or oscula, grouped as canal bundles 
and commonly located axially. Such axial 
canal bundles may occupy more than 70% of 
the whole sponge diameter, as, for example, 
in the Triassic species Diecithalamia polysi­
phonata Dieci, Antonacci, & Zardini, 1968 
(Fig. 15). Where a retrosiphonate axial tube 
or spongocoel is formed by downward exten-
sion of upper chamber walls (Fig. 19), the 
diameter of the osculum commonly appears 
larger than the diameter of the spongocoel. In 
most other types of constructions (Fig. 19), 
the diameter of the osculum corresponds to 
the diameter of the spongocoel. 

The spongocoel wall (endowall) may have 
pores or openings of the same size as those 
in the exowalls or interwalls, but they also 

may be different (Fig. 13–14). Several indi-
vidual spongocoels may be present in large, 
laterally extended sphinctozoan sponges, 
as in the Triassic species Cryptocoelia lata 
Senowbari-Daryan & Schäfer, 1983 (Fig. 
20), or separate spongocoel bundles may be 
developed, as in the Permian species Lemonea 
conica Senowbari-Daryan, 1990 (Fig. 6). In 
the Triassic Zanklithalamia multisiphonata 
Senowbari-Daryan, 1990, such bundles may 
pass through the whole sponge body. 

Starlike exhalant canal openings, an astro-
rhizal system, may be developed in a variety 
of stromatoporoid and inozoan sponges, 
and have been observed in a few genera of 
sphinctozoan sponges. In the Ordovician 
genus Cliefdenella Webby, 1969, or in the 
Triassic genus Tabasia Senowbari-Daryan, 
2005a, exhalant canals end in a starlike 
astrorhizal system (see Webby, 1969, 1979, 
1986; Stock, 1981; Webby & Lin, 1988). 
In the Permian sheetlike or funnel-shaped 
species Guadalupia explanata (King, 1943), 
one side of the sheets commonly has several 
astrorhizal canals that served as exhalant 
canals (Fig. 21). 

Fig. 7. Reconstruction of Subascosymplegma oussifensis (Termier & Termier, 1977). The sheetlike or hemispherical 
sponge is composed of arcuate, tubelike chambers, and the younger chambers overlap preceding chambers; upper 

Permian, Djebel Tebaga, Tunisia; schematic, not to scale (Senowbari-Daryan & Rigby, 1988).
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INTERNAL MORPHOLOGY

Internal morphologic elements are char-
acteristic features that can be observed 
after cutting the skeleton. These features 
include the internal segmentation and 
chamber shape, internal walls (interwalls 
and endowalls) and their characteristics, 
such as whether they are double or single 
layered, their thickness, and patterns of 
perforation. Also included are spongocoels 
and their formation type, and the types of 
filling skeletons within chamber interiors.

Internal Segmentation

The internal segmentation, a most 
important feature of sphinctozoan sponges, 
usually corresponds to outer segmenta-
tion. However, a few taxa, especially those 
with crescentlike chamber shapes, have 
distinct internal segmentation (e.g., Cassian­
othalamia Reitner, 1987a; Uvothalamia 
Senowbari-Daryan, 1990), but their outer 
segmentation is poorly developed, or even 
totally lacking (Fig. 2, Fig. 4). 

Interwalls, the walls between chambers, 
may have the same thickness as exowalls of 
the same chambers, but they also may be 
different. Perforation patterns of interwalls 
usually correspond to those of the exowalls, 
but they also may be different in some taxa, 
as in some species of Amblysiphonella or in 
Girtyocoelia (Fig. 13–14).

Internal Canal System

There  a re  three  types  o f  exha lant 
canal systems in sphinctozoan sponges. 
These were called the Colospongia-type, 
Sphaerocoelia-type, and Amblysiphonella-
type by Senowbari-Daryan (1990) (Fig. 
22). The Colospongia-type (Fig. 10, Fig. 
22.3) system is without a separate siphon 
or spongocoel and was called asiphonate 
by Seilacher (1962). It is assumed that 
pores in the exowalls (exopores) served as 
the inhalant canal system, and that pores at 
the top of chambers (interpores) served as 
exhalant openings. In the Sphaerocoelia-type, 
each chamber top is pierced by a single large 
pore or osculum that served as the exhalant 

Fig. 8. Reconstruction of Exaulipora permica (Senowbari-Daryan), Permian, Guadalupe Mountains, Texas and 
New Mexico, United States, showing perforated exaulos walls and the cribribulla with cribripores at the base of 
the exaules; vesiculae occur within the interior of the segment, but they are not shown (Senowbari-Daryan, 1990).
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Fig. 9. Reconstruction of Panormida priscae Senowbari-Daryan. The porate and siphonate sponge is characterized 
by funnel-shaped chambers and rejuvenescence; chamber interiors are filled with reticular filling structure; Norian, 

Triassic, Sicily; schematic, not to scale (Senowbari-Daryan, 1990).
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opening (Fig. 11, Fig. 22.2). This system 
was called cryptosiphonate by Seilacher 
(1962). The siphonate Amblysiphonella-type 
(Fig. 13, Fig. 22.1) system is character-
ized by development of a true spongocoel, 
separated from the chamber by its own wall 
(endowall). The exhalant system types of 
Seilacher (1962), thus, are largely character-
ized by the type of spongocoel formation. In 
retrosiphonate sponges, the chamber roofs 
are curved downward, growing until they 
merge with roofs of preceding chambers, 
as, for example, in Amblysiphonella (Fig. 
19.4). In ambisiphonate sponges, chamber 
roofs grew upward and arched horizontally 
toward the osculum. That system is recog-
nizable by a large pore in the middle of the 
endowall, as, for example, in Barroisia (Fig. 
19.5). Prosiphonate sponges are character-
ized by upward growth of chamber roofs, 
as, for example, in Girtyocoelia (Fig. 19.6). 

It should be mentioned that recognition 
of the spongocoel type is not always easy, 
sometimes it is virtually impossible. 

Thicknesses and perforation patterns 
of the spongocoel wall (endowall) may be 
the same as, or different from, those of the 
interwalls or exowalls (Fig. 13–14). 

In some taxa, as in the Triassic species 
Zardinia cylindrica Senowbari-Daryan, 
1990, for example, numerous additional 
inhalant canals converge inward through the 
internal filling structure and chamber walls 
from the outside of the sponge, and coarser 
exhalant canals open into the spongocoel 
through the inner part of the wall (Fig. 
4). Some of the inhalant canals have small 
convergent branches near the dermal surface. 

Filling Skeleton

Chamber interiors of some sphinctozoan 
sponges lack any internal structures, but 
many others have skeletal elements within 
chambers formed while the chambers were 
functional parts of the biologic activity of 
the sponges. These special kinds of skeletal 
elements are called filling skeletons or filling 
structures. Six types of filling skeletons have 
been recognized in chambered sphinctozoan 
sponges, including: reticular, trabecular, 
tubular, septate, sporelike, and pisolitic 
skeletons (Fig. 23). A combination of two 
filling skeletons (septate + reticular) is an 
exceptional case and has been reported only 
in the Triassic genus Ceotinella Pantic, 1975 
(Fig. 23). Vesiculae may occur with (Cryp­
tocoelia) or without (Colospongia, Sollasia) 
other internal structures within the same 
sponge (Senowbari-Daryan, 1990). Vesic-
ulae are not considered here to be elements 
of a filling skeleton, because they sealed off 
older chambers or parts of chambers and 
pores that were no longer occupied or used 
by the sponge. Vesiculae, their secretion 
processes in several stages, and the sealing of 
pores by vesiculae are shown in Figure 24, 
in the Triassic genus Jablonskyia Senowbari-
Daryan, 1990. 

A filling skeleton has not been reported 
from Cambrian sphinctozoans. Cambrian 

Fig. 10. Colospongia catenulata Ott, 1967. Longi-
tudinal section through five spherical-hemispherical 
chambers arranged in a moniliform series, one above 
another; chamber walls are pierced by uniform, equal-
sized, and evenly distributed pores; chamber interiors 
contain some vesiculae; Ladinian–Carnian, Triassic, 

Wetterstein Limestone, Austria, ×5 (new). 
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Fig. 11. Sollasia ostiolata Steinmann, 1882, an abundant and cosmopolitan sphinctozoan sponge in Carbonifer-
ous and Permian deposits; a, longitudinal section cuts through numerous moniliform cryptosiphonate chambers 
with thick, aporate chamber walls; arrows indicate large openings (ostia) in few chambers cut by the section; 
lower Permian, Sosio valley, Sicily, ×4.6 (adapted from Senowbari-Daryan & Di Stefano, 1988a); b, reconstruc-
tion showing large opening in the roofs of the chambers and weakly rimmed ostia in the exowalls (adapted from 

Senowbari-Daryan, 1990).

a
b



14 Treatise Online, number 28

segmented sponges with different filling skel-
etons, described in the literature as archaeocy-
aths, are not considered here. Most Ordovi-
cian representatives of sphinctozoans also lack 
a filling skeleton. The oldest type of internal 
filling skeleton seems to be the tubular type, 
where tubes extend into the chamber interiors 
from exopores of the exowall in the Ordovi-
cian species Amblysiphonelloides tubulara 
Rigby & Potter, 1986, from the Klamath 
Mountains, northern California. Similar 

tubes may also occur in Girtyocoelia canna, 
described by the same authors from the same 
locality. The large, coarse, pillar-like vertical 
tubes in Cliefdenella Webby, 1969, extend 
through several flattened low chambers and 
with the small vertical tubes that pierce only 
a few layers serving as exhalant tubes. They 
provide good examples of fine and coarse 
exhalant structures in the basic water vascular 
system and are not classified as filling struc-
tures. They are totally different from the 
tubular elements that are more or less hori-
zontal, running perpendicular to the sponge 
axis in Amblysiphonelloides Rigby & Potter, 
1986 (see Webby, 1969; Webby & Morris, 
1976; Rigby & Potter, 1986). Later tubular 
filling skeleton elements occur in several 
genera, in the Permian genus Pseudoamblysi­
phonella Senowbari-Daryan & Rigby, 1988, 
and in the Triassic genus Polytholosia Rauff, 
1938. Tubular filling skeletons are not known 
from Jurassic and younger sphinctozoans. 

Trabecular (pillar-like) filling skeletons 
(Fig. 23, Fig. 25) appear first in the Silu-
rian genus Rigbyspongia de Freitas, 1987, 
from Cornwallis Island, Canadian Arctic. 
This type of filling skeleton is common in 
Permian to Triassic sphinctozoans, as well as 
in Cretaceous–Paleogene/Neogene represen-
tatives, and in the modern Vaceletia crypta 
(Vacelet, 1977; Pickett, 1982). 

Reticular filling skeletons (Fig. 23, Fig. 
26) seem to have developed originally in the 
Ordovician species Amblysiphonella reticulata 
Rigby & Potter (1986), but are well known 
in the Middle Devonian genus Hormo­
spongia, described by Rigby and Blodgett 
(1983) from central Alaska. This type of 
filling skeleton is common in Permian and 
Triassic representatives, but in the post-
Triassic record it is known only from the 
Jurassic calcisponge genus Muellerithalamia 
Reitner, 1987a. 

Sporelike filling skeletons (Fig. 23) are not 
common and, until now, have been described 
only from Permian examples, such as Intra­
sporeocoelia (Fan & Zhang, 1985; Rigby, Fan 
& Zhang, 1988), and from the Triassic genus 
Delijania Senowbari-Daryan, 2005a. 

Fig. 12. Cryptocoelia zitteli Steinmann, 1882, an 
abundant sponge within the Ladinian–Carnian reefs 
in the western Tethys. Longitudinal section through 
the sponge shows numerous crescentlike chambers in 
a moniliform arrangement; spongocoel is cut in upper 
part of the sponge; chamber interiors are filled with 
trabecular (pillarlike) filling skeleton showing distinct 
lamination (see Fig. 20); Carnian, Triassic, Slovenia, 

×3.3 (Senowbari-Daryan, 1981). 
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A pisolitic-like filling skeleton (Fig. 23) 
is only known from the genus Pisotha­
lamia, described from the upper Permian of 
southern Tunisia by Senowbari-Daryan and 
Rigby (1988). 

Septate-type filling skeletons (Fig. 23) 
occur in the Devonian genus Radiothalamos 
Pickett & Rigby, 1983, and in the Triassic 
genus Phragmocoelia Ott, 1974. 

Two kinds of filling skeleton do not 
normally occur within the same sponge. 
The Triassic genus Ceotinella Pantic (1975), 
however, is exceptional, for in that genus 
peripheral septate and axially reticular filling 

skeletons (Fig. 23) occur in the same sponge 
chambers. 

It should be mentioned that internal filling 
skeletons are more common in porate than in 
aporate representatives of sphinctozoans. This 
is probably related to the less skeletal resistance 
of the porate construction, caused by perfora-
tion of the chamber walls. It was probably a 
benefit for these sponges to stabilize their skel-
etons by secreting the internal filling structure. 

Spicules

The only living sponge with sphinc-
tozoan construction, Vaceletia (Vacelet, 

Fig. 13. Amblysiphonella sp. Marginal axial section exhibiting hemispherical chambers with perforated exowalls; 
interwalls are aporate and double layered; endowall is thinner than the exo- and interwalls and is pierced by large 

and unevenly distributed openings; Norian–Rhaetian, Triassic, Nayband Formation, Iran, ×4 (new).
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1977), does not have a spicular skeleton. 
Fossil sphinctozoan sponges commonly 
lack spicules, possibly because they were not 
preserved, or they were initially rare. 

There are no reports of occurrences of 
spicules in sphinctozoan archaeocyaths. 
However, Reitner (1991, 1992) reported 
spicules in close proximity to the noncham-
bered coscinocyathid and other archaeo-
cyaths in lower Cambrian reefs of South 
Australia, suggesting the spicules were 
either entrapped during secondary skeletal-
forming processes of the archaeocyaths, or 
secreted from within their primary skel-

etons. Debrenne and Zhuravlev (1992), 
however, considered it more likely that the 
spicules, like certain trilobite fragments, 
were entirely incorporated in archaeocyathan 
secondary skeletons from debris that lay 
close by on the sea floor. Indeed, none had 
a primary skeletal origin, as confirmed by 
Debrenne, Zhuravlev, and Kruse’s more 
general statement, in the Treatise Online, 
Part E, Revised Chapter 18A, p. 41, that 
“No undoubted spicules have been recorded 
from the primary skeleton of archaeocy-
aths.” Polyactines have been reported in the 
single-chambered Cambrian sphinctozoan 
heteractinid sponge Jawonia (Kruse, 1987; 
Debrenne & Wood, 1990; Reitner, 1992; 
Pickett, 2002). Sphinctozoan hexactinellid 
sponges have chambered skeletons composed 
of hexactine spicules arranged in a latticelike 
structure, as shown in an Upper Triassic 
Iranian species of Casearia (Fig. 27). Sphinc-
tozoan construction with both spicular 
and rigid skeletons is not known in the 
hexactinellids. Lithistid demosponges with 
skeletons composed of tetractine spicules 
arranged in a latticelike structure, without 
a rigid skeleton, are known only in the 
Upper Triassic genus Radiocella (Senowbari-
Daryan & Würm, 1994) from the Alps.

In so-called classic sphinctozoan sponges, 
sensu Steinmann (1882), spicules have been 
reported from only a few upper Paleozoic 
and Triassic representatives. Monaxon sili-
ceous spicules, replaced by calcite, pyrite, 
or other minerals, were reported from some 
Permian forms, including Pisothalamia 
spiculata Senowbari-Daryan & Rigby, 1988, 
and Subascosymplegma oussifensis (Termier 
& Termier, 1977), and from some Triassic 
genera with aragonitic skeletal microstruc-
ture, such as in Colospongia Laube, 1865, 
Celyphia Pomel, 1872, Thaumastocoelia 
Steinmann, 1882, or with Mg-calcitic skel-
etal mineralogy, as in Cassianothalamia 
Reitner, 1987a (Senowbari-Daryan, 1989, 
1990, 1991; Senowbari-Daryan & García-
Bellido, 2002a; Senowbari-Daryan & 
Rigby, 1988; Reitner, 1987b, 1990, 1992). 
The spicular skeletons of all these taxa are 

Fig. 14. Reconstruction of Girtyocoelia beedei (Girty, 
1908b) showing unevenly perforated endowall of the 
spongocoel, and aporate exowalls with sporadic ostia 
with tubular exaulos; similar to Sollasia, Girtyocoelia is 
also an abundant and cosmopolitan sponge in Carbon-
iferous and Permian deposits; schematic, not to scale 

(adapted from Senowbari-Daryan, 1990).
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composed of monactine macroscleres (Fig. 
28). Possible microscleres are known only 
from the Carnian species Cassianotha­
lamia zardinii Reitner, 1987a, which has a 
Mg-calcitic rigid skeleton (Reitner, 1987b, 
1990). However, Engeser and Appold 
(1988) did not find microscleres in Cassiano­
thalamia. The identification of some cavities 
within the pillar-filling structures as spicules 
in some Mesozoic sphinctozoan sponges 
(Murguiathalamia Reitner & Engeser, 
1985, or Vascothalamia Reitner & Engeser, 
1985) by Reitner and Engeser (1985) 
and Reitner (1990, 1992) seems to be a 
misinterpretation, as discussed in detail by 
Senowbari-Daryan (1990, p. 23). Calcitic 
triactine spicules have been found in several 
Jurassic and Cretaceous genera: in Barroisia 
Munier-Chalmas, 1882 (Quenstedt 1858; 
Seilacher, 1962; Senowbari-Daryan & 
Abate, 1996; Senowbari-Daryan & Garcia-
Bellido, 2002a); Sphaerocoelia Steinmann, 
1882; and Muellerithalamia Reitner, 1987b 
(Reid, 1967, 1968; Debrenne & Lafuste, 
1972; Senowbari-Daryan, 1989, 1990; 
Reitner, 1990, 1992). The different basic 
spicules present in skeletons of hypercalcified 
sphinctozoan sponges indicate the polyphy-
letic nature of this group. 

Mineralogy and Microstructure 
of the Rigid Skeleton

Because of strong recrystallization, the 
original mineralogy of the rigid skeleton of 
early Paleozoic sphinctozoans is not known 
(Rigby & Potter, 1986). However, the 
granular microstructure of those Silurian 
chambered sponges, described as archaeo-
cyaths by previous authors and redescribed 
by Rigby, Nitecki, and others (1994) as 
sphinctozoans, strongly suggests an original 
skeletal mineralogy of high-Mg calcite. 
The similarities of mineralogy and micro-
structure of sphinctozoan sponges and 
archaeocyaths were discussed by Kruse and 
Debrenne (1989) and Zhuravlev (1989). 
The skeletal mineralogy of representatives 
of these sponges is not discussed in detail 
in this paper.

The primary skeletal mineralogy (now 
aragonite or neomorphic calcite) of the 
majority of upper Paleozoic and Meso-
zoic sphinctozoans was aragonite, like in 
the Recent Vaceletia (Veizer & Wendt, 
1976; Wendt, 1977, 1978, 1979, 1984, 
1990; Vacelet, 1979a; Gautret, 1985; 
Senowbari-Daryan, 1990). Sphinctozoans 
with Mg-calcitic mineralogy (up to 11 Mol% 
MgCO

3
; Russo & others, 1991) appeared in 

the Middle Triassic (Anisian), became abun-
dant in the Ladinian and Carnian (Alpinotha­
lamia Senowbari-Daryan, 1990; Cassianotha­
lamia Reitner, 1987a; Stylothalamia Ott, 
1967), and became extinct at the end of the 
Triassic. However, the only documented 
sphinctozoan sponge that survived beyond 
the Triassic–Jurassic boundary, Stylothalamia 
columnaris (Le Maitre, 1935), is known from 
several localities (see Senowbari-Daryan & 
Hamedani, 1999). The high-Mg calcite of 

Fig. 15. Diecithalamia polysiphonata (Dieci, Antonac-
ci, & Zardini, 1968). The longitudinal section exhibits 
cystlike chambers arranged in two or more layers (poly-
glomerate) around an axial spongocoel that is composed 
of several individual tubes; Carnian, Triassic, Hydra, 

Greece, ×3 (new). 
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its skeleton is not proven, and the skeletal 
preservation suggests that the primary skeletal 
mineralogy of this sponge seems to have been 
aragonite. Both aragonitic and high-Mg-
calcitic mineralogy of the rigid skeleton also 
occurs in Jurassic–Cretaceous sphinctozoan 
sponges, some of which were described as 
hydrozoans (e.g., Actinostromaria Chalmas in 
Dehorne, 1920; this genus is now considered 
by Wood, 2011, p. 9, to be a demosponge 
agelasid stromatoporoid).

The processes of biomineralization in 
hypercalcified sponges in general were 

discussed by Simkiss (1986), and Stearn 
and Pickett (1994), and of sphinctozoans 
and inozoans in particular, by Gautret 
(1985), Gautret and Cuif (1989), Cuif 
and Gautret (1991), Wendt (1979, 1990), 
Finks (1990), and Reitner and others 
(1997). Figure 29 shows these processes of 
calcification in the Triassic genus Jablonskyia 
Senowbari-Daryan, 1990; for a detailed 
description see Senowbari-Daryan (1997). 

The six principal types of microstructures 
known in sphinctozoan sponges include (Fig. 
30): (1) spherulitic, (2) irregular, (3) orthog-
onal, (4) clinogonal, (5) lamellar, and (6) 
microgranular (Debrenne & Lafuste, 1972; 
Cuif, 1973, 1974, 1979; Cuif & others, 1979; 
Cuif & others, 1990; Senowbari-Daryan, 
1990, 1991; Senowbari-Daryan & García-
Bellido, 2002a; Wendt, 1979, 1984, 1990). 

The earliest known microstructure of 
sphinctozoan sponges seems to be of lamellar 
type, reported from the Ordovician genus 
Angullongia by Webby and Rigby (1985) and 
Rigby and Potter (1986). Wendt (1984), 
in contrast to Jones (1979), concluded that 
lamellar microstructure was caused by a 
diagenetic process and was not developed as 
a primary structure in the sponges. However, 
the excellent aragonitic preservation of the 
rigid skeleton of Celyphia submarginata 
Münster, 1841 (Fig. 28), from the Cassian 
Formation (Dolomite, Italy), suggests that 
the lamellar microstructure in this sponge 
is primary (Senowbari-Daryan, 1990, 1991; 
Reitner, 1992). Lamellar microstructure is 
also known from the other Triassic genus 
Montanaroa Russo (1981). 

The spherulite type of microstructure 
in sphinctozoans is known from several 
Carboniferous and Permian genera, such as 
Sollasia and Girtyocoelia. Spherulitic micro-
structure is the most common type in upper 
Paleozoic and Triassic sphinctozoans with an 
aragonitic skeletal mineralogy (Gautret, 
1985; Wendt, 1990; Mastandrea & Russo, 
1995). These spherulites are of different sizes 
in various taxa.

Granular microstructure ( irregular 
micritic, Müller-Wille & Reitner, 1993) 

Fig. 16. Alpinothalamia bavarica (Ott, 1967), a porate-
aporate sponge, with Mg-calcite skeletal mineralogy, 
composed of numerous cystlike chambers arranged 
in two or more layers around an axial spongocoel that 
has a thick endowall; Carnian, Triassic, Sicily, ×1.5 

(Senowbari-Daryan & Abate, 1986).
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a

d

c

b

Fig. 17. Perforation pattern in porate sphinctozoans; a, single pores, b, dichotomously branched pores, c, multi-
branched pores, and d, labyrinthic branched pores; schematic, not to scale (Senowbari-Daryan, 1990). 



20 Treatise Online, number 28

Fig. 18. Reconstruction of Follicatena permica Senowbari-Daryan, 1990. The exowall and interwalls of this monili-
form and Colospongia-like sponge contains numerous openings in the chamber walls of cribribulla with cribripores; 
cribribulla are not developed near bases of the chambers; species is known from the Permian of Sicily; schematic, 

not to scale (Senowbari-Daryan, 1990).
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is typical of sphinctozoan sponges with high-
Mg-calcite mineralogy, such as the Triassic 
genera Cassianothalamia Reitner, 1987a, 
Uvanella Ott, 1967, or Alpinothalamia 
Senowbari-Daryan, 1990. Granular micro-
structure is also developed in some Jurassic 
and Cretaceous chambered sponges, such 
as in Boikothalamia convexa (Boiko, 1979), 
and other sponges described as hydrozoans 
in the literature (the Upper Jurassic genus 
Actinostromaria Chalmas in Dehorne, 
1920), although this genus is now regarded 
by Wood (2011, p. 9) as a demosponge: 
interpreted as an agelasid stromatoporoid. 

The aragonitic rigid skeleton of modern 
Vaceletia is composed of irregularly arranged 
needles of aragonite (Gautret ,  1985; 
Wendt, 1990; Cuif & Gautret, 1991; 
Wood, 1991b; Mastandrea & Russo, 
1995). Irregular microstructure is known 
also from some fossil representatives with 

aragonitic skeletal mineralogy, such as the 
Triassic genera Colospongia Laube, 1865, or 
Solenolmia Pomel, 1872. 

Clinogonal microstructure has been 
reported from the secondary (internal) layer 
of the skeletal wall in the Triassic species 
Thaumastocoelia cassiana Steinmann, 1882 
(see Finks & Rigby, 2004c, p. 664). 

PALEOBIOLOGY, PATTERNS OF 
WATER CIRCULATION, AND 

PALEOECOLOGY

 In the living chambered sponge Vaceletia, 
only the last added, or youngest, cham-
bers are occupied with living soft body 
(Vacelet, 1979b). This is also true in some 
other hypercalcified sponges, such as Cera­
toporella Hickson, 1911, in which only 
about 1 mm is occupied by the soft body 
(Hartman & Goreau, 1966, 1970), or in 
Astrosclera willeyana Lister, 1900, in which 

1   asiphonate

6   prosiphonate5   ambisiphonate4   retrosiphonate

3   pseudoosiphonate2   cryptosiphonate

Fig. 19. Theoretical consideration of Seilacher (1962) for the formation of canals in sphinctozoan sponges. 1, 
Asiphonate, Colospongia; 2, cryptosiphonate, Sollasia; 3, pseudosiphonate, Senowbaridaryana; 4, retrosiphonate, 
Amblysiphonella; 5, ambisiphonate, Barroisia; and 6, prosiphonate, Girtyocoelia. The recognition of retrosiphonate, 

ambisiphonate, and prosiphonate types is not always easy (adapted from Seilacher, 1962).
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only about 1 cm of the youngest part of 
the skeleton is occupied by the soft body 
(Wörheide & others, 1997). This suggests 
that in fossil chambered sponges, the living 
sponge body, perhaps, was also limited 
to the last chambers. This assumption is 
supported by observations of some internal 
skeletal structures. For example, vesiculae are 
interpreted as a type of secondary skeletal 
element that may occur more abundantly 
within older chambers. They may partially 
or entirely, internally, seal off the inhalant 
pores of the exowalls (Fig. 24). In addition, 
other kinds of internal skeletal structures, 
which are interpreted as support organs of 
the skeleton, are commonly observed within 
the older chambers. The rigid exoskeleton 
(chamber walls) was probably covered by 
a thin organic membrane, like in modern 
Vaceletia. 

As discussed above in the section on 
Internal Canal System (p. 10), there were 
principally three types of exhalant canal 
systems in sphinctozoan sponges (Fig. 
22). These were termed Colospongia-type, 

Sphaerocoelia-type, and Amblysiphonella-
type by Senowbari-Daryan (1990). The 
Colospongia-type, called asiphonate by 
Seilacher (1962), is without a separate 
spongocoel. Thus, it is assumed that the 
lateral pores of the exowalls served as 
inhalant canals. Water entered via these 
inhalant canals and then circulated through 
the small choanocyte chambers, located 
within the chamber interiors, and then 
exited through the interpores that served 
as exhalant canals. The large openings in 
chamber interwalls in the Sphaerocoelia-type 
system likely served as exhalant canals. A 
spongocoel was most probably developed, 
which extended as a tubular large opening 
through the whole sponge and was bounded 
by soft tissue within the chamber interiors. 
The Amblysiphonella-type system had an 
axial canal (or a bundle of axial canals). 
Water passed through exopores into the 
chamber interiors, and after circulation in 
choanocyte chambers, exited through the 
axial canals and osculum. Similar occupation 
of the main chambers by smaller choanocyte 

a

b

Fig. 20. Cryptocoelia lata Senowbari-Daryan & Schäfer, 1983. Drawing of a longitudinal thin section exhibiting 
laterally extended chambers, numerous upward and outward radiating exhalant canals, and the lamellar structured 
trabecular (pillarlike) filling skeleton within the chamber interiors, as in Cryptocoelia zitteli Steinmann, 1882; 

Carnian, Triassic, Hydra, Greece; a, ×6, b, ×3 (Senowbari-Daryan & Schäfer, 1983). 



Sphinctozoan and Inozoan Hypercalcified Sponges 23

chambers and the passage of water through 
the skeleton in some chambered archaeo-
cyaths were reconstructed by Zhuravlev 
(1989). 

According to Kruse (1987), Cambrian 
sphinctozoans did not live in reef envi-
ronments. Ordovician to Carboniferous 
hypercalcified sphinctozoans are commonly 
found in what were shelf sediments. Sedi-
mentological and paleontological data indi-
cate that during the latest lower Permian 
to the middle Permian, sphinctozoans 
changed their biotope. Middle and upper 
Permian and Triassic sphinctozoans inhab-
ited shallow-water environments, mainly 
reef or reefal biotopes. Cretaceous sphinc-
tozoans are also found in deposits of similar 
environments (Reitner & Engeser, 1985). 
Sedimentological and paleontological data 
indicate that sphinctozoans lived mostly 
in low-energy environments, below wave 
base, in the photic zone, usually at depths 

of 15–50 m (Senowbari-Daryan & Rigby, 
1988; Senowbari-Daryan, 1991). According 
to Fagerstrom (1984), the different shapes 
and growth types of Permian sphinctozoans 
suggest they functioned in three different 
ways in the reef communities: as bafflers 
and sediment traps, as frame builders, and 
as sediment binders. 

The modern sphinctozoan sponge 
Vaceletia lives in cryptic habitats on outer 
slopes of coral reefs in the Indo-Pacific region 
at depths of 15–38 m (Vacelet, 1979b; 
Basile, Cuffey, & Konich, 1984). However, 
the majority of Permian and Triassic sphinc-
tozoan sponges were upright, growing organ-
isms attached to hard substrates on the sea 
bottom. The observation and interpretation 
of Wood, Dickson, and Kirkland-George 
(1994, 1996) that most sphinctozoans of 
the Permian Capitan reef were cryptobionts 
inhabiting cavities made by other organ-
isms were not confirmed by other workers 

Fig. 21. Reconstruction of Guadalupia explanata (King, 1943) is characterized by numerous hemispherical cham-
bers arranged beside and above one another. Exowalls on the lower outside are perforated (inhalant pores), and 
the opposite upper surface bears several astrorhizal canal systems that served as exhalant canals. The sponge is 
abundant in Permian reefs, Guadalupe Mountains, Texas and New Mexico, United States; schematic, not to scale 

(Senowbari-Daryan, 1990).
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(Rigby, Senowbari-Daryan, & Liu, 1998; 
Fagerstrom & Weidlich, 1999a; Newell, 
2001; Noé, 2003). 

REVIEW OF CLASSIFICATION

Steinmann (1882) was the first author to 
classify chambered sponges. He placed them 
in four families, based on the combination 
of the presence or absence of a spongocoel 
and the type of filling skeleton within the 
chamber interiors. Girty (1908a) added two 
additional families to Steinmann’s (1882) 
families. de Laubenfels (1955) was the 
next author to add two more families to the 
sphinctozoan sponges. Based on the external 
pattern of perforation (porate or aporate), 
Seilacher (1962) created two superfam-
ilies (Porata and Aporata) and assigned 
all known families to these superfamilies. 
Later, Seilacher’s superfamilies were raised 
to suborder ranks by Pickett and Rigby 
(1983). The Seilacher (1962) classification 

was also modified by Ott (1967). Based on 
the presence of or lack of a spicular skeleton, 
and its chemical composition (siliceous or 
carbonate) and on the mineralogical compo-
sition of the rigid skeleton (aragonite or Mg 
calcite), Senowbari-Daryan (1990) classi-
fied the chambered sponges into six orders 
(compare Rigby & others, 1993).

1. Sphaerocoeliida Vacelet, 1979b. 
Calcareous spicular skeleton, calcitic rigid 
skeleton primary aragonite? Calcispongiae; 
Jurassic. 

2. Verticillitida Termier & Termier (in 
Termier, Termier, & Vachard, 1977). 
With or without primary siliceous spic-
ules, rigid skeleton composed of aragonite. 
Demospongiae; Triassic–Recent.

3. Permosphincta Termier & Termier, 
1974. Aragonitic rigid skeleton lacking 
spicules. Demospongiae? Calcispongiae?; 
Cambrian–Cretaceous.

4. Pisothalamida Senowbari-Daryan 
& Rigby, 1988. Siliceous spicular skel-

1 32

Fig. 22. Three principal types of water circulation in sphinctozoan sponges. 1, Amblysiphonella-type, 2, Sphaerocoelia-
type, and 3, Colospongia-type; small arrows indicate direction of inhalant water motion; large arrows indicate direction 

of exhalant water currents (Senowbari-Daryan, 1990). 



Sphinctozoan and Inozoan Hypercalcified Sponges 25

eton composed of primary monaxons, with 
an aragonitic rigid skeleton and pisolitic 
internal filling structure. Demospongiae; 
Permian.

5. Hadromerida (partim), according 
to Reitner (1987b). Probably monactine 
megascleres and sphaeraster microscleres. 
Demospongiae, Triassic (the only genus of 
this taxon—Cassianothalamia—was assigned 
to the new family Cassianothalamiidae 
by Reitner (1987a), order Hadromerida. 
Müller-Wille and Reitner (1993) moved 
the genus Cassianothalamia to the family 
Geoiidae within the order Astrophorida.

6. Guadalupiida Termier & Termier 
(in Termier, Termier, & Vachard, 1977). 
Without spicules, calcitic rigid skeleton 
(according to Finks, 1983, rigid skeleton is 
primary aragonite). Demospongiae; Permian. 

Finally, chambered sponges without a 
spicular skeleton but with rigid skeletons 

composed of high-Mg-calcite mineralogy 
were united in the order Uncertain by 
Senowbari-Daryan (1990). These fossils 
range in age from Middle to Upper Triassic.

Wu (1991, 1995) classified the sphincto-
zoan sponges into five suborders, based on 
differences in their exhalant canal systems: 
Asiphonata (without a spongocoel); Sipho-
nata (with an axial canal or an axial canal 
bundle); Vasculata (with a central conduit 
or central conduit bundle); Polysiphonata 
(having more than one exhalant tube or 
vertical tube bundle scattered in the whole 
sponge); and Polyvasculata (having more 
than one vertical conduit or vertical conduit 
bundle scattered in the whole sponge). 
Numerous old and new families established 
by Wu (1991) were assigned by him to these 
suborders.

Because of their polyphyletic nature, the 
chambered sponges were assigned to different 

reticular trabecular tubular septate spore-like vesicular septate +
reticular

pisolitic

Fig. 23. Appearance of different types of filling skeleton known in the sphinctozoans, as seen in longitudinal and 
transverse sections. Vesiculae may occur separately or in combination with other types of filling skeleton (adapted 

from Senowbari-Daryan, 1990).  
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sponge classes, including Heteractinida, 
Demospongiae, Calcarea (=Calcispon-
giae), Hexactinellida, and Archaeocyatha, 
Calcispongiae, Hexactinellida, and Archaeo-
cyatha by Senowbari-Daryan and García-
Bellido (2002a). Most sphinctozoans are 
classified into different orders within the 
demosponges. In addition, a separately 
listed bibliography of fossil sphinctozoans 
was provided by Senowbari-Daryan and 
García-Bellido (2002b).

Finks and Rigby (2004c) followed the 
frame of the classification of Senowbari-
Daryan and García-Bellido (2002a), 
with some revision and modification. They 
assigned most hypercalcified chambered 
sponges to the class Demospongea (=Demo-
spongiae), subclass Ceractinomorpha, orders 

Agelasida and Vaceletida; and subclass 
Tetractinomorpha, order Hadromerida. 

In summary, because of the polyphyletic 
nature of chambered sponges, their pres-
ervation problems, and because of gaps in 
their occurrences and documented evolu-
tion during Earth history, the systematic 
classification of this group of sponges is still 
unsatisfactory. There is limited agreement 
about the importance of different features of 
hypercalcified sphinctozoan sponges among 
different workers, thus leading to different 
classifications. Also, there is not an exact 
boundary between the sphinctozoans and 
sponges with other similar fossils, described 
as stromatoporoids, hydrozoans, or archaeo-
cyaths. There are numerous Cambrian 
genera, described as archaeocyaths, that have 

2 mm

Fig. 24. A chamber of Jablonskyia andrusovi (Jablonsky) showing vesiculae secreted in at least four stages (L1–L4 ). 
The exopores are sealed off by different stages of vesiculae (Senowbari-Daryan, 1990).
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internal and external constructions like those 
of upper Paleozoic or Mesozoic representa-
tives. Also, the mineralogy and microstruc-
ture of the rigid skeletons of some of them 
are apparently the same. For example, the 
lower Cambrian chambered Gerbicanicy­
athus Belyaeva (see Debrenne, Zhuravlev, 
& Kruse, 2002, fig. 52/G, I) and Clathri­
coscinus popovi Vlasov, 1961, described as 
archaeocyaths, have the same construction 
and the same perforation of chamber walls 
as that in the Paleozoic and Triassic Ambly­
siphonella (see Zhuravlev, 1989). Their 
difference from Amblysiphonella is in skeletal 
mineralogy. However, an Amblysiphonella- 
or Gerbicanicyathus-type sponge with the 
same skeletal mineralogy (high-Mg calcite) 
is also known as Leinia Senowbari-Daryan 
(1990) from Upper Triassic (Carnian) 
deposits. Also, the internal filling structures 
(especially of trabecular type) in several 
Cambrian archaeocyaths and Mesozoic 
sphinctozoans are identical. For example, 
the Cambrian species Nochoroiocyathus 
mirabilis Zhuravleva and the Jurassic species 

Boikothalamia convexa (=Verticillites convexus 
Boiko, 1979) can hardly be differentiated 
(compare Zhuravleva & Myagkova, 1987, 
pl. 1,1; Boiko in Zhuravleva & Myagkova, 
1981, pl. 40,2; Boiko in Boiko, Belyaeva, 
& Zhuravleva, 1991, pl. 64,3b). Numerous 
other analogous examples could be added to 
this list. The phylogeny of archaeocyaths was 
discussed by Ziegler and Rietschel (1970) 
and Rowland (2001), and the possible 
connection of chambered archaeocyaths 
and sphinctozoan sponges has been previ-
ously discussed by Zhuravleva (1970) and 
Debrenne and Vacelet (1984). 

PATTERNS OF EVOLUTION AND 
EXTINCTION

During the last few decades, numerous 
papers have been published about mass 
extinction or bio-events during Phanero-
zoic time. Numerous papers have treated 
the different groups of marine and nonma-
rine organisms.  However,  no ext inc-
tion data about the sponges in general, 
nor about the sphinctozoan sponges in 

Fig. 25. Stylothalamia hydriotica Senowbari-Daryan, 1990. This retrosiphonate sponge exhibits the trabecular 
(pillarlike) filling skeleton within the chamber interiors; pillars appear as points when cut transversely; Carnian, 

Triassic, Hydra, Greece, ×2.2 (Senowbari-Daryan, 1990).
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particular, are available in either Raup 
and Sepkoski (1982, 1984) or Sepkoski 
(1986, 1990), nor in publications of other 
workers treating extinctions at the Permo–
Triassic boundary or the Triassic–Jurassic 
boundary (Permo–Triassic: Raup & Boya-
jian, 1988; Erwin, Bowring, & Yugan, 
2002; Triassic–Jurassic: Benton, 1986, 
1988, 1991; Hallam, 1990, 1996, 2002; 
Hallam & Goodfellow, 1990; Hallam & 
Wignall, 1997), although the chambered 
sponges were the main reef builders in 
late Paleozoic and in Triassic time. Some 
general observations about the evolution, 
extinction, and diversification of sphinc-
tozoan sponges in Phanerozoic time are 
presented below.

To date, about 160 genera of various types 
of hypercalcified, chambered sponges have 
been described. Chambered archaeocyaths 
and hexactinellids are excluded here. For 
details see Senowbari-Daryan & García-
Bellido (2002a) and the Summary of Clas-
sification and Stratigraphic Occurrences (p. 
66–75 herein). 

Cambrian

Six genera have been reported from the 
Cambrian (Fig. 31). Five of them are limited 
to the Cambrian, and only the genus Amblysi­
phonella continued into the Ordovician. Fifty 
percent of Cambrian genera (three genera: 
Jawonia, Nucha, and Wagima; see Pickett, 
2002) belong to the heteractinid sponges.

Fig. 26. Solenolmia manon (Münster, 1841). Longitudinal and oblique sections exhibiting reticular filling skeleton 
in chamber interiors; axial canal is cut in one specimen, on the left; Ladinian–Carnian, Triassic, Dolomites, Italy, 

×2.5 (new).
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Ordovician
Fifteen genera have been reported from the 

Ordovician, and 14 of them are new in the 
Ordovician. Only the genus Amblysiphonella 
survived from the Cambrian assemblage. 

The Ordovician marked the first radiation 
of sphinctozoan sponges. However, of these 
15 Ordovician genera, only the genus Cysto­
thalamiella survived the Ordovician–Silurian 
boundary event, which also affected many 

a

b

Fig. 27. Lattice skeleton of chambered hexactinellid sponge Casearia sp., upper Norian, Triassic, Nayband Forma-
tion, Iran. a, Longitudinal section showing lattice arrangement of hexactine spicules forming chamber walls, scale 
bar, 1 cm; b, magnification of one chamber showing arrangement of individual hexactines within the chamber and 

spongocoel walls, scale bar, 1 mm (new). 
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other benthic organisms (see Brenchley, 
1989). Amblysiphonella has been reported 
from the Cambrian and Ordovician and also 
occurs in the Carboniferous, Permian, and 
Triassic, but it has not been reported from 
the Silurian or Devonian. Amblysiphonella 
could be another genus that survived the 
Ordovician–Silurian event but still has not 
been reported from the Silurian. Pseudoim­
peratoria is another genus reported from 
the Ordovician and Permian but not from 
the Silurian–Carboniferous. The possible 
extinction of 14 genera produced a generic 
extinction rate of 93%. Ordovician sponge 
diversification was summarized, in general, 
by Carrera and Rigby (2004). 

Silurian

Five genera of sphinctozoans are known 
from the Silurian (Fig. 31), and four of them 
are new. Only Cystothalamiella survived from 
the Ordovician.

Devonian

Only two hypercalcified sphinctozoan 
sponges, Hormospongia and Radiothalamos, 

are known from the Devonian. Both of 
them are new in the Devonian, and they are 
limited to this period. 

Carboniferous

The Carboniferous (Fig. 31) marked the 
second diversification period of hypercalci-
fied sphinctozoan sponges. Eight genera, 
with numerous species, are known from 
deposits at many different localities of this 
period. Six of these eight genera first appear 
in the Carboniferous. Only Amblysiphonella 
ranges up from the Cambrian and Girtyo­
coelia has been reported also from the Ordo-
vician.

Permian

The Permian is the third and most signifi-
cant diversification period of hypercalcified 
sphinctozoan sponges in Paleozoic time. At 
least 60 genera are known; of these 52 appear 
in the Permian as new. Six genera range up 
from the Carboniferous and 2 genera range 
up from the Ordovician.

The Permian–Triassic boundary event 
was the second and most significant extinc-

Fig. 28. Monaxon spicules imbedded in the chamber wall of the Triassic species Celyphia submarginata (Münster, 
1841). Spicules are located in the center of wavy lamellar microstructure; Carnian, Triassic, Cassian Formation, 

Dolomites, Italy, scale bar, 30 µm (Senowbari-Daryan, 1990). 
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tion event for hypercalcified sphinctozoan 
sponges at the end of Paleozoic time. Of the 
known 60 genera in the Permian, 38 genera 
became extinct and only 22 genera survived 
the Permian–Triassic boundary event, for an 
extinction rate of approximately 63% at the 
genus level. However, it should be noted that 
no Permian species have been reported from 
deposits of the Lower Triassic and Anisian 
time (Senowbari-Daryan & others, 1993). 

Triassic

The Triassic was the fourth diversification 
period for chambered sponges. About 83 
genera, with more than 200 species, have 
been described from the Triassic. The diver-
sification of the hypercalcified sphinctozoans 
with rigid aragonitic skeletons increased 
rapidly in the Triassic. Chambered sponges 
with high-Mg-calcite mineralogy appeared 

in the Anisian, and the number of these taxa 
also increased during Ladinian and Carnian 
time. Sphinctozoan hexactinellids with 
hexactine spicular skeletons appeared for the 
first time in the Carnian. Only one genus of 
chambered lithistid demosponge is known 
from the Norian, and it was reported from 
Gosaukamm, Austria (Senowbari-Daryan 
& Würm, 1994).

Of the 83 hypercalcified sphinctozoan 
genera known from the Triassic, 61 genera 
are new and 22 genera survived from the 
Paleozoic. However, there is a major break 
in the record, for no sphinctozoan sponges 
have been reported from the Lower Triassic 
(Scythian), and no Paleozoic chambered 
species have been found in Anisian reefs 
(Senowbari-Daryan & others, 1993). 

The number of sphinctozoan taxa greatly 
increased during the Middle and Upper 

a b

2

3

1

Fig. 29. Biomineralization process of the chamber walls in Jablonskyia adrusovi (Jablonsky). The initial calcification 
started the thin labyrinthic lines within the wall (a) and proceeded from these lines into the interspaces (b); rodlike 
or labyrinthic systems of spaces remained free from calcification and may be changed with spicules. 1, exopores, 2, 
lines of initial calcification of the first mineralization stage, and 3, full calcification of the spaces between lines of 

initial calcification; schematic, not to scale (Senowbari-Daryan, 1997).  
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Triassic (Carnian). In addition to aragonitic 
sphinctozoans, a large number of sphinc-
tozoans with high-Mg-calcite mineralogy 
appeared. At the Carnian–Norian boundary, 
or in the lower Norian, some 12–17 million 
years before the end of the Triassic (Stanley, 
2001), another extinction event changed the 
radiation of sphinctozoan sponges consider-
ably. Almost all representatives with high-
Mg-calcite mineralogy became extinct; those 
with aragonitic skeletons were less affected 
by this extinction. According to Flügel and 

Senowbari-Daryan (2001), about 50% of 
sphinctozoan sponges, at the generic level, 
disappeared during upper Carnian–lower 
Norian time. However, few of the so-called 
conservative taxa, such as Colospongia and 
Amblysiphonella, survived this extinction 
event. The Norian diversification produced 
many new taxa with both simple and complex 
constructions. The number of taxa seems to 
have decreased during the uppermost Triassic, 
which ended with a significant extinction 
event at the Triassic–Jurassic boundary. 

Fig. 30. Different microstructures known in sphinctozoan sponges. a, Spherulitic, b, irregular, c, orthogonal, d, 
clinogonal, e, lamellar, and f, microgranular; note that spherulitic, clinogonal, and granular types of microstructure 

also apply to certain inozoans (see p. 40–44); schematic, not to scale (Senowbari-Daryan, 1990).
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Comparing Triassic sphinctozoan assem-
blages with those of the Permian, the 
Ladinian and Carnian sponge faunas exhibit 
few similarities to those of the upper Paleo-
zoic sphinctozoans. On the other hand, the 
similarity of Permian and Norian–Rhaetian 
assemblages is much greater. For example, 
the genera Discosiphonella, Polycystocoelia, 
and Platythalamiella  are known from 
Permian and Norian–Rhaetian deposits, 
but not from Lower and Middle Triassic 
and Carnian ones. Most of the conserva-
tive Carboniferous–Permian genera, like 
Discosiphonella, Sollasia, Colospongia, and 
Amblysiphonella, survived, but only a few 
of the so-called progressive genera survived 
beyond the Permian–Triassic extinction 
event. Similar Norian reappearances of taxa 
from other phyla that seemed to have disap-
peared at the end of the Paleozoic have been 
reported by other authors: for example, the 
Paleozoic strophomenid brachiopod Gosau­
kammerella (Senowbari-Daryan & Flügel, 
1996) and phylloid algae (R. P. Reid, 1986). 

The Triassic–Jurassic event terminated 
the major evolutionary burst of Triassic 
sphinctozoan sponges. Of the 83 known 
Triassic genera, 82 genera became extinct at 
the Carnian–Norian, or at the end-Norian 
extinction event, which is a generic extinc-
tion rate of about 98%. Only the genus 
Stylothalamia survived beyond the Triassic–
Jurassic boundary. Stylothalamia columnaris 
Le Maitre, 1935, is the only sphinctozoan 
species known from the Lower Jurassic 
(Liassic) at several localities in the world 
(South America: Hildebrandt, 1971, 1981; 
Senowbari-Daryan & Stanley, 1994; North 
Africa: Schroeder, 1984; Europe: Becca-
relli Bauck, 1986; see Senowbari-Daryan 
& Hamedani, 1999). 

Jurassic

As noted above, only one species of 
sphinctozoan sponge, S. columnaris, is 
known from the Lower Jurassic. Both the 
hypercalcified sphinctozoans with various 
filling structures (e.g., Boikothalamia), 
and the hexactinellid representative, e.g., 

Casearia, appear again in the Middle and 
Upper Jurassic. Calcisponge sphinctozoans, 
including Barroisia, Thalamopora, Sphaero­
coelia, and Muellerithalamia, also appear 
in the Upper Jurassic. Only four genera 
of hypercalcified chambered sponges are 
known from the Upper Jurassic. Some of 
these genera continued into the Cretaceous. 

Cretaceous

To date, only ten Cretaceous hypercalci-
fied sphinctozoans are known from several 
combined localities, especially from Europe 
(Reitner & Engeser, 1985, 1989; Engeser 
& Neumann, 1986; Hillmer & Senowbari-
Daryan, 1986). Apparently, only two genera 
survived the Cretaceous–Tertiary boundary, 
which is an extinction rate of 90%.

Paleogene–Neogene

Only two or three Paleogene–Neogene 
sphinctozoan sponge genera are known. 
Vaceletia (Pickett, 1982) is the only living 
sphinctozoan sponge. For more information 
see Senowbari-Daryan, 1990; Senowbari-
Daryan and García-Bellido, 2002a. 

Holocene

Only one genus of chambered sponge, 
Vaceletia, has been reported as occurring in 
the Holocene. 

Figure 31 shows the number of sphinc-
tozoan sponge genera occurring per period 
through Earth’s history.

INOZOANS
Like sphinctozoan sponges, the inozoans 

(Inozoa Steinmann, 1882) are polyphyletic. 
Although some Triassic taxa, such as Sestro­
stomella (see Reitner, 1992) and Jurassic 
inozoan sponges like Peronidella Hinde, 1893, 
secreted spicular skeletons, almost all Triassic 
and Permian representatives of the group lack 
a spicular skeleton. For that reason, Rigby and 
Senowbari-Daryan (1996a) suggested sepa-
ration of inozoan sponges without spicular 
skeletons into the Inozoida, and those with 
a spicular skeleton into the Inozoa. Without 
taking spicular skeletons differences into 
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consideration, the morphologic features of 
both groups are discussed here.

EXTERNAL MORPHOLOGY
Sponge Shape

Shapes of inozoan sponges are usually 
cylindrical, like Peronidella Hinde, 1893, for 
example, or Stollanella Bizzarini & Russo, 
1986; but club- or mushroom-shaped taxa, 
as, for example, Permocorynella Rigby & 
Senowbari-Daryan, 1996a, or sheetlike 
taxa, such as Auriculospongia Termier & 
Termier, 1974, or irregularly massive to 
hemispherical taxa, such as Estrellospongia 
Rigby & Senowbari-Daryan, 1996a, are 
also known. Figure 32 shows the principal 
general shapes of inozoans. 

Both single and multibranched growth 
types also occur, such as the Upper Triassic 
multibranched species Peronidella iranica 
Senowbari-Daryan, 2003 (Fig. 33). Inozoan 

sponges are commonly less than 10 cm in 
diameter, although large species, up to 2.5 m 
diameter, like the platelike Permian Gigan­
tospongia discoforma Rigby & Senowbari-
Daryan, 1996b, are exceptional. Annulated, 
screwlike, or externally segmented forms also 
occur, as, for example, the Permian genera 
Imperatoria de Gregorio, 1930, and Mini­
spongia Rigby & Senowbari-Daryan, 1996a. 
Outer dermal surfaces of inozoans may be 
smooth or characterized by having distinct 
growth lines. The major skeletal elements of 
inozoans are shown in Figure 34.

External Inhalant Canals

Outer surfaces of inozoans may totally 
lack perforations, but the majority of these 
sponges are perforated by numerous small 
pores, or by less abundant large openings, 
termed ostia (Fig. 35–36). Sponges with a 
distinct cortex or dermal layer commonly 
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Fig. 31. Number of hypercalcified sphinctozoan genera per geologic period through the Phanerozoic (chambered 
hexactinellid genera are not considered in this diagram; new). 
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have pores or ostia, but in representatives 
without a dermal layer, communication 
from the outside to the sponge interior 
is accomplished through spaces between 
skeletal fibers, as, for example, in Pero­
nidella Hinde, 1893. Pores or ostia may 
have circular or oval cross sections. Ostia are 
usually separated, single, circular openings, 
as in the Permian genus Djemelia Rigby & 
Senowbari-Daryan, 1996a, but starlike 
ostia or two or more combined ostia that 
may be united into groups, also occur, as, 
for example, in some species of the genus 
Daharella Rigby & Senowbari-Daryan, 
1996a. Both ostia types may be rimmed or 
have tubelike projections, termed exaules. 
Exaules of inozoans are usually less than 1 
mm long, and exaules, like those observed 
in some sphinctozoan representatives, such 
as in Girtyocoelia Cossman, 1909 (Fig. 14), 
have not been reported in inozoans. The 
two types of openings (pores and ostia) of 
inhalant canals usually do not occur together 
in the same sponge.

In sheetlike representatives of inozoan 
sponges, the opposite surfaces may have 
s imilar porosity,  or be different.  For 
example, in the Permian genus Auriculo­
spongia Termier & Termier, 1977 (see Fig. 
45.1), or in the Triassic genus Aliabadia 
Senowbari-Daryan (2005a), the opposite 
sides are totally different. 

External Exhalant Canals

As mentioned above,  some inozoan 
sponges lack an axial spongocoel, especially 
those with sheetlike construction, but repre-
sentatives of cylindrical- or club-shaped taxa 
may also be without distinct exhalant canals, 
as, for example, the Permian genus Daha­
rella Rigby & Senowbari-Daryan, 1996a 
(Fig. 35) or the Triassic genus Molengraaffia 
Vinassa de Regny, 1915. 

Some inozoans are characterized by only 
one osculum (e.g., Peronidella Hinde, 1893), 
and others by several oscula (e.g., Sestro­
stomella Zittel, 1878; Fig. 37), which are 
visible as one or several openings at the 
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Fig. 32. General shapes of skeletons of inozoan sponges. a, cylindrical, b, arcuate conical, c, conical to club shaped, 
d, tabular, e, hemispherical, f, single dichotomously branched, g–h, dichotomously multibranched; schematic, not 

to scale (new). 
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top of the sponge (Fig. 37; see also Dieci, 
Antonacci, & Zardini, 1968, pl. 25–26). In 
representatives with a single spongocoel, that 
spongocoel may be circular, oval, or starlike 
in cross section. Oscula of spongocoels may 
be located in depressions or on elevations. 
Upper surfaces of some inozoans may have 
numerous oscula across the top of the sponge 

(e.g., the Permian genera Polytubispongia 
Rigby & Senowbari-Daryan, 1996a [Fig. 
36], or Medenina Rigby & Senowbari-
Daryan, 1996a). These and other types of 
oscula extend as spongocoels into the sponge 
interior. 

Starlike arrangements of exhalant canals 
in an astrorhizal system are developed in 

Fig. 33. Reconstruction of multibranched inozoan sponge Peronidella iranica Senowbari-Daryan, 2003; Norian–
Rhaetian, Triassic, reefs within Nayband Formation, Iran (Senowbari-Daryan, 2003).
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a variety of genera in inozoan sponges. 
For example, tops of the Permian sponge 
Prestellispongia lobata (Parona, 1933), 
which has a conical shape, are occupied by 
one or more astrorhizal systems (see Dieci, 
Antonacci, & Zardini, 1968; Rigby & 
Senowbari-Daryan, 1996a). Several astro-
rhizal systems cover the outer surface of the 
cylindrical and massive genus Stellispongiella 
Wu (see Termier & Termier, 1955; Rigby 
& Senowbari-Daryan, 1996a). The astro-
rhizal systems may be located on elevations 
(mamelons) (Fig. 38, Fig. 45.4) or not.

INTERNAL MORPHOLOGY
Spongocoel(s)

Some inozoans possess only one axial 
spongocoel (e.g., Peronidella Hinde, 1893) 
(Fig. 45.2), and others have several axial 
spongocoels (e.g., Sestrostomella Zittel, 1878 
[Fig. 37], or Stollanella Bizzarini & Russo, 
1986 [Fig. 39]). These spongocoels may pass 
vertically or longitudinally through the whole 
sponge from near the base up to the summit 
(e.g., Sestrostomella), or it may be limited 
to only the upper part of the sponge (e.g., 
the Permian genus Pseudohimatella Rigby & 
Senowbari-Daryan, 1996a). The spongocoel 
may have its own skeletal wall (Fig. 40), or 

it may be surrounded by the fibrous skeleton 
of the entire sponge wall, without a distinct 
separate inner layer (Fig. 41). Several sponges 
possess numerous vertical spongocoels that 
are distributed through the whole sponge (see 
Fig. 45.3) (e.g., the Permian genera Preeudea 
Termier & Termier, 1977, or Polytubifungia 
Rigby & Senowbari-Daryan, 1996a; Fig. 36). 
The Permian genus Pseudohimatella Rigby & 
Senowbari-Daryan, 1996a, is characterized 
by a shallow axial spongocoel and numerous 
additional small spongocoels that pass verti-
cally through the whole sponge. The Triassic 
genus Marawandia Senowbari-Daryan, 
Seyed-Emami, & Aghanabati, 1997, possesses 
several spongocoels that are usually located 
near the periphery of the sponge (Fig. 40). 
In the Permian genus Exotubispongia Rigby & 
Senowbari-Daryan, 1996a, the interior of the 
sponge is filled with a reticular fibrous skel-
eton, but the more outer part of the sponge is 
marked by numerous vertical canals (Fig. 42). 

Internal Inhalant and Exhalant Canals

Outer ostia continue as tubes into the rela-
tively thick sponge wall in some inozoans, as, 
for example, in the Permian genus Permoco­
rynella Rigby & Senowbari-Daryan, 1996a 
(Fig. 41, Fig. 43), or in the Jurassic genus 
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axial exhalant canal

inhalant canal
skeletal fibers
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Fig. 34. Major skeletal elements of inozoan sponges; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).



38 Treatise Online, number 28

Fig. 35. Reconstruction of asiphonate inozoan sponge Daharella micella Rigby & Senowbari-Daryan, 1996a. Wa-
ter passed through rimmed ostia and out through interfiber spaces; sponge is known from upper Permian, Djebel 

Tebaga, Tunisia; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).
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Endostoma Römer, 1864 (=Corynella Zittel, 
1878). These tubes may be called inhalant 
tubes or canals (Fig. 41). Spongocoels of 
these sponges may have a distinct, separate 
wall that is pierced by openings called gastral 
pores. Gastral pores may continue into 
the sponge wall as radial tubes, which are 
termed exhalant tubes, or canals. Inhalant 
and exhalant tubes are usually not connected 
directly with each other. These tubes may 
have a pierced wall or may be surrounded 
by the fibrous skeleton of the sponge wall. 
Inhalant and exhalant canals are usually 
oriented horizontally, but they are also 
commonly longitudinal and parallel to the 

axial spongocoel (Fig. 41). In some genera, 
the exhalant canals may converge upward 
and open into the spongocoel, as in Sestro­
stomella Zittel, 1878 (Fig. 37), or they may 
be outwardly divergent within the sponge 
wall and open at the sponge surface, as in 
Permocorynella Rigby & Senowbari-Daryan, 
1996a (Fig. 41, Fig. 43), or in Stollanella 
Bizzarini & Russo, 1986 (Fig. 39). 

Astrorhizal systems, common in stromato-
poroids and Recent hypercalcified sponges 
such as Ceratoporella, occur in a variety of 
inozoan sponges. For example, the Permian–
Triassic genus Stellispongiella Wu, 1991, is a 
massive, rodlike sponge that is characterized 

Fig. 36. Reconstruction of Polytubispongia maxima Rigby & Senowbari-Daryan, 1996a; externally annulate coni-
cal sponge bearing numerous rimmed ostia on the dermal surface that serve as inhalant canals; exhalant canals 
are numerous, more or less parallel tubes that are distributed through whole sponge; sponge is known from upper 

Permian, Djebel Tebaga, Tunisia; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).
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by astrorhizal exhalant canals, which in some 
specimens are located within mamelon-like 
elevations (Fig. 38). Also, summits of some 
other genera, such as the Permian–Triassic 
genus Prestellispongia Rigby & Senowbari-
Daryan, 1996a, and the Triassic genus Stel­
lispongia d’Orbigny (see Dieci, Antonacci, 
& Zardini, 1968), have several astrorhizal 
exhalant canals systems. 

Structure of Rigid Skeleton

Walls of the majority of inozoan sponges 
are composed of reticulate skeletal fibers. 
Thicknesses and orientations of such skel-
etal fibers may be different in different 
parts of the same sponge skeleton. Fibers in 

Auriculospongia Termier & Termier, 1974, 
are linearly arranged parallel to the growth 
direction and may be associated with some 
transverse fibers, but they appear unoriented 
in sections perpendicular to the growth 
direction (see Rigby & Senowbari-Daryan, 
1996a, fig. 12). In the Triassic genera 
Molengraaffia Vinassa de Regny, 1915, and 
Anguispongia Senowbari-Daryan, 2005b, 
orientations of fibers are totally different in 
sections cut parallel or perpendicular to the 
growth direction (see Senowbari-Daryan, 
2005b). Walls around axial spongocoels in 
some Triassic sponges are composed only 
of tubes that diverge upward and outward. 
These tubes are interconnected with other 
tubes by numerous intertubular pores. 

Fig. 37. Sestrostomella robusta Zittel. Oblique sections; sponge is characterized by a bundle of axial tubes that may 
range up to 20 individual tubes. Additional small tubes are also present, and they diverge upward and outward to 
dermal surface of sponge; concentric lines in sponge wall reflect growth lines; Norian–Rhaetian, Triassic, Nayband 

Formation, Iran, ×2.5 (Senowbari-Daryan, Seyed-Emami, & Aghanabati, 1997).
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Fig. 38. Reconstruction of Stellispongiella bacilla (Termier & Termier, 1977), a cylindrical inozoan sponge from 
upper Permian, Djebel Tebaga, Tunisia; astrorhizal systems served as exhalant canals and are located on sharp 

moundlike elevations; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).
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Spicules

Investigations of well-preserved Permian 
inozoan sponges from Djebel Tebaga, Tunisia 
by scanning electron microscopy by Wendt 
(1977, 1978, 1979, 1984) and Rigby and 
Senowbari-Daryan (1996a) show that these 
sponges lack calcareous or siliceous spicular 
skeletons. Detailed discussion of whether 
the spicules were originally lacking, or were 
lost secondarily during diagenesis, was given 
by Rigby and Senowbari-Daryan (1996a).

In contrast to the Permian inozoans, 
spicules have been found in some Triassic 

and Jurassic inozoan sponges. For example, 
spicules occur in the Triassic genera Sestro­
stomella Zittel, 1878, and Stellispongia 
d’Orbigny, 1849, and in the Jurassic genus 
Peronidella Zittel in Hinde, 1893 (see 
Reitner, 1992). 

Mineralogy and Microstructure 
of the Rigid Skeleton

Modifications of calcite, aragonite, and 
Mg calcite are known from fossil inozoan 
representatives. Because of replacement 
of aragonite by calcite, primary skeletal 

a

b

Fig. 39. Stollanella diecii Bizzarini & Russo, 1986. a, Longitudinal, ×1.5, and b, transverse, ×5, sections of cylindri-
cal inozoan sponge. It has Mg-calcite skeletal mineralogy and is characterized by an axial canal bundle composed of 
up to approximately 50 individual tubes; additional smaller tubes around axial bundle diverge upward and outward 

toward dermal surface of sponge; Ladinian–Carnian, Triassic, Dolomites, Italy (new).
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mineralogy is not known for lower Paleo-
zoic (Cambrian–Carboniferous) inozoans. 
However, traces of spherulitic microstruc-
ture, like those in Paleozoic stromatoporoids 
that point to an original primary arago-
nite composition (Stearn, 1972), are also 
preserved in some Carboniferous inozoans, 
suggesting a primary aragonitic mineralogy 
of these taxa (Wendt, 1984). Certain arago-
nitic skeletal mineralogy was reported from 
upper Permian inozoans of Djebel Tebaga, 
Tunisia (Wendt, 1977, 1979; Rigby & 
Senowbari-Daryan, 1996a). The majority 
of inozoan sponges from other Permian 
localities of the world are recrystallized. As 
a result, the primary skeletal mineralogy of 
sponges from these localities is not known. 

Aragonite skeletal mineralogy is known 
also from numerous Triassic taxa, such as 
Eudea polymorpha (Klipstein), Leiospongia 
involuta (Klipstein), and Peronidella lorenzi 
Zittel, or Sestrostomella robusta Zittel 
(Dieci, Russo, & Russo 1974a; Wendt, 
1974, 1975, 1979, 1990; Müller-Wille 
& Reitner, 1993; Mastandrea & Russo, 
1995). 

Mg-calcitic mineralogy is very rare in 
Triassic inozoans but does seem to be 
present. For example, it is present in Stol­
lanella Bizzarini & Russo, 1986, which, 

according to the authors, has a micritic, 
irregular, or homogenous skeletal texture, 
as described in examples from the Carnian 
Cassian Formation (Dolomites, northern 
Italy). It is also present in some as yet 
undescribed Norian–Rhaetian species from 
southern Turkey. 

Wendt (1979, 1984, 1990) concluded 
that principally five types of microstructure 
occur within the inozoan sponges. He listed 
them as: (1) granular; (2) irregular; (3) 
spherulitic; (4) clinogonal; and (5) orthog-
onal. More than one microstructure type 
may occur in primary and secondary skel-
etons within the same sponge skeleton.

A granular microstructure (Fig. 30) was 
observed, for example, in the Permian–
Triassic genus Himatella Zittel, 1878 
(Wendt, 1979), and an irregular micro-
structure is known from the Triassic genus 
Eudea (Wendt, 1979, 1990; Mastandrea 
& Russo, 1995). 

Spherulitic microstructure (Fig. 30), the 
most common microstructure in inozoan 
sponges, is known from the majority of 
Permian and Triassic genera. It has been recog-
nized, e.g., in Permian Sphaeropontia Rigby 
& Senowbari-Daryan, 1996a (Fig. 44), and 
in the Triassic genera Sestrostomella Zittel, 
1878 (Dieci, Antonacci, & Zardini, 1968; 

Fig. 40. Marawandia iranica Senowbari-Daryan, Seyed-Emami & Aghanabati, 1997. Cylindrical inozoan sponge, 
seen here in transverse section, has several (6–8) usually peripherally located spongocoel tubes with more or less 
distinct exowalls pierced by labyrinthic branched pores; Norian–Rhaetian, Triassic, Nayband Formation, Iran, ×12 

(Senowbari-Daryan, Seyed-Emami, & Aghanabati, 1997).
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Fig. 41. Reconstruction of Permocorynella Rigby & Senowbari-Daryan, 1996a, showing 1, exopores or ostial pores, 
2, inhalant canals, 3, exhalant canals, 4, endopores, and 5, deep spongocoel. Spaces between the inhalant and ex-
halant canals are filled with reticular fiber skeleton; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a). 
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Fig. 42. Reconstruction of Exotubispongia pustulata Rigby & Senowbari-Daryan, 1996a; sponge has numerous 
vertical peripheral tubes that are connected by pores to spaces in the internal reticular skeleton and to the dermal 
surface through numerous ostia located on pustulelike elevations. The sponge is known, to date, only from upper 

Permian, Djebel Tebaga, Tunisia; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).
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Wendt, 1979; Mastandrea & Russo, 1995), 
or Peronidella (Dieci, Antonacci, & Zardini, 
1968; Müller-Wille & Reitner, 1993). A list 
of Permian inozoan sponges with spherulitic 
microstructure from Djebel Tebaga, Tunisia 
was given by Rigby and Senowbari-Daryan 
(1996a), with sizes of spherulites in those 
sponges ranging from 30–100 µm. 

Clinogonal microstructure (Fig. 30) 
occurs in the Triassic species Stellispongia 
variabilis (Wendt, 1979, 1984). According 
to Wendt (1975, 1979, 1984), the Triassic 
sponge Cassianostroma küpperi Flügel has a 
clinogonal microstructure. Cassianostroma 
was originally described as a hydrozoan by 
Flügel (1960), but it also may be considered 
as an inozoan sponge. However, according to 
Flügel (1960, p. 55) the “radial-strahligen 
Bau der ‘Radial-Struktur’” should be 

classified as spherulitic. Similar (or iden-
tical) sponges from the same horizon and 
locality, but with irregular microstructure, 
were described as Stromatowendtia Russo, 
Mastandrea, & Baracca, 1994.

The occurrence of an orthogonal type 
microstructure (Fig. 30) is not proven in 
Triassic inozoans. 

PALEOBIOLOGY, PATTERNS OF 
WATER CIRCULATION, AND 

PALEOCOLOGY

Possible water circulation patterns in 
Permian inozoan sponges of Djebel Tebaga, 
Tunisia, were discussed by Rigby and 
Senowbari-Daryan (1996a). They differ-
entiated four main patterns (Fig. 45). 

1. Auriculospongia-type: in these sheetlike 
sponges, water moved essentially horizontally.

a

b

Fig. 43. Permocorynella maxima Senowbari-Daryan, Seyed-Emami, & Aghanabati, 1997, as seen in a, longitudinal 
and b, transverse sections. Sponge is characterized by an axial spongocoel and numerous additional branched tubes 
that diverge upward and outward to become perpendicular to dermal surface of sponge; Norian–Rhaetian, Triassic, 

Nayband Formation, Iran, ×2 (new).
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2. Peronidella-type: cylindrical or club-
shaped sponges with inhalant openings on 
side surfaces, and with one or several spon-
gocoels open at the summit; passage of water 
was horizontal and then vertical.

3. Pseudohimatella-type: cylindrical or 
club-shaped sponges without differentiated 
inhalant openings on side surfaces, but at the 
top of the sponge, and associated there with 
one or several spongocoels; passage of water 
was vertically downward, then horizontal, 
and then vertically upward.

4. Stellispongiella-type: sponges where 
inhalant and exhalant openings are both 
located on side surfaces; passage of water was 
horizontal, then vertical, and then horizontal. 

Similar water movement patterns also 
may have been present in Mesozoic inozoan 
sponges. 

Inozoan sponges, as important late Paleo-
zoic and Triassic reef builders, lived in the 

same biotopes as the sphinctozoan sponges 
and likely had functions similar to those of 
the sphinctozoans, discussed under Paleo-
biology, Patterns of Water Circulation, and 
Paleoecology, above, p. 21.

REVIEW OF CLASSIFICATION

A summary of the review of classification 
of inozoan sponges by earlier authors was 
given by Rigby and Senowbari-Daryan 
(1996a). In the same publication, they 
subdivided the inozoans of Steinmann 
(1882) into two orders: the Inozoa, which 
includes those with a spicular skeleton; and 
the Inozoida, which includes those without 
a spicular skeleton. Sponges from both the 
Inozoa and the Inozoida were placed in the 
classes Demospongea (=Demospongiae), 
and Calcarea (=Calcispongiae) by Finks 
and Rigby (2004c). They subdivided the 
hypercalcified sponges and placed them 

Fig. 44. Spherulitic microstructure of Sphaeropontia regulara Rigby & Senowbari-Daryan, 1996a, upper Permian, 
Djebel Tebaga, Tunisia. This type of microstructure is most abundant in aragonitic inozoan and sphinctozoan 

sponges; schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).
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1 2 3 4

Fig. 45. Pathways of water movement in inozoan sponges. Small arrows indicate inhalant current directions; large 
arrows indicate exhalant directions. 1, Auriculospongia-type (pathway: inhalant = horizontal, exhalant = horizontal); 
2, Peronidella-type (pathway: inhalant = horizontal, exhalant = vertically upward); 3, Pseudohimatella-type (pathway: 
inhalant = vertically downward, exhalant = vertically upward); 4, Stellispongiella-type (pathway: inhalant = horizontal, 

exhalant = horizontal); schematic, not to scale (Rigby & Senowbari-Daryan, 1996a).

into the following subclass to ordinal level 
groupings. 
Class Demospongiae
	 Subclass Ceractinomorpha Lévi, 1953 
		  Order Agelasida Verrill, 1907
		  Order Vaceletida Finks & Rigby, 2004c
	 Subclass Tetractinomorpha Lévi, 1953
		  Order Hadromerida Topsent, 1898
Class Calcispongiae
	 Subclass Calcinea Bidder, 1898
		  Order Clathrinida Hartman, 1958
		  Order Murrayonida Vacelet, 1981 
	 Subclass Calcaronea Bidder, 1898
		  Order Leucosolenida Hartman, 1958
		  Order Sycettida Bidder, 1898
		  Order Stellispongiida Finks & Rigby, 2004c
		  Order Sphaerocoeliida Vacelet, 1979a
		  Order Lithonida Döderlein, 1892

PATTERNS OF EVOLUTION AND 
EXTINCTION 

Inozoans, like the sphinctozoans, had 
pulses of major diversification separated by 
times of extinction during the late Paleozoic 
and Mesozoic, and had reduced records, to 
near total extinction, in the Cenozoic. These 
records have not been widely published, 
although the prominence of both of these 
groups in the Permian and Triassic records 

is well known. Currently, approximately 
100 genera of various hypercalcified inozoan 
sponges have been described, including 
forms now placed dominantly in the Demo-
spongiae, but including several Mesozoic and 
Cenozoic genera placed in the Calcispongiae 
as well. 

Figure 46 shows the abundance and 
number of inozoan genera reported to date 
from each geologic period through the 
Phanerozoic.

Cambrian

No inozoan sponges have been described 
from the Cambrian.

Ordovician

The single genus Imperatoria, based on 
the species I. mega has been reported as 
inozoan by Rigby and Potter (1986) from 
the Upper Ordovician Kangaroo Creek 
Formation, Klamath Mountains, northern 
California. This sponge was attributed to 
the sphinctozoan genus Pseudoimperatoria 
by Senowbari-Daryan and Rigby (1988). 

Silurian

No Silurian inozoan sponges have been 
documented to date.
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Devonian

The genus Fissispongia King, 1938, is the 
only inozoan sponge currently reported from 
the Devonian. The genus is a moderately 
long-ranging form that first appeared in 
the Middle Devonian (?Eifelian), of Alaska 
(Rigby & Blodgett, 1983), but which 
ranges up through the Carboniferous into 
the lower Permian in the south-central 
United States.

Carboniferous

Only two genera of inozoan sponges have 
been reported from the Carboniferous, including 
Fissispongia, cited above, and the somewhat 
similar long-ranging genus Maeandrostia Girty, 
1908b. These sponges marked the base of major 
expansions of the inozoans that took place 
during the Permian, for Maeandostia also ranges 
from the upper lower Carboniferous, through 
the Permian, into the lower Middle Triassic.

Holocene

Paleogene-Neogene

Cretaceous

Jurassic

Triassic

Permian

Carboniferous

Devonian

Silurian

Ordovician

Cambrian

4

2

16

22

41

47

2

1

0

1

0

Fig. 46. Number of inozoan genera per geologic period through the Phanerozoic. Genera that have been described 
as hydrozoans are not considered in the diagram (new).
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Permian

The Permian marks the first major pulse of 
diversification of the hypercalcified sponges 
with inozoan skeletal structure. Presently, 
47 genera of inozoans have been described 
from the Permian, and 46 of these genera 
appear in the Permian as new forms. With 
that taxonomic expansion, the inozoans also 
became more geographically widespread, 
as noted in Stratigraphic and Geographic 
Occurrences, below (p. 51). 

The Permian–Triassic boundary extinc-
tion event had a major impact on the 
inozoan sponges, as it did on the sphincto-
zoan forms, and fossils of other phyla too. 
Of the 47 inozoan genera reported from 
the Permian, only 15 or 16 survived into 
the Triassic, so that the extinction rate was 
approximately 70%.

Triassic

Of the 41 inozoan genera known from 
the Triassic, 25 or 26 genera are new and 
15 or 16 genera survived from the Permian. 
As with the sphinctozoans, there is a major 
break in the record, for no inozoans are 
known from the Lower Triassic (Scythian), 
and only Maeandrostia Girty, 1908b, see 
above, has been found in Anisian reefs 
of northern Italy (Senowbari-Daryan 
& others, 1993). Inozoan sponge taxa 
increased greatly in number during the 
Middle and Upper Triassic, and a second 
pu l s e  o f  sponge  d ive r s i f i ca t ion  was 
produced. As with the inozoans, however, 
the number of taxa decreased sharply 
toward the end of the Triassic, and a second 
major extinction event occurred at the 
Triassic–Jurassic boundary. Only Sestro­
stomella, and questionably Stellispongiella, 
among the demosponges, and Stellispongia, 
Pareudea, Eudea, and Oculospongia among 
the Calcispongiae, and Cornuaspongia and 
?Trammeria among the class and order 
Uncertain inozoans, survived into the 
Jurassic beyond the boundary event. From 
the Triassic on through the Cenozoic, the 
Calcispongiae play an ever increasingly 

significant role in the evolutionary develop-
ment of the inozoans. 

Jurassic

A third pulse of inozoan diversification 
resulted in the documented occurrence 
of 22 new inozoan genera, along with 6 
genera that survived beyond the boundary 
extinction event into the Jurassic, which 
had an extinction rate of about 73%. This 
has resulted in a known Jurassic inozoan 
fauna of 22 genera. Of these, the 5 genera, 
Sestrostomella, Epitheles, Winwoodia, Aulo­
copagia, and Stellispongiella are classed with 
the Demospongiae, and the remainder are 
classed with the Calcispongiae (Finks & 
Rigby, 2004a, 2004c). Except for Sestrosto­
mella, which was reported from the Cana-
dian Atlantic Shelf, all other Jurassic inozoan 
genera have been reported from localities 
in Europe, around the western end of the 
Tethyan seaway, an area that continued as 
a major locus of evolution of these forms.

Cretaceous

A total of 16 to 18 genera of inozoan 
sponges have been reported, and 2 more are 
questionably reported from the Cretaceous. 
Of these, 10 or 12 genera are new forms and 
6 are carry-over elements from the Jurassic. 
Only Trachytila, Pharetrospongia, and Elas­
mopagia are demosponge forms, and the 
remainder of these Cretaceous inozoans are 
genera of the moderately rapidly evolving 
family Stellispongiidae, of the Calcispongiae 
(Finks & Rigby, 2004a, 2004c). All of these 
Cretaceous inozoans have been reported 
from localities in Europe, which, again, 
was the locus of inozoan evolution for the 
period.

Paleogene–Neogene

Only two inozoan genera are documented 
from deposits of these ages. ?Elasmostoma has 
been reported from the Eocene of Mexico, 
and Tretocalia from the Miocene of Australia 
(Finks & Rigby, 2004c, p. 741, 748). The 
lower and mid-Cenozoic record of inozoans 
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is one of near extinction of sponges with this 
skeletal structure.

Holocene

Four genera of inozoans have been 
reported as occurring in the Holocene. 
These include: Trachyspecion Pomel, 1872; 
Eudea Lamouroux, 1821; Mammillopora 
Bronn, 1825, and Peronidella Zittel in 
Hinde, 1893, all from the Mediterranean 
Sea near France, and all are now included 
in the Calcarea (=Calcispongiae) (Finks & 
Rigby, 2004c, p. 743–747). These inozoans 
are living representatives of genera that first 
appeared in the early Mesozoic.

TEMPORAL AND
SPATIAL DISTRIBUTION OF 

SPHINCTOZOANS AND
INOZOANS

STRATIGRAPHIC AND 
GEOGRAPHIC OCCURRENCES

In general, sphinctozoan and inozoan 
sponges have a lower and mid-latitude 
distribution throughout their history and 
have relatively limited geographic distri-
butions through much of the early Paleo-
zoic. However, they became more widely 
distributed and considerably more diverse 
during the Permian and Triassic and became 
increasingly less diverse and more geographi-
cally limited during the later Mesozoic and 
Cenozoic (Fig. 31, Fig. 47–58).

The heteractinids Jawonya and Wagima, 
which occur in the lower and lower middle 
Cambrian in the Northern Territory (Kruse, 
1983, 1990) of Australia, are the oldest 
forms included by some in the sphincto-
zoans. Moderate faunules of early sphincto-
zoans, including Blastulospongia and Ambly­
siphonella, and the heteractinid Nucha, are 
also the earliest sphinctozoan forms and 
have been reported from middle Cambrian 
rocks of New South Wales (Pickett & 
Jell, 1983). Other documented Cambrian 
occurrences are the single-genus records 
of Polythalamia from the lower Cambrian 
of Alaska and Nevada, in western North 

America (Debrenne & Wood, 1990), and 
the upper Cambrian occurrence of Blastulo­
spongia from Hubei, China (Conway Morris 
& Chen, 1990), and from Queensland, 
Australia (Bengtson, 1986; Fig. 47). 

Sponges described as archaeocyaths from 
the Cambrian could be attributed to the 
inozoans, but they are not discussed here. 
The inventory of sphinctozoan and inozoan 
sponges treated here is based on cited publi-
cations and on the works of Finks and Rigby 
(2004a, 2004b, 2004c).

The oldest nonarchaeocyath sponge, 
Imperatoria mega (Rigby & Potter, 1986), 
was described as being an inozoan from 
Ordovician rocks of the eastern Klamath 
Mountains of northestern California. This 
sponge was attributed to the sphinctozoan 
genus Pseudoimperatoria by Senowbari-
Daryan and Rigby (1988). 

Five genera of Ordovician sphinctozoans, 
Cliefdenella, Angullongia, Belubulaia, Nibi­
conia, and Rigbyetia (Fig. 48), have been docu-
mented from New South Wales, Australia by 
Webby (1969), Webby and Rigby (1985), 
Rigby and Webby (1988), and Webby and 
Lin (1988). From western North America, 
nine Ordovician genera have been reported 
from northern California and Oregon (Rigby 
& Potter, 1986; Webby & Lin, 1988), 
including Amblysiphonella, Amblysiphonel­
loides, Angullongia, Corymbospongia, Cysto­
thalamiella, Exaulipora, Porefieldia, Pseudo­
imperatoria, and Rigbyetia. Five genera of 
Ordovician sphinctozoans, including Alas­
kaspongia, Angullongia, Cliefdenella, Corym­
bospongia, and Pseudoporefieldia, have been 
documented from Alaska and the Yukon 
Territory (Stock, 1981; Rigby, Potter, 
& Blodgett, 1988). These are the most 
diverse Ordovician sphinctozoan faunules 
documented to date, and they mark an early 
period of diversification of sponges with these 
types of chambered skeletons. Khalfinaea 
Webby & Lin, 1988, has been reported from 
the Shaanxi and Xinjiang provinces of China 
and the Altai Sayan region of Russia, and it 
is the only Ordovician sphinctozoan sponge 
described from these areas (Fig. 48). 



52 Treatise Online, number 28

Silurian sphinctozoan sponges have some-
what more limited diversity and geographic 
occurrences than those of the Ordovician 
(Fig. 49). Silurian sphinctozoans have been 
reported from Pay-Khoy, Cape Belyi Nos, 
and the Northern and Central Ural Moun-
tains of Russia (Myagkova, 1955a, 1955b; 

Zhuravleva & Myagkova, 1974a, 1974b, 
1981, 1987), and from southeastern, south-
central, and southwestern Alaska in North 
America, where Aphrosalpinx, Nematosalpinx, 
and Palaeoscheda have been recovered (Rigby, 
Nitecki, & others, 1994). The marked simi-
larity of aphrosalpingid sphinctozoan sponges 

Fig. 47. Paleogeographic distribution of localities from where Cambrian sphinctozoans have been reported: 1, 
Tatonduk River, eastern Alaska, United States; 2, Antler Peak quadrangle, Nevada, United States; 3, Queensland, 
Australia; 4, New South Wales, Australia; 5, Northern Territory, Australia; 6, Hubei, China (base map adapted 

from Scotese & McKerrow, 1990).

Fig. 48. Paleogeographic distribution of localities from where Ordovician sphinctozoan (circles) and inozoan (triangle) 
sponges have been reported. Sphinctozoans occur at localities: 1, McGrath A-4 and A-5 quadrangles, west-central 
Alaska, United States; 2, Livengood quadrangle, east-central Alaska, United States; 3, Jones Ridge, Yukon Terri-
tory, Canada; 4, Antler Peak quadrangle, Nevada; 5, Altai Sayan, eastern Kazakhstan, Russia; 6, Hubei, China; 7, 
New South Wales, Australia. Inozoans have been reported from locality 8, Klamath Mountains, Oregon (base map 

adapted from Scotese & McKerrow, 1990).
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of Alaska and Russia suggests significant 
paleobiogeographic relationships between the 
Alexander terrane of southeastern Alaska and 
the Nixon Fork terrane of west-central Alaska 
with that of the Ural Mountains, as was earlier 
suggested by Rigby, Nitecki, and others 
(1994). Aphrosalpinx Myagkova, 1955b, and 

Palaeoscheda Myagkova, 1955a, are known 
from the Silurian of both the northern Ural 
Mountains and southeastern Alaska. Nema­
tosalpinx Myagkova, 1955a, is known from 
both the Ural Mountains and southwestern 
Alaska. It is associated with Cystothalamiella 
Rigby & Potter, 1986, in the latter area. 

Fig. 49. Paleogeographic distribution of localities from where Silurian sphinctozoan sponges have been reported: 
1, Taylor Mountains D-2 quadrangle, southwestern Alaska, United States; 2, White Mountain area, McGrath A-4 
and A-5 quadrangles, west-central Alaska, United States; 3, Seaotter Sound area, southeastern Alaska, United States; 
4, Cornwallis Island, District of Franklin, Northwest Territories, Canada; 5, Pay-Khoy, Cape Belyi Nos, northern 
Russia; 6, western slope of Northern Ural Mountains, Russia; 7, eastern slope of Central Ural Mountains, Russia; 

no inozoans have been reported from the Silurian (base map adapted from Scotese & McKerrow, 1990).

Fig. 50. Paleogeographic distribution of localities from where Devonian sphinctozoan (circles) and inozoan (tri­
angle) sponges have been reported: 1, McGrath area, west-central Alaska, United States, where both sphinctozoan 
and inozoan sponges occur; 2, New South Wales, Australia (base map adapted from Scotese & McKerrow, 1990).
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Rigbyspongia  de Freitas ,  1987, was 
described from Ludlovian rocks from Corn-
wallis Island, Arctic Canada. It is the only 
sphinctozoan reported from that region. 

Sphinctozoans were markedly restricted, 
both geographically and taxonomically, 
in the Devonian (Fig. 50). Hormospongia 
Rigby & Blodgett, 1983, has been reported 
from the Eifelian of the McGrath area of 
southwestern Alaska, the type area, and 
from New South Wales, Australia (Pickett 
& Pohler, 1993). Radiothalamos Pickett 
& Rigby, 1983, the other known Devo-
nian sphinctozoan, was described from the 
earlier Lower Devonian of New South Wales. 
The questionable inozoan, Fissispongia, has 
been reported from the Devonian of Alaska 
(Rigby & Blodgett, 1983). It is the only 
possible Devonian inozoan known to date, 
and Fissispongia is considered to be a sphinc-
tozoan by some workers. 

Carboniferous sphinctozoans are known 
principally from lands bordering the Tethyan 
Seaway (Fig. 51), but no major diverse 
sphinctozoan Carboniferous assemblages 
have been reported from the region. Three 
genera, Amblysiphonella, Colospongia, and 
Sollasia, have been reported from Austria 
(Laube, 1865; Pelzmann, 1930; Lobitzer, 
1975; Kügel, 1987),  and five genera, 
Amblysiphonella, Cystothalamia, Discosi­
phonella, ?Sebargasia, and Sollasia from 
Spain (Steinmann, 1882; García-Bellido, 
2002; García-Bellido, Senowbari-Daryan, 
& Rigby, 2004). Sollasia has recently been 
reported from the United Kingdom (Rigby 
& Mundy, 2000), and Amblysiphonella and 
Discosiphonella from China (Inai, 1936). 
Amblysiphonella and other sponges have also 
been reported from the upper Carbonif-
erous of Nebraska and Texas (Clarke, 1897; 
Girty, 1908b, 1915; King, 1933, 1938, 
1943; Toomey, 1979), at some distance 
from the Tethyan region. As in earlier occur-
rences, these fossil localities were also at 
tropical to subtropical paleolatitudes.

Carboniferous inozoans are also limited 
geographically and taxonomically. Maean­
drostia Girty, 1908b, was first described 

from the Pennsylvanian of Kansas, but 
it has also been reported from Texas and 
Oklahoma (Fig. 51), as has the questionable 
inozoan Fissispongia (King, 1938; Rigby & 
Mapes, 2000). Maeandrostia has also been 
reported as occurring in Carboniferous 
deposits of Sicily and the former Yugoslavia, 
along the western margin of the Tethyan 
seaway (Finks & Rigby, 2004c, p. 644).

Sphinctozoans are significant faunal 
elements in Permian assemblages from 
around the margin of the Tethyan seaway 
and in isolated lower latitude areas in 
western North and South America (Fig. 52; 
Rigby & Senowbari-Daryan, 1995). Several 
major assemblages have been described 
from the Tethyan seaway area, and these 
occurrences have been documented in 
Finks and Rigby (2004c). For example, 20 
genera have been documented from Sicily 
(Parona, 1933; Senowbari-Daryan, 1980a, 
1990; Senowbari-Daryan & Di Stefano, 
1988a), 27 genera from Tunisia (Termier 
& Termier, 1955; Termier, Termier, & 
Vachard, 1977; Senowbari-Daryan & 
Rigby, 1988, 1991) in the western part of 
the Tethyan seaway margin, and 15 genera 
from Oman (Weidlich & Senowbari-
Daryan, 1996), on the southern seaway 
margin. Sphinctozoans are also significant 
faunal elements from various localities in 
China, where 34 genera have been described 
(Hayasaka, 1918; Deng, 1982a, 1982b; 
Zhang, 1983, 1987; Fan & Zhang, 1985; 
Reinhardt, 1988; Rigby, Fan, & Zhang, 
1988, 1989a; Flügel & Reinhardt, 1989; 
Rigby, Fan, & others, 1994; Belyaeva, 2000; 
Fan, Wang, & Wu, 2002).

Sphinctozoan sponges of Russia have 
been extensively documented in the major 
work by Boiko, Belyaeva, and Zhuravleva 
(1991), where faunas from the different 
regions were treated in separate chapters in 
the volume. Permian sponges from Middle 
Asia (southern Tian-Shan, Karatchatyr 
Mountains), from North Pamir (Darwaz 
and Piotr I Mountains), from the Far East 
(southern Pimorje), from Armenia, and 
from the Crimea are documented in sepa-
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rate chapters, along with later chapters on 
Triassic and Jurassic sphinctozoans. 

Less diverse sphinctozoan assemblages 
are known from the Permian of Greece 
(Guernet & Termier, 1971; Flügel & 
Reinhardt, 1989), Pakistan (Waagen & 
Wentzel, 1888), Iran (Senowbari-Daryan 
& Hamedani, 2002; Senowbari-Daryan, 
Rashidi, & Hamedani, 2005), India (de 
Koninck, 1863), Thailand (Senowbari-
Daryan & Ingavat-Helmcke ,  1994), 
Indonesia (Wilckens, 1937), Cambodia 
(Mansuy, 1913, 1914), and Japan (Haya-
saka, 1918; Akagi, 1958; Igo, Igo, & 
Adachi, 1988), as occurrences are traced 
around the Tethyan seaway margin. In most 
of these areas, only one or two sphinctozoan 
genera have been reported, although seven 
genera have been reported from Thailand 
and six from Tajikistan in Russia.

In North America, nine sphinctozoans, 
including Amblysiphonella, Cystothalamia, 
Exaulipora, Guadalupia, Lemonea, Parau­
vanella, ?Polysiphonaria, Preverticillites, 
and Tristratocoelia, have been reported as 
being part of the sponge assemblage from 
the Permian reef complex of the Guadalupe 
Mountains and related areas in Texas and 
New Mexico (Girty, 1908a; King, 1943; 
Senowbari-Daryan, 1990; Finks, 1995, 1997; 
Rigby, Senowbari-Daryan, & Liu, 1998). 

A modest faunule of five sphinctozoan 
genera has been described from western 
Venezuela (Rigby, 1984), as the only suite 
of Permian sphinctozoans documented to 
date from South America. This assemblage 
includes Colospongia, Cystothalamia, Guada­
lupia, and Girtyocoelia. 

The Permian marked a major expansion, 
both taxonomically and geographically, in 
the occurrence of inozoan sponges (Fig. 
53). Major inozoan assemblages have been 
collected and described from Permian rocks 
in Tunisia (Termier & Termier, 1955, 
1974; Termier, Termier, & Vachard, 
1977; Rigby & Senowbari-Daryan, 1996a), 
where approximately 30 genera have been 
described. Somewhat less extensive inozoan 
faunas have been described from various 

localities in eastern and southeastern China 
(Rigby, Fan, & Zhang, 1989b; Fan, Rigby, 
& Zhang, 1991; Wu, 1991; Rigby, Fan, 
& others, 1994), and from the Texas–New 
Mexico region in the United States (Girty, 
1908a; King, 1943; Finks, 1995; Rigby, 
Senowbari-Daryan, & Liu, 1998), where 12 
genera are documented. In a major addition 
to the Guadalupe Mountain assemblage, 
Rigby and Bell (2006), described 5 addi-
tional genera from Guadalupian Permian 
rocks of the Guadalupe Mountains. 

Less diverse Permian inozoan faunules 
have been documented from Italy (Sicily), 
(Parona, 1933; Aleotti, Dieci, & Russo, 
1986; Senowbari-Daryan & Di Stefano, 
1988a), Thailand (Senowbari-Daryan & 
Ingavat-Helmcke, 1994), Iran (Senowbari-
Daryan, Rashidi, & Hamedani, 2005), 
around the western end of the Tethyan 
seaway, where four genera have been docu-
mented in each of those localities, and 
where one genus, Peronidella, has been 
reported from the Permian of Hungary (H. 
W. Flügel, 1973). 

In the western part of North America, a 
single Permian inozoan genus, Radiotrabecu­
lopora, has been reported from east-central 
California (Rigby, Linder, & Stevens, 
2004). This genus has been interpreted as 
a disjectoporid-type hypercalcified sponge 
that has possible inozoan relationships (see 
Stearn, 2010a: Treatise Online, Part E, 
Revised, Chapter 6, p. 9).

Triassic sphinctozoans underwent a major 
taxonomic burst, and they have been reported 
from a greater number of localities than 
sphinctozoan faunas from any earlier period 
of geologic time (Fig. 54). These occurrences 
are cited in Finks and Rigby (2004c). Like 
Permian faunas, Triassic sphinctozoans have 
been reported widely from margins of the 
Tethyan seaway and from the western parts of 
North and South America. The most diverse 
faunas are those from southeastern European 
and Middle Eastern countries. 

North American assemblages  were 
mainly collected from the western part of 
the United States, Canada, and Mexico. 
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Se n ow b a r i-Da ry a n and Re i d  (1987) 
described a moderate assemblage of sphinc-
tozoans from the Stikine terrane, from the 
southern Yukon, in westernmost Canada. 
Sphinctozoans there are part of sponge reefs 

and interreef accumulations, and the occur-
rence of 14 sphinctozoan genera has been 
documented from the area. An additional 
genus, Fanthalamia, has been documented 
from Triassic rocks in the Quesnel Range, 

Fig. 51. Paleogeographic distribution of localities from where Carboniferous sphinctozoan (circles) and inozoan 
(triangles) sponges have been reported. Sphinctozoan sponges have been reported from localities: 1, Nebraska, 
United States; 2, Texas, United States; 3, Russia, in general; 4, Yorkshire, United Kingdom; 5, Austria; 6, Spain; 
7, Sicily, Italy; 8, Oman; 9, Manchuria, China. Inozoans have been reported from localities: 10, Kansas, United 
States; 11, Oklahoma, United States; 12, Texas, United States; 13, Sicily, Italy; 14, former Yugoslavia (base map 

adapted from Scotese & McKerrow, 1990).

Fig. 52. Paleogeographic distribution of localities from where Permian sphinctozoan sponges have been reported: 
1, British Columbia, Canada; 2, Guadalupe Mountain region, Texas and New Mexico, United States; 3, western 
Venezuela; 4, Spain; 5, Sicily; 6, Tunisia; 7, Greece; 8, former Yugoslavia; 9, Ukraine; 10, Tajikistan; 11, Russian 
Far East; 12, Turkey; 13, Iran; 14, Oman; 15, Pakistan; 16, India; 17, Caucasus, Russia; 18, Tibet; 19, Timor; 20, 
Indonesia; 21, Thailand; 22, Cambodia; 23, Sichuan-Guizhou, China; 24, Hubei, China; 25, Japan (base map 

from Scotese & McKerrow, 1990).
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in southern British Columbia (Stanley & 
Senowbari-Daryan, 1999). Farther to the 
southeast, in eastern Oregon, three sphincto-
zoan genera, Polycystocoelia, Neoguadalupia, 
and Nevadathalamia, have been reported 
from the Triassic of the Wallowa Mountains 

by Senowbari-Daryan and Stanley (1988). 
Fanthalamia Senowbari-Daryan & Engeser 
(1996), and Cinnabaria Senowbari-Daryan 
(1990) occur in Triassic deposits in Nevada 
and British Columbia. The close tie of these 
assemblages with Chinese faunas is suggested 

Fig. 53. Paleogeographic distribution of localities from where Permian inozoan sponges have been reported: 1, 
east-central California, United States; 2, Guadalupe Mountain region, Texas and New Mexico, United States; 3, 
Europe in general; 4, Sicily, Italy; 5, Tunisia; 6, former Yugoslavia; 7, Hungary; 8, Thailand; 9, Guangxi and Guizhou 

area, southeastern China; 10, Hubei area, eastern China (base map adapted from Scotese & McKerrow, 1990).

Fig. 54. Paleogeographic distribution of localities from where Triassic sphinctozoan sponges have been reported: 
1, Stikine terrane, southern Yukon Territory, Canada; 2, Quesnel Range, southern British Columbia, Canada; 3, 
Wallowa Mountains, eastern Oregon, United States; 4, Mineral County, western Nevada, United States; 5, Sonora, 
Mexico; 6, central Peru; 7, former Czechoslovakia; 8, Germany; 9, France; 10, northern Italy; 11, Sicily; 12, Tuni-
sia; 13, former Yugoslavia; 14, Hungary; 15, Greece; 16, Turkey; 17, Oman; 18, Iran; 19, Himalayan Mountains, 
northern, India; 20, Northern Ural Mountains, Russia; 21, Ukraine; 22, Caucasus region, Russia; 23, Tajikistan 

and Pamir regions; 24, Sichuan, China; 25, Thailand; 26, Timor (base map from Scotese, 2001).
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because some of these genera are character-
istic of Tethyan faunas and, as suggested 
by Senowbari-Daryan and Reid (1987), 
some of the genera documented in Yukon 
suites had been previously reported only 
from Tethyan localities, and others from 
both American and Tethyan localities. They 
suggested that such a mixture might reflect 
the origin of the Stikine terrane as an island 
in the ancestral Pacific Ocean, between the 
Tethys region and North America. 

The occurrence of Nevadathalamia 
Senowbari-Daryan, 1990, in Nevada, is 
geographically intermediate between occur-
rences of that sponge in the Yukon region 
of Canada, to the north, and from Sonora, 
Mexico, to the south, where it occurs with 
Fanthalamia and Cinnabaria, as reported by 
Senowbari-Daryan (in Stanley & others, 
1994) and Senowbari-Daryan, Stanley, and 
Gonzalez-Leon (2001).

The only Triassic sphinctozoans thus far 
reported from South America are from Peru 
(Rauff, 1938; Senowbari-Daryan, 1994b), 
where occurrences of Amblysiphonella, Disco­
siphonella, and Polytholosia have been docu-
mented. Generically diverse major faunas of 
Triassic sphinctozoans have been reported 
from southeastern Europe (Fig. 54), with 29 
genera of sponges from the Alps (Münster, 
1841; Laube, 1865; Pomel, 1872; Stein-
mann, 1882; Ott, 1967; Dieci, Antonacci, 
& Zardini, 1968; Senowbari-Daryan, 
1978, 1981, 1990; Senowbari-Daryan 
& Schäfer, 1979; Senowbari-Daryan & 
Riedel, 1987). From Austria, 27 genera 
have been reported (Münster, 1841; Stein-
mann, 1882; Ott, 1967; Dieci, Antonacci, 
& Zardini, 1968; Ott in Kraus & Ott, 
1968; Wolff, 1973; Ott, 1974; Senowbari-
Daryan, 1978, 1990; Senowbari-Daryan 
& Schäfer, 1979; Dullo, 1980; Engeser 
& Neuman, 1986; Senowbari-Daryan 
& Riedel, 1987; Senowbari-Daryan & 
Würm, 1994). From Italy, primarily Sicily, 
15 genera have been reported (Senow-
bari-Daryan, 1980b; Senowbari-Daryan 
& Abate, 1986; Senowbari-Daryan & 
Schäfer, 1986; Senowbari-Daryan & 

Di Stefano, 1988b); and from southern 
Italy (Calabria) where 6 genera have been 
described by Se n owb a r i-Da ry a n and 
Zamparelli (1999, 2003), and Senowbari-
Daryan, Abate, and others (1999). Sphinc-
tozoan sponge faunas from the Carpathians 
include 17 genera (Münster, 1841; Stein-
mann, 1882; Vinassa de Regny, 1901, 1908; 
Scholz, 1972; Mello, 1975; Balogh & 
Kovacs, 1976; Kovács, 1978a; Senowbari-
Daryan, 1978, 1990; Senowbari-Daryan 
& Riedel, 1987; Riedel & others, 1988; 
Flügel & others, 1991 in 1991–1992); 
and those from southern European coun-
tries (Greece, Romania, and the former 
Yugoslavia) include 16 genera (Pantic, 
1975; Senowbari-Daryan, 1981, 1982, 
1990; Senowbari-Daryan & Schäfer, 1983; 
Senowbari-Daryan & Riedel, 1987; Riedel 
& Senowbari-Daryan, 1989). 

Diverse sphinctozoan assemblages are 
known from Turkey, where at least 18 
Triassic genera have been documented 
(Riedel, 1990; Senowbari-Daryan, 1990, 
1994a; Senowbari-Daryan & Link, 1998; 
Senowbari-Daryan, Link, & García-
Bellido, 2003), and from Tajikistan, where 
22 genera have been cited in Triassic faunas 
(Boiko, 1984, 1990; Boiko, Belyaeva, & 
Zhuravleva, 1991). Primary sources for 
Tajikistan occurrences of most of these 
genera are not cited, but the genera are 
listed from Tajikistan in Finks and Rigby 
(2004c). 

Less diverse Triassic sphinctozoan collec-
tions have also been documented from 
various areas in western Russia, including 
the Caucasus (Moiseev, 1944; Boiko, 1990; 
Boiko, Belyaeva, & Zhuravleva, 1991), 
where 10 genera have been documented; 
and from the Pamir region (Boiko, 1986), 
where 3 genera are cited. Single Triassic 
sphinctozoan genera are known from the 
Northern Urals (Myagkova, 1955a) and 
from the Ukraine–Crimea region (Boiko, 
Belyaeva, & Zhuravleva, 1991). In addi-
tion, 11 different genera are listed as occur-
ring in Russia, presumably western Russia, 
by Finks and Rigby (2004c) (Myagkova, 
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1955a, 1955b; Senowbari-Daryan, 1990; 
Boiko, Belyaeva, & Zhuravleva, 1991). 

Less diverse faunules are known from 
Romania, where 4 Triassic sphinctozoan 
genera are cited in Finks and Rigby (2004c), 
including Amblysiphonella, Enoplocoelia, 
Solenolmia, and Stylothalamia (Steinmann, 
1882; Senowbari-Daryan & Riedel, 1987; 
Ri e d e l & Se n ow b a r i-Da ry a n, 1988; 
Senowbari-Daryan, 1990). The 2 genera 
Solenolmia and Vesicocaulus have been iden-
tified from the Triassic of Czechoslovakia 
(Jablonsky, 1972; Senowbari-Daryan & 
Riedel, 1987; Senowbari-Daryan, 1990). 
In the area around the southwestern part 
of the Tethyan seaway, Triassic sphincto-
zoans have also been collected from Iran, 
where the occurrence of 25 genera has been 
reported (Senowbari-Daryan & Hamedani, 
1999; Senowbari-Daryan, 2005a; Finks 
& Rigby, 2004c). Triassic sphinctozoans 
reported from Oman include 10 genera 
(Senowbari-Daryan, 1990; Bernecker, 
1996; Senowbari-Daryan, Bernecker, & 
others, 1999; Finks & Rigby, 2004c). Only 
the genus Cinnabaria, described as Colo­
spongia catenulata by Bhargava and Bassi 
(1985), has been reported from India.

In the southeastern part of the seaway 
margin, reported occurrences of Triassic 
sphinctozoans from China include Draco­
lychnos Wu & Xiao, 1989, and Casearia; 
both genera are now included in the Hexac-
tinellida (Reid, 2004, p. 486). These genera 
and other hexactinellids are not included 
in this presentation. From the Molluccas, 
five genera of Triassic sphinctozoans have 
been described (Wilckens, 1937); from 
Timor, four genera (Vinassa de Regny, 
1915; Senowbari-Daryan, 1990); and from 
Indonesia, six genera (Wilckens, 1937). 

Triassic inozoan occurrences are primarily 
focused around the Tethyan margin (Fig. 
55). Large faunules of Triassic inozoans have 
been reported from Italy, where ten genera 
have been documented from the Dolomite 
Alps of northern Italy (Dieci, Antonacci, 
& Zardini, 1968; Cuif, 1974; Russo, 
1981; Bizzarini & Russo, 1986; Engeser 

& Taylor, 1989; Riedel & Senowbari-
Daryan, 1991), and two genera from the 
Island of Sicily (Senowbari-Daryan & 
Schäfer, 1986). 

Elsewhere in Europe,  2 genera are 
known from the Triassic of Austria (Klip-
stein, 1843–1845; Haas ,  1909), and 
10 from several countries in Europe in 
general (Finks & Rigby, 2004c). A single 
Triassic inozoan genus, Himatella, has been 
reported from Tunisia (Termier, Termier, 
& Vachard, 1977). Three genera, Dactylo­
coelia, Reticulocoelia, and Peronidella, have 
been documented from the Triassic of 
Turkey (Cuif, 1973; Riedel, 1990), and 
at least 12 genera from Iran (Senowbari-
Daryan, Seyed-Emami, & Aghanabati, 
1997; Senowbari-Daryan, 2005b). Pero­
nidella is the only inozoan genus reported 
from Oman (Bernecker, 1996), but 4 
inozoan genera have been reported from 
Timor, including Ateloracia, Himatella, 
Leiospongia, and Precorynella (Wilckens, 
1937; Finks & Rigby, 2004c). In contrast 
to the rich sphinctozoan fauna known 
from the Pamir Mountains and Caucasia, 
the inozoan fauna of this region is poorly 
known. However, Moiseev (1944) reported 
the occurrence of 2 genera (Molengraaffia 
and Hodsia) from Caucasia, and Doronov, 
Gazdzicki, and Melnikova (1982) reported 
the occurrence of 3 genera (Precorynella, 
Corynella, and Molengraaffia) from the 
southeastern Pamir Mountains. 

Preperonide l la  i s  the  only  Tr ias s ic 
inozoan genus reported from Oregon, in 
the western United States. Stellispongia 
has been described from the Triassic of 
Peru (Rauff, 1938), where Preperonidella, 
as Peronidella, has also been reported 
(Senowbari-Daryan, 1994b). Corynella 
and Eusiphonella (treated in Finks & Rigby, 
2004c, p. 743, 748, as junior synonyms of 
Endostoma and Pareudea, respectively), as 
well as questionable Stellispongiella, were 
also listed as inozoan sponges from Peru 
(Senowbari-Daryan, 1994b, p. 57) and are 
now considered to belong to the Calcispon-
giae, rather than to the Demospongiae 



60 Treatise Online, number 28

like most other inozoans. Cornuaspongia 
and ?Trammeria were also described from 
the Triassic of Peru by Senowbari-Daryan 
(1994b). They are also considered as prob-
able inozoans, but their taxonomic posi-
tions in class and order are uncertain (Finks 
& Rigby, 2004c, p. 762, 764). 

Diversity and geographic spread of 
sphinctozoan sponges in the Jurassic record 
is markedly reduced from that of the Triassic, 
although the major focus of occurrences is 
still along western margins of the Tethyan 
seaway (Fig. 56). For example, ?Deningeria 
and Sphinctonella have been reported from 

Fig. 55. Paleogeographic distribution of localities from where Triassic inozoan sponges have been reported: 1, Wal-
lowa Mountains, eastern Oregon, United States; 2, Mineral County, western Nevada, United States; 3, Peru; 4, 
Europe, in general; 5, Dolomite Alps, northern Italy; 6, Austria; 7, Sicily; 8, Tunisia; 9, Hungary; 10, Turkey; 11, 

Oman; 12, Iran; 13, Timor (base map adapted from Scotese, 2001).

Fig. 56. Paleogeographic distribution of localities from where Jurassic sphinctozoan (circles) and inozoan (triangles) 
sponges have been reported. Sphinctozoans occur at localities: 1, Peru; 2, England, United Kingdom; 3, Germany; 
4, Poland; 5, former Czechoslovakia; 6, Italy; 7, Portugal; 8, Morocco; 9, Greece; 10, China; 11, Molluccas; 12, 
Cambodia. Inozoans occur at localities: 13, eastern Atlantic shelf, Canada; 14, France; 15, Germany (base map 

adapted from Scotese, 2001).
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Poland (Hurcewicz, 1975); Barroisia and 
Muellerithalamia from Germany (Quen-
stedt, 1858; Reitner, 1987b), the latter two 
genera included in the Calcispongiae (Finks 
& Rigby, 2004c). Barroisia, Sphaerocoelia, 
and Thalamopora have been reported from 
the Czech Republic and Slovakia (Zeise, 

1897) and Thalamopora from Portugal 
(Termier, Termier, & Ramalho, 1985). 
Barroisia has also been reported from the 
United Kingdom (Keeping, 1883) and 
from Italy (Senowbari-Daryan & Abate, 
1996), and Boikothalamia has been reported 
from Spain (Reitner & Engeser, 1985). 

Fig. 57. Paleogeographic distribution of localities from where Cretaceous sphinctozoan (circles) and inozoans (tri­
angles) sponges have been reported. Sphinctozoans occur at localities: 1, Texas, United States; 2, United Kingdom; 
3, Germany; 4, France; 5, Spain; 6, Romania; 7, Greece; 8, Switzerland; 9, Austria. Inozoans occur at localities: 

10, Germany; and 11, France (base map adapted from Scotese, 2001).

Fig. 58. Paleogeographic distribution of localities from where Paleogene–Neogene sphinctozoan and inozoan 
sponges have been reported. Sphinctozoan sponges (circles) have been reported from: 1, Denmark (Paleocene); 2, 
Philippine Islands, Marinduqueia (Eocene); 3, southwestern Australia (Eocene); and inozoan sponges (triangles) 
have been reported from: 4, Mexico (Eocene); and 5, Australia (Miocene) (base map adapted from Scotese, 2001).
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Casearia, a hexactinellid chambered sponge, 
is not treated in detail here, but it has been 
reported from along the eastern margin 
of the Tethyan realm from China (Wu & 
Xiao, 1989; Rigby, Wu, & Fan, 1998), from 
central Iran, the western Tethys (Germany), 
and northern Tethys (Pamir Mountains) 
(Müller, 1974; Boiko, 1990; Senowbari-
Daryan & Hamedani, 1999). 

Only a single Lower Jurassic sphinc-
tozoan, Stylothalamia, has been reported 
from the American continents (Fig. 56) and 
that was from Peru (Hildebrandt, 1971; 
Senowbari-Daryan & Stanley, 1994). Stylo­
thalamia has also been reported from Euro-
pean countries (Radoicic, 1966; Pallini 
& Schiavinotto, 1981; Schiavinotto, 
1984; Beccarelli Bauck, 1986; Broglio 
Loriga & others, 1991), and from northern 
Africa (Schroeder, 1984). From the Upper 
Jurassic, the genera Barroisia, Boikotha­
lamia, Sphaerocoelia, Thalamopora, and 
Verticillites have been reported from several 
different European countries by various 
authors (see Senowbari-Daryan & García-
Bellido, 2002a). The occurrence of ?Cryp­
tocoeliopsis Wilckens, 1937, or ?Deningeria 
Wilckens, 1937, has been reported from 
Poland (Hurcewicz, 1975).

Jurassic inozoans are more diverse than 
contemporaneous sphinctozoans, but they 
are still less geographically extensive and less 
diverse that those of the Triassic (Fig. 56). 
Several calcareous sponges that are consid-
ered as inozoans, including Endostoma, ?Elas­
mostoma, Enaulofungia, Pareudea, and Eudea, 
have been reported from the Jurassic of 
Germany (Wagner, 1964; Müller, 1984); 
from Italy (Bizzarini, Braga, & Mastan-
drea, 1987); and from Greece (Bonneau & 
Termier, 1975). The single genus Epitheles, 
based on species included in Myrmecium, 
has been reported from France, along with 
the questionable Aulocopagia Pomel, 1872. 
Winwoodia (Richardson & Thacker, 1920) 
has been documented from England. An 
additional 12 genera of the family Stel-
lispongiidae, within the Calcispongiae, are 
included in the list of inozoans appended 

below, and all are reported as occurring 
in the Jurassic deposits of Europe. Unde-
scribed inozoan sponges are abundant in 
Jurassic deposits of the Shotori Mountains 
in northeastern Iran (Senowbari-Daryan, 
personal observation). The only reported 
inozoan from the Jurassic of North America 
is Sestrostomella, from the Canadian Atlantic 
Shelf (Finks & Rigby, 2004c, p. 611). Six 
genera were reported by Rauff (1938) and 
Senowbari-Daryan (1994b) from Peru in 
South America. 

Cretaceous geographic spread of sphinc-
tozoan sponges is even more restricted 
than that of the Jurassic, but the focus is 
still in western European countries (Fig. 
57). The most diverse faunas have been 
found in Spain (Schroeder & Willems, 
1983;  Sc h ro e d e r ,  1984;  Re i t n e r & 
Engeser, 1985; Reitner, 1987b), where 
five genera have been reported, followed 
by faunules from Germany (Steinmann, 
1882; Dunikowsky, 1883; Welter, 1911; 
Hillmer & Senowbari-Daryan, 1986) and 
France (Delematte, Termier, & Termier, 
1986; Termier & Termier, 1985a, 1985b), 
where four genera have been documented 
from both countries. Single genera have 
been reported from other European locali-
ties, including Stylothalamia from Austria 
(Engeser & Neumann, 1986; Senowbari-
Daryan, 1990), Stylothalamia from Greece 
(Senowbari-Daryan & García-Bellido, 
2002a), and Barroisia from Romania, Swit-
zerland (Steinmann, 1882), and England 
(Hinde, 1882, 1884; Reid, 1968). 

Stylothalamia is the only sphinctozoan 
genus reported from the Cretaceous of 
North America, where specimens of the 
genus were recovered from central Texas by 
Wells (1934).

Cretaceous inozoans are more diverse than 
contemporaneous sphinctozoans, but they 
are certainly more geographically limited 
than in the Jurassic record, for Cretaceous 
occurrences have been reported principally 
from European localities (Fig. 57). Pharetro­
spongia strahani Sollas, 1877, for example, 
was reported from England, as the figured 
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specimen in Finks and Rigby (2004c, p. 
614), although the genus is cited there as 
occurring in Europe, which would suggest 
a broader distribution. Elasmopagia Pomel, 
1872, is the only Cretaceous demosponge 
inozoan reported to date from France, 
and it was not illustrated when proposed. 
Trachytila Welter, 1911, is likewise the only 
Cretaceous demosponge inozoan reported 
from Germany.

Sixteen genera that are included in the 
family Stellispongiidae de Laubenfels, 1955, 
class Calcispongiae, by Finks and Rigby 
(2004c, p. 739–747) are considered to have 
inozoan skeletal structure (see appended list 
below, p. 72). Twelve of these genera are docu-
mented from Cretaceous deposits of Europe, 
and two more are reported as questionably 
present there in the Cretaceous (Lamouroux, 
1821; Bronn, 1825; de Fromentel, 1860; 
Römer, 1864; Pomel, 1872; Zittel, 1878; 
Hinde, 1884, 1893; Zeise, 1897; Welter, 
1911; Finks & Rigby, 2004c). 

Cenozoic sphinctozoans are certainly 
geographically and taxonomically limited, 
for they have been described from only 
three localities (Fig. 58). Only two genera 
have been documented from a European 
country: Verticillites and ?Wienbergia from 
Denmark (Ravn, 1899; Clausen, 1982). In 
addition to the European occurrences, only 
the single genus Marinduqueia has been 
described from the Eocene of the Philippine 
Islands (Yabe & Sugiyama, 1939), and an 
Eocene species of the living genus Vaceletia 
has been reported from Western Australia 
(Pickett, 1982). 

Reported Paleogene-Neogene inozoans 
are limited to the occurrence of ?Elasmos­
toma de Fromentel, 1860, from the Eocene 
of Mexico (Finks & Rigby, 2004c, p. 741), 
and Tretocalia Hinde, 1900, from the 
Miocene of Australia (Pickett, 1983). Four 
inozoan genera of the class Calcispongiae, 
including the stellispongiinids Trachysphe­
cion Pomel, 1872, and Peronidella Zittel 
in Hinde, 1893, and the holcospongiinids 
Eudea Lamouroux, 1821, and Mammil­
lopora Bronn, 1825, have been reported 

from the Holocene (Finks & Rigby, 2004c, 
p. 743–747). 

ROLES OF SPHINCTOZOANS 
AND INOZOANS AS 

CONTRIBUTORS TO REEFS

Hypercalcified inozoan and sphinctozoan 
sponges (including archaeocyaths, stromato-
poroids, and chaetetids) were the most abun-
dant metazoan contributors to the formation 
of invertebrate reefs during the Paleozoic 
and early Mesozoic (Wood, 1990b, 1991b; 
Kiessling, 2001). Only the roles of sphinc-
tozoans and inozoans as contributors to reefs 
and reefal deposits, and their abundance, are 
treated in the following discussions. 

CAMBRIAN–CARBONIFEROUS

In contrast to abundant archaeocyaths 
in the Cambrian and stromatoporoids in 
Ordovician to Devonian reefs, inozoan and 
sphinctozoan sponges were not abundant 
reef builders during this time interval, but 
both groups are known from reefs or reefal 
deposits from some localities (Ordovician: 
Webby & Rigby, 1985; Rigby & Potter, 
1986; Rigby, Potter, & Blodgett, 1988; 
Rigby & Webby, 1988; Webby & Lin, 1988; 
Silurian: de Freitas, 1987; Rigby, Nitecki, 
& others, 1994; Rigby & Chatterton, 
1999; Devonian: Rigby & Blodgett, 1983; 
see also Rigby & Chatterton, 1999).

Contemporary with the chaetetids, 
inozoan and sphinctozoan sponges became 
more important contributors among the 
sponge association in the upper Carbon-
iferous. Individually rich, but with low 
diversity, sponge faunas have been described 
from bedded shallow-water carbonates from 
the Carnic Alps, Austria (Pelzmann, 1930; 
Lobitzer, 1975; Kügel, 1987), from Spain 
(Steinmann, 1882; Van de Graaf, 1969; 
García-Bellido & Rigby, 2004; García-
Bellido, Senowbari-Daryan, & Rigby, 
2004); and from Kansas, Texas, and Okla-
homa (Girty, 1908b; King, 1933, 1938, 
1943; Rigby & Mapes, 2000) in the United 
States.
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PERMIAN

Sphinctozoan and inozoan sponges are 
among the most significant contributors in 
Permian metazoan reefs (Kiessling, 2001; 
Weidlich, 2003). Both groups are abun-
dant in lower Permian sponge Tubiphytes-
Archaeolithoporella reef boulders of Sicily 
(Senowbari-Daryan & Di Stefano, 1988a), 
or in bedded reefal bioconstructions of Iran 
(Senowbari-Daryan, Rashidi, & Hamedani, 
2005). 

Inozoan- and sphinctozoan-dominated 
middle and upper Permian reefs occur 
worldwide (for a summary, see Rigby & 
Senowbari-Daryan, 1995; Weidlich, 2003). 
Both groups have been described from reefs 
or reefal limestones from several localities 
in Texas and New Mexico, in the United 
States (for a summary, see Fagerstrom 
& Weidlich, 1999a, 1999b; Noé, 2003; 
sponges described by Girty, 1908b; Finks, 
1960; Rigby & Senowbari-Daryan, 1996a, 
1996b; Rigby, Senowbari-Daryan, & Liu, 
1998); from Venezuela (Rigby, 1984); from 
Sicily (Parona, 1933; Aleotti, Dieci, & 
Russo, 1986; Senowbari-Daryan, 1990; 
Flügel, Di Stefano, & Senowbari-Daryan, 
1991); from Tunisia (Termier & Termier 
1974; Termier, Termier, & Vachard, 1977; 
Senowbari-Daryan & Rigby, 1988; Rigby & 
Senowbari-Daryan, 1996a); from Pakistan 
(Waagen & Wentzel, 1888); from Japan 
(Hayasaka, 1918; Akagi, 1958; Igo, Igo, & 
Adachi, 1988); from China (Fan & Zhang, 
1985; Flügel & Reinhardt, 1989; Rigby, 
Fan, & Zhang, 1989a, 1989b; Fan, Rigby, 
& Jingwen, 1990; Fan, Rigby, & Zhang, 
1991; Wu, 1991; Rigby, Fan, & others, 
1994; Rigby, Fan, & Nairen, 1995; Bely-
aeva, 2000; Fan, Wang, & Wu, 2002); from 
Oman (Weidlich & Senowbari-Daryan, 
1996); from Iran (Senowbari-Daryan & 
Hamedani, 2002; Rigby, Senowbari-Daryan, 
& Hamedani, 2005; Senowbari-Daryan, 
Rashidi, & Hamedani, 2005); from Caucasia 
(see Boiko, Belyaeva, & Zhuravleva, 1991); 
from Thailand (Senowbari-Daryan & 
Ingavat-Helmcke, 1994); and from the 

former Yugoslavia (Flügel, Kochansky-
Devide, & Ramovs, 1984; Sremac, 2005).

TRIASSIC

Hypercalcified sponges, including the 
group of spongiomorphid fossils described 
as hydrozoans by early workers (now consid-
ered to be sponges, such as Spongiomorpha 
Frech, 1890, and Disjectopora Waagen & 
Wentzel, 1888; see also Summary of Clas-
sification, herein p. 66), and chaetetids were 
among the most significant contributors to 
Middle and Late Triassic reefs (Flügel & 
Senowbari-Daryan, 2001; Flügel, 2003). 
Flügel (2003) concluded that hypercalcified 
sponges made up to 50–75% of the bulk of 
Late Triassic reefs. Inozoans and sphincto-
zoans are particularly abundant in Upper 
Triassic reefs. Of these, the sphinctozoans 
seem to be more abundant than the inozoans. 
Sponges with aragonitic and Mg-calcitic 
mineralogy are both represented. Generic 
diversity, complexity, and the dimensions of 
both groups increased from the Anisian to 
the Carnian and reached its maximum devel-
opment during the Norian. The diversity of 
both groups seems to have decreased during 
the uppermost Norian or Rhaetian stage, 
and their importance as principal contribu-
tors, bafflers, and framebuilders was taken 
over by scleractinian corals.

Middle Triass ic  sphinctozoan- and 
inozoan-dominated reefs or reefal carbon-
ates are known from numerous localities in 
the western Tethys (Alps: Ott, 1967; Dullo 
& Lein, 1980; Bradner & Resch, 1981; 
Fois & Gaetani, 1981, 1984; Henrich, 
1982; Senowbari-Daryan & others, 1993; 
Rüffer & Zamparelli, 1997; Emmerich 
& others, 2005; for more information, see 
Flügel & Senowbari-Daryan, 2001), and 
from the Apennines (Senowbari-Daryan, 
Abate, & others, 1999). Sphinctozoans have 
been reported from the Middle to Upper 
Triassic of the western Tethys (from the 
Alps of Austria: Zankl, 1969; Senowbari-
Daryan, 1978, 1980a, 1990; Senowbari-
Daryan & Schäfer, 1979; Schäfer, 1979; 
Dullo & Lein, 1980; for more informa-
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tion, see Flügel, 1981, 2003; Flügel & 
Senowbari-Daryan, 2001); from northern 
Italy (Münster, 1841; Dieci, Antonacci, 
& Zardini, 1968; Russo, 1981; Bizza-
rini & Russo, 1986); from southern Italy 
(Mastandrea & Rettori, 1989; Senowbari-
Daryan & Zamparelli, 1999, 2003); from 
the Carpathians (Jablonsky, 1971, 1972, 
1975; Balogh & Kovács, 1976; Kovács, 
1978a, 1978b; Flügel & others, 1992 in 
1991–1992); from the former Yugoslavia 
(Senowbari-Daryan, 1981, 1982; Ramos & 
Turnsek, 1984; Turnsek, Buser, & Ogor-
elec, 1987); and from Greece (Schäfer 
& Senowbari-Daryan, 1982; Senowbari-
Daryan, 1982; Senowbari-Daryan & 
Schäfer, 1983; Senowbari-Daryan, Mata-
rangas, & Vartis-Matarangas, 1996).

Triassic sphinctozoan- and inozoan-
dominated reefs and reefal limestones 
are also known from the southern Tethys 
(Sic i ly :  S e n ow b a r i -D a ry a n ,  1980b; 
Senowbari-Daryan, Schäfer & Abate, 
1982; Senowbari-Daryan & Abate, 1986; 
Senowbari-Daryan & Schäfer, 1986; 
Senowbari-Daryan & Di Stefano, 1988b; 
from Turkey: Cuif, 1973; Senowbari-
Daryan, 1994a; Senowbari-Daryan & 
Link, 1998; Senowbari-Daryan, Link, & 
García-Bellido, 2003, and from Oman: 
Bernecker, 1996; Senowbari-Daryan, 
Bernecker, & others, 1999). These types of 
deposits are also known from the northern 
Tethys (Caucasia: Moissev, 1944; Boiko, 
Belyaeva, & Zhuravleva, 1991), and from 
the central Tethys (Senowbari-Daryan, 
1996, 2005a; Senowbari-Daryan, Seyed-
Emami, & Aghanabati, 1997).

Sphinctozoan and inozoan sponges 
have been described from other Norian–
Rhaetian reefs from the western Tethys 
(Vinassa de Regny, 1915; Wilckens , 
1937; Röhl & others, 1991), and from 
around the Panthalassia ocean from North 
America (Nevada: Stanley, 1979; British 
Columbia, Canada: Stanley & Senowbari-
Daryan, 1999; Yukon, Canada: Senowbari-
Daryan & Reid, 1987) and South America 
(Senowbari-Daryan, 1994b). 

Our present knowledge confirms the 
occurrence of approximately 16 sphincto-
zoan genera in Middle Triassic reefs and 
55 genera in Upper Triassic reefs. Inozoan 
sponges of Triassic deposits are not well 
known. They are represented by approxi-
mately 41 genera, but there are many more 
undescribed taxa. 

In Jurassic deposits and reefs, siliceous 
sponges are more abundant than hypercal-
cified sponges in general, and especially the 
sphinctozoan and inozoan sponges. Based on 
the abundance of reef builders, Leinfelder 
(2001) described three types of Jurassic reefs, 
and discussed them as coral reefs, siliceous 
sponge reefs, and pure microbiolite reefs. 
Although some sphinctozoan sponges are 
known from Upper Jurassic reefs, they do 
not play an important role in shallow-water 
environments. Inozoans, excluding those 
just described as stromatoporoids, are signifi-
cantly more abundant than sphinctozoans 
in Jurassic deposits, and especially in Upper 
Jurassic deposits.

Jurassic sphinctozoans and inozoans are 
known in reef associations from Italy (Schia-
vinotto, 1984; Becarelli Bauck, 1986; 
Bizzarini, Braga, & Mastandrea, 1987; 
Broglio Lorica & others, 1991), Germany 
(Quenstedt, 1858; Zittel, 1879; Wagner, 
1964; Lang, 1985; Reitner, 1987b), Swit-
zerland (Oppliger, 1929), France (Pomel, 
1872), the former Yugoslavia (Radoicic, 
1966),  Greece (Bonneau & Termier, 
1975) ,  Morocco (Sc h ro ed e r, 1984) , 
Poland (Hurcewicz, 1972, 1975), and Peru 
(Hildebrandt, 1971, 1981; Senowbari-
Daryan, 1994b).

The abundance of both sphinctozoans and 
inozoans increased during the Cretaceous. 
Several taxa have been described, especially 
from the Cretaceous of Spain (Schroeder & 
Willems, 1983; Reitner & Engeser, 1985; 
Reitner, 1987c), and Germany (Hillmer & 
Senowbari-Daryan, 1986).

In summary, the hypercalcified sponges 
(including archaeocyaths, stromatoporoids, 
chaetetids, sphinctozoans, and inozoans) 
are the dominant metazoan fossil groups 
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in Cambrian to Permian reefs. Among the 
invertebrates, sphinctozoan and inozoans 
were the main reef builders of Permian and 
Triassic reefs. In the uppermost Triassic 
(Rhaetian), scleractinian corals became more 
abundant than the hypercalcified sponge 
groups. The role of corals as the main reef 
builders continued up to today, with the 
exception of the Cretaceous, when rudist 
bivalve reefs developed. 

TECHNIQUES FOR STUDY
Sphinctozoans and inozoans are calcar-

eous forms where both external and internal 
structures are critical for taxonomic evalua-
tion. As a result, these fossils are prepared 
for examination and description much like 
bryozoans or stromatoporoids. Thin sections 
or polished sections of the skeletons provide 
primary information on those structures. 
Vertical axial sections that show the internal 
and dermal elements, coupled with similarly 
complete transverse sections, are normally 
important for analysis of elongate forms. 
Sections at high angles to and parallel to 
surfaces in platelike forms are also both 
necessary for adequate documentation of 
their structure, as in other fossil groups. In 
some forms, it may be helpful to prepare 
tangential or oblique sections to show 
chamber patterns and structures. Sections 
or polished surfaces should be prepared large 
enough to show the general structure of the 
fossil, rather than only a small part. 

It is sometimes helpful to etch polished 
surfaces or sections with very dilute (3–5%) 
or concentrated (100%) acetic acid. Etched 
surfaces should be frequently checked during 
processing, compared to see which prepara-
tion is most productive on the particular 
samples, and that technique then applied 
for final preparation. Low-relief etched 
surfaces are necessary for examination of 
microstructure and spicules by scanning 
electron microscopy.

Silicified fossils of these groups are 
normally prepared for study by etching 
them in dilute hydrochloric or acetic acids. 
This allows encasing matrix to be removed 

so that details of the individual skeletons can 
be examined. Where the skeletons are very 
delicate, they may be embedded in epoxy, 
and after cutting the skeletons, they can be 
examined.

SUMMARY OF 
CLASSIFICATION 

AND STRATIGRAPHIC 
OCCURRENCES 

The following is a list of all the currently 
recognized chambered (Sphinctozoa) and 
nonchambered (Inozoa) hypercalcified 
sponge genera and their stratigraphic occur-
rences. 

Most aspects of the systematic classifica-
tion proposed by Finks and Rigby (2004c, p. 
585–764) have continued to be used here, but 
there are some important changes, as follows.
1. Demospongiae Sollas, 1885, is here 

maintained as class group name, given 
its widespread use and general acceptance 
by zoologists and paleontologists. The 
ICZN Code (1999) has not stipulated 
a consistent form of ending for class 
group names, although one attempt was 
made in the first Treatise Part E volume 
(Moore, 1955), including the change 
de Laubenfels (1955) made to porif-
eran class divisions, viz., “Demospongea, 
Hyalospongea and Calcispongea.”

2. Subclasses Tetractinomorpha and Ceracti-
nomorpha Levi, 1953, have proven to 
exhibit polyphyletic relationships, and 
this has led to suggestions that use of 
these two traditional subclasses should 
be abandoned (Boury-Esnault, 2006).

3. Order Vaceletida Finks & Rigby (2004, 
p. 691) is broadly constituted to incor-
porate many families and a wide scope of 
stratigraphic records but does not have 
priority over order Verticillitida Termier 
& Termier, 1977; note also the recent 
common usage of this ordinal subdivi-
sion by Vacelet, 2002, p. 1097, and 
Senowbari-Daryan and García-Bellido, 
2002a, p. 1521, and consequently this 
usage is preferred here. 
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4. Calcispongiae de Blainville, 1830, p. 
494, and Calcarea Bowerbank, 1864, p. 
160, have been widely used as alterna-
tive class-level group names. The orig-
inal spelling of de Blainville (1830) 
was Calcispongia, but most subsequent 
authors have preferred to present the 
name with the addition of an -iae termi-
nation, that is, as class Calcispongiae for 
the sponges with calcareous spicules.

5. In the Finks and Rigby (2004) classifica-
tion, the two subclasses of the Calcispon-
giae (=Calcarea) are the Calcinea and 
Calcaronea, with the former including two 
orders (Murrayonida and Clathrinida), 
and the latter with five orders (Leucosol-
enida, Sycettida, Stellispongiida, Sphaeo-
coeliida, and Lithonida). This contrasts 
with the new classification of Senobari-
Daryan and Rigby (herein), which only 

involves subclass Calcinea, with mainly 
sphinctozoan types grouped into two 
orders (Sphaerocoeliida and Lithonida), 
and inozoan types grouped within one 
order (Stellospongiida). The subclass 
Calcaronea is no longer considered to 
contain sphinctozoan or inozoan sponges.
The list of hexactinellid, lithistid, and 

heteractinid sphinctozoans are included, 
as well as the demosponge and calcisponge 
representatives. For references that are not 
listed in this presentation, see Finks, Reid, 
and Rigby (in Kaesler, 2004, p. 812–855). 
Stratigraphic abbreviations: C, Cambrian; 
O, Ordovician; S, Silurian; D, Devonian; 
Ca, Carboniferous; P, Permian; T, Triassic; 
J, Jurassic; Cr, Cretaceous; Ce, Cenozoic; R, 
Recent. A question mark before the genus 
name means either the family affiliation or 
the validity of the genus is uncertain. 

SPHINCTOZOA

Class Demospongiae Sollas, 1885
		  Order Agelasida Verrill, 1907
				    Family Angullongiidae Webby & Rigby, 1985
						      Angullongia Webby & Rigby, 1985 (O)
						      Alaskaspongia Rigby, Potter, & Blodgett, 1988 (O)
						      Amblysiphonelloides Rigby & Potter, 1986 (O)
						      Belubulaia Webby & Rigby, 1985 (O)
						      Nibiconia Rigby & Webby, 1988 (O)
				    Family Phragmocoeliidae Ott, 1974
						      Phragmocoelia Ott, 1974 (T)
						      ?Baghevangia Senowbari-Daryan, Rashidi, & Hamedani, 2005 (P) 
						      Radiothalamos Pickett & Rigby, 1983 (D)
				    Family Intrasporeocoeliidae Fan & Zhang, 1985
						      Intrasporeocoelia Fan & Zhang, 1985 (P)
						      Belyaevaspongia Senowbari-Daryan & Ingavat-Helmcke, 1994 (P)
						      Delijania Senowbari-Daryan, 2005a (T)
						      Rahbahthalamia Weidlich & Senowbari-Daryan, 1996 (P)
						      Rhabdactinia Yabe & Sugiyama, 1934 (P)
				    Family Cryptocoeliidae Steinmann, 1882
						      Cryptocoelia Steinmann, 1882 (P–T)
						      Anisothalamia Senowbari-Daryan & others, 1993 (T)
						      Antalythalamia Senowbari-Daryan, 1994a (T)
						      ?Calabrispongia Senowbari-Daryan & Zamparelli, 2003 (T)
						      Rigbyspongia de Freitas, 1987 (S)
						      Sphaerothalamia Senowbari-Daryan, 1994a (T)
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				    Family Palermocoeliidae Senowbari-Daryan, 1990
						      Palermocoelia Senowbari-Daryan, 1990 (T)
				    Family Thaumastocoeliidae Ott, 1967
					     Subfamily Thaumastocoeliinae Ott, 1967
						      Thaumastocoelia Steinmann, 1882 (P–T)
						      ?Calymenospongia Elliott, 1963 (Ce) 
						      ?Follicatena Ott, 1967 (P–T) 
						      Henricellum Wilckens, 1937 (P–T)
						      Pamirothalamia Boiko in Boiko, Belyaeva, & Zhuravleva, 1991 (T)
						      Pamiroverticillites Boiko in Boiko, Belyaeva, & Zhuravleva, 1991 (T)
						      Porefieldia Rigby & Potter, 1986 (O)
						      Pseudoporefieldia Rigby, Potter, & Blodgett, 1988 (O)
						      ?Solenocoelia Cuif, 1973 (T)
						      Sollasia Steinmann, 1882 (Ca–T)
						      Sphaeroverticillites Boiko, 1990 (T)
					     Subfamily Enoplocoeliinae Senowbari-Daryan, 1990
						      Enoplocoelia Steinmann, 1882 (P–T)
						      Girtyocoelia Cossmann, 1909 (O–T)
						      Girtyocoeliana Rigby & others, 2005 (O)
						      Naybandella Senowbari-Daryan, 2005a (T)
						      Phraethalamia Senowbari-Daryan & Ingavat-Helmcke, 1994 (P)
				    Family Amphorithalamiidae Senowbari-Daryan & Rigby, 1988
						      Amphorithalamia Senowbari-Daryan & Rigby, 1988 (P)
				    Family Polyedridae Termier & Termier in Termier, Termier, & Vachard, 1977
						      Polyedra Termier & Termier in Termier, Termier, & Vachard, 1977 (P)
				    Family Aphrosalpingidae Myagkova, 1955b
					     Subfamily Fistulospongiinae Termier & Termier in Termier, Termier, & Vachard, 1977 
						      ?Fistulosponginina Termier & Termier in Termier, Termier, & Vachard, 1977 (P) 
						      Aphrosalpinx Myagkova, 1955b (S)
						      Cystothalamiella Rigby & Potter, 1986 (O–S)
						      Nematosalpinx Myagkova, 1955a (S)
						      Uvacoelia Kügel, 1987 (Ca)
					     Subfamily Vesicocauliinae Senowbari-Daryan, 1990
						      Vesicocaulis Ott, 1967 (T)
						      Russospongia Senowbari-Daryan, 1990 (T)
						      Tolminothalamia Senowbari-Daryan, 1990 (T)
						      Yukonella Senowbari-Daryan & Reid, 1987 (T)
					     Subfamily Palaeoschadinae Myagkova, 1955a
						      Palaeoscheda Myagkova, 1955a (S) 
				    Family Glomocystospongiidae Rigby, Fan, & Zhang, 1989a 
						      Glomocystospongia Rigby, Fan, & Zhang, 1989a (P)
						      Huayingia Rigby, Fan, & others, 1994 (P)
				    Family Sebargasiidae de Laubenfels, 1955
						      ?Sebargasia Steinmann, 1882 (Ca)
						      Amblysiphonella Steinmann, 1882 (?C, ?O, Ca–T)
						      Calabrisiphonella Senowbari-Daryan & Zamparelli, 2003 (T)
						      Chinaspongia Belyaeva, 2000 (P) 
						      Crymocoelia Belyaeva in Boiko, Belyaeva, & Zhuravleva, 1991 (P)
						      ?Laccosiphonella Aleotti, Dieci, & Russo, 1986 (P)
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						      ?Lingyunocoelia Fan, Wang, & Wu, 2002 (P)
						      Minisiphonella Boiko in Boiko, Belyaeva, & Zhuravleva, 1991 (T)
						      ?Oligocoelia Vinassa de Regny, 1901 (T)
						      ?Paramblysiphonella Deng, 1982c (P) 
						      Polycystocoelia Zhang, 1983 (P–T)
						      Pseudoamblysiphonella Senowbari-Daryan & Rigby, 1988 (P)
						      Pseudoguadalupia Termier & Termier, 1977 (P)
						      Stylocoelia Wu, 1991 (P)
						      Vesicotubularia Belyaeva in Boiko, Belyaeva, & Zhuravleva, 1991 (P)
				    Family Olangocoeliidae Bechstädt & Brandner, 1970
						      Olangocoelia Bechstädt & Brandner, 1970 (T) 
				    Family Cliefdenellidae Webby, 1969
						      Cliefdenella Webby, 1969 (O)
						      Khalfinaea Webby & Lin, 1988 (O)
						      Rigbyetia Webby & Lin, 1988 (O)
				    Family Guadalupiidae Girty, 1908a 
						      Guadalupia Girty, 1908a (P)
						      ?Cystauletes King, 1943 (Ca–T)
						      Cystothalamia Girty, 1908a (Ca–T)
						      Diecithalamia Senowbari-Daryan, 1990 (T)
						      Discosiphonella Inai, 1936 (Ca–T)
						      Lemonea Senowbari-Daryan, 1990 (P)
						      Praethalamopora Russo, 1981 (T)
				    Family Tabasiidae Senowbari-Daryan, 2005a 
						      Tabasia Senowbari-Daryan, 2005a (T)
						      ?Madonia Senowbari-Daryan & Schäfer, 1986 (T)
		  Order Verticillitida Termier & Termier, 1977
				    Family Solenolmiidae Engeser, 1986
					     Subfamily Solenolmiinae Engeser, 1986
						      Solenolmia Pomel, 1872 (P–T)
						      ?Adrianella Parona, 1933 (P)
						      Ambithalamia Senowbari-Daryan & Ingavat-Helmcke, 1994 (P)
						      ?Cryptocoeliopsis Wilckens, 1937 (T, ?J) 
						      ?Deningeria Wilckens, 1937 (T, ?J)
						      Hormospongia Rigby & Blodgett, 1983 (D)
						      Panormida Senowbari-Daryan, 1980b (T)
						      Paradeningeria Senowbari-Daryan & Schäfer, 1979 (P–T)
						      ?Polysiphonaria Finks, 1997 (P)
						      Polythalamia Debrenne & Wood, 1990 (C); described as a capsulocyathid
							       archaeocyath by Debrenne, Zhuravlev, & Kruse, in Treatise Online, Part E, Revised,
							       Vol. 4, Chapter 18A, p. 73 
						      Preverticillites Parona, 1933 (P)
						      Prosiphonella Dieci, Antonacci, & Zardini, 1968 (T)
						      Sahraja Moissev, 1944 (T)
						      Senowbaridaryana Engeser & Neumann, 1986 (T)
						      ?Seranella Wilckens, 1937 (T)
						      Welteria Vinassa de Regny, 1915 (P–T)
					     Subfamily Battagliinae Senowbari-Daryan, 1990
						      Battaglia Senowbari-Daryan & Schäfer, 1986 (T)
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				    Family Colospongiidae Senowbari-Daryan, 1990
					     Subfamily Colospongiinae Senowbari-Daryan, 1990
						      Colospongia Laube, 1865 (Ca–T)
						      Blastulospongia Pickett & Jell, 1983 (C)
						      Pseudoimperatoria Senowbari-Daryan & Rigby, 1988 (O–P)
						      Subascosymplegma Deng, 1981 (P)
						      Tristratocoelia Senowbari-Daryan & Rigby, 1988 (P)
						      Uvothalamia Senowbari-Daryan, 1990 (P)
					     Subfamily Corymbospongiinae Senowbari-Daryan, 1990
						      Corymbospongia Rigby & Potter, 1986 (O, ?P)
						      Exaulipora Rigby, Senowbari-Daryan, & Liu, 1998 (?O, P)
						      Imbricatocoelia Rigby, Fan, & Zhang, 1989a (P)
						      Lichuanospongia Zhang, 1983 (P)
						      Neoguadalupia Zhang, 1987 (P–T)
						      Parauvanella Senowbari-Daryan & Di Stefano, 1988a (P–T)
						      Platythalamiella Senowbari-Daryan & Rigby, 1988 (P–T)
						      Shotorispongia Senowbari-Daryan, Rashidi, & Hamedani, 2006
					     Subfamily Kashanelliinae Senowbari-Daryan, 2005b
						      Kashanella Senowbari-Daryan, 2005a (T)
				    Family Gigantothalamiidae Senowbari-Daryan, 1994a
						      Gigantothalamia Senowbari-Daryan, 1994a (T)
						      Zanklithalamia Senowbari-Daryan, 1990 (T)
						      Lucaniaspongia Senowbari-Daryan, Abate, & others, 1999 (T)
				    Family Tebagathalamiidae Senowbari-Daryan & Rigby, 1988
						      Tebagathalamia Senowbari-Daryan & Rigby, 1988 (P)
						      Graminospongia Termier & Termier in Termier, Termier, & Vachard, 1977 (P)
				    Family Annaecoeliidae Senowbari-Daryan, 1978 (T)
						      Annaecoelia Senowbari-Daryan, 1978 (T) 
				    Family Cheilosporitiidae Fischer, 1962
						      Cheilosporites Wähner, 1903 (T)
				    Family Salzburgiidae Senowbari-Daryan & Schäfer, 1979
						      Salzburgia Senowbari-Daryan & Schäfer, 1979 (P–T)
				    Family Cribrothalamiidae Senowbari-Daryan, 1990
						      Cribrothalamia Senowbari-Daryan, 1990 (T) 
				    Family Verticillitidae Steinmann, 1882
					     Subfamily Verticillitinae Steinmann, 1882
						      Verticillites De France, 1829 (J–Ce)
						      Boikothalamia Reitner & Engeser, 1985 (J)
						      Marinduqueia Yabe & Sugiyama, 1939 (Ce)
						      ?Menathalamia Reitner & Engeser, 1985 (Cr)
						      Murguiathalamia Reitner & Engeser, 1985 (Cr)
						      Stylothalamia Ott, 1967 (P–Cr)
						      Vaceletia Pickett, 1982 (Cr–R)
						      Vascothalamia Reitner & Engeser, 1985 (Cr) 
						      ?Wienbergia Clausen, 1982 (Ce)
					     Subfamily Polytholosiinae Seilacher, 1962
						      Polytholosia Rauff, 1938 (P–T)
						      ?Ascosymplegma Rauff, 1938 (T)
						      Nevadathalamia Senowbari-Daryan, 1990 (T)
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						      ?Tetraproctosia Rauff, 1938 (T)
					     Subfamily Fanthalamiinae Senowbari-Daryan & Engeser, 1996
						      Fanthalamia Senowbari-Daryan & Engeser, 1996 (T)
						      Cinnabaria Senowbari-Daryan, 1990 (T)
						      Iranothalamia Senowbari-Daryan, 2005a (T)
					     Subfamily Polysiphospongiinae Senowbari-Daryan, 1990
						      Polysiphospongia Senowbari-Daryan & Schäfer, 1986 (T)
				    Family Uncertain
						      Platysphaerocoelia Boiko in Boiko, Belyaeva, & Zhuravleva, 1991 (T)
		  Order Hadromerida Topsent, 1898
				    Family Celyphiidae de Laubenfels, 1955
						      Celyphia Pomel, 1872 (P–T, Cr)
						      Alpinothalamia Senowbari-Daryan, 1990 (T)
						      Cassianothalamia Reitner, 1987a (T)
						      Jablonskyia Senowbari-Daryan, 1990 (T)
						      Leinia Senowbari-Daryan, 1990 (T)
						      Loczia Vinassa De Regny, 1901 (T)
						      Montanaroa Russo, 1981 (T)
						      Pamirocoelia Boiko in Boiko, Belyaeva, & Zhuravleva, 1991 (T)
						      Paravesicocaulis Kovács, 1978a (T)
						      Pisothalamia Senowbari-Daryan & Rigby, 1988 (P)
						      Pseudouvanella Senowbari-Daryan, 1994a (T)
						      Tongluspongia Belyaeva, 2000 (P)
						      Uvanella Ott, 1967 (P–T)
				    Family Ceotinellidae Senowbari-Daryan in Flügel, Lein, & Senowbari-Daryan, 1978
						      Ceotinella Pantic, 1975 (T)
				    Family Polysiphonidae Girty, 1908a 
						      Polysiphon Girty, 1908a (P)
						      Arbusculana Finks & Rigby, 2004c (P)
						      ?Zardinia Dieci, Antonacci, & Zardini, 1968 (T)
	 Subclass Lithistida Schmidt, 1870 
		  Order Tetralithistida Lagneau-Hérenger, 1962
			   Suborder Tetracladina Zittel, 1878
				    Family Radiocelliidae Senowbari-Daryan & Würm, 1994
						      Radiocella Senowbari-Daryan & Würm, 1994 (T)
Class Calcispongiae de Blainville, 1830
	 Subclass Calcinea Bidder, 1898
		  Order Sphaerocoeliida Vacelet, 1979b
				    Family Sphaerocoeliidae Steinmann, 1882
						      Sphaerocoelia Steinmann, 1882 (P–Cr)
						      Barroisia Munier-Chalmas, 1882 (J–Cr)
						      Sphinctonella Hurcewicz, 1975 (J)
						      Thalamopora Römer, 1840 (J–Cr) 
						      Tremacystia Hinde, 1884 (Cr)
		  Order Lithonida Döderlein, 1892
				    Family Minchinelliidae Dendy & Row, 1913
						      Muellerithalamia Reitner, 1987b (J)
Class and Order Uncertain
						      Pseudodictyocoelia Boiko, 1984 (T)
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Class Hexactinellida Schmidt, 1870
	 Subclass Hexasterophora Schulze, 1887
		  Order Hexactinosa Schrammen, 1903
				    Family Craticulariidae Rauff, 1893
					     Subfamily Caseariinae Schrammen, 1937
						      Casearia Quenstedt, 1858 (T–J)
						      Caucasocoelia Boiko, 1990 (T)
						      Dracolychnos Wu & Xiao, 1989 (T)
						      Innaecoelia Boiko, 1990 (J)
						      Pseudoverticillites Boiko, 1990 (T)
Class Heteractinida de Laubenfels, 1955
		  Order Octactinella Hinde, 1887
				    Family Nuchidae Pickett, 2002
						      Nucha Pickett & Jell, 1983 (C)
						      Jawonya Kruse, 1987 (C)
						      Wagima Kruse, 1987 (C)

INOZOA

The following list contains only the confirmed fossil inozoan sponges. Representatives 
of modern calcareous algae, including some inozoans described as algae, are not listed here.

Class Demospongiae Sollas, 1885
		  Order Agelasida Verrill, 1907
			   Family Catenispongiidae Finks, 1995
					     Catenispongia Finks, 1995 (P)
					     Hartmanina Dieci, Russo, & Russo, 1974b (T); described as an obj. syn. of Leiospongia
						      d’Orbigny, 1849, a chaetetid as per Engeser & Taylor, 1989, and classified by
						      West & Wood in Treatise Online, Part E, Revised, Chapter 4B, as an agelasid
						      demosponge
					     Ossiminus Finks, 1995 (P)
					     Stratispongia Finks, 1995 (P)
			   Family Virgolidae Termier & Termier in Termier, Termier, & Vachard, 1977
				    Subfamily Virgolinae Termier & Termier in Termier, Termier, & Vachard, 1977
					     Virgola de Laubenfels, 1955 (P)
					     Dactylocoelia Cuif, 1979 (T)
					     Intratubospongia Rigby, Fan, & Zhang, 1989b (P)
					     Keriocoelia Cuif, 1974 (T); described as a chaetetid as per Dieci & others, 1977, and
						      classified by West & Wood, in Treatise Online, Part E, Revised, Chapter 4B,
						      as an agelasid demosponge
					     Reticulocoelia Cuif, 1973 (T)
					     Sclerocoelia Cuif, 1974a (T); described as a chaetetid as per Dieci & others, 1977, and
						      West & Wood, in Treatise Online, Part E, Revised, Chapter 4B, classified as an 		
						      agelasid demosponge
				    Subfamily Preeudinae Rigby & Senowbari-Daryan, 1996a 
					     Preeudea Termier & Termier in Termier, Termier, & Vachard, 1977 (P)
					     Medenina Rigby & Senowbari-Daryan, 1996a (P)
					     Microsphaerispongia Rigby & Senowbari-Daryan, 1996a (P)
					     Polytubifungia Rigby & Senowbari-Daryan, 1996a (P)
					     Pseudovirgula Girty, 1908a (P)
					     Vermispongiella Finks & Rigby, 2004c (P)
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 				   Subfamily Pseudohimatellinae Rigby & Senowbari-Daryan, 1996a 
					     Pseudohimatella Rigby & Senowbari-Daryan, 1996a (P)
				    Subfamily Parahimatellinae Rigby & Senowbari-Daryan, 1996a 
					     Parahimatella Rigby & Senowbari-Daryan, 1996a (P)
			   Family Sphaeropontiidae Rigby & Senowbari-Daryan, 1996a 
					     Sphaeropontia Rigby & Senowbari-Daryan, 1996a (P)
			   Family Exotubispongiidae Rigby & Senowbari-Daryan, 1996a 
					     Exotubispongia Rigby & Senowbari-Daryan, 1996a (P)
			   Family Sestrostomellidae de Laubenfels, 1955
					     Sestrostomella Zittel, 1878 (T–J)
					     Brevisiphonella Russo, 1981 (T)
					     Epitheles de Fromentel, 1860 (J)
					     Himatella Zittel, 1878 (P–T)
					     Polysiphonella Russo, 1981 (T)
					     Trachytila Welter, 1911 (Cr)
					     Winwoodia Richardson & Thacker, 1920 (J)
			   Family Pharetrospongiidae de Laubenfels, 1955
				    Subfamily Pharetrospongiinae de Laubenfels, 1955
					     Pharetrospongia Sollas, 1877 (Cr) 
					     Euepirrhysia Dieci, Antonacci, & Zardini, 1968 (T)
				    Subfamily Leiofungiinae Finks & Rigby, 2004c
					     Leiofungia de Fromentel 1860 (T)
					     Aulacopagia Pomel, 1872 (J)
					     Elasmopagia Pomel, 1872 (Cr)
					     Grossotubenella Rigby, Fan, & Zhang, 1989b (P)
					     Leiospongia d’Orbigny, 1849 (T); described as a chaetetid, as per Engeser & Taylor,
						      1989, and classified by West & Wood, in Treatise Online, Part E, Revised, Chapter
						      4B, as an agelasid demosponge
					     Loenopagia Pomel, 1872 (T)
					     Radicanalospongia Rigby, Fan, & Zhang, 1989b (P)
			   Family Auriculospongiidae Termier & Termier, 1977
				    Subfamily Auriculospongiinae Termier & Termier, 1977
					     Auriculospongia Termier & Termier, 1974 (P)
					     Anguispongia Senowbari-Daryan, 2005b (T)
					     Cavusonella Rigby, Fan, & Zhang, 1989b (P)
					     Molengraaffia Vinassa de Regny, 1915 (T)
					     Radiotrabeculopora Rigby, Fan, & Zhang, 1989b (P); described as belonging to the
						      family Disjectoporidae (order ?Inozoa) by Stearn (2010a) in Treatise Online, Part E, 	
							       Revised, Chapter 6, p. 9
				    Subfamily Daharelliinae Rigby & Senowbari-Daryan, 1996a 
					     Daharella Rigby & Senowbari-Daryan, 1996a (P)
					     Aliabadia Senowbari-Daryan, 2005b (T)
				    Subfamily Gigantospongiinae Rigby & Senowbari-Daryan, 1996a 
					     Gigantospongia Rigby & Senowbari-Daryan, 1996a (P)
				    Subfamily Spinospongiinae Rigby & Senowbari-Daryan, 1996a 
					     Spinospongia Rigby & Senowbari-Daryan, 1996a (P)
				    Subfamily Acoeliinae Wu, 1991
					     ?Acoelia Wu, 1991 (=Molengraaffia Vinassa de Regny, 1915) (P)
					     Solutossaspongia Senowbari-Daryan & Ingavat-Helmcke, 1994 (P)
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			   Family Stellispongiellidae Wu, 1991
				    Subfamily Stellispongiellinae Wu, 1991
					     Stellispongiella Wu, 1991 (P–T)
					     Lutia Senowbari-Daryan, 2005a (T)
				    Subfamily Prestellispongiinae Rigby & Senowbari-Daryan, 1996a 
					     Prestellispongia Rigby & Senowbari-Daryan, 1996a (P)
				    Subfamily Estrellospongiinae Rigby & Senowbari-Daryan, 1996a 
					     Estrellospongia Rigby & Senowbari-Daryan, 1996a (P)
			   Family Preperonidellidae Finks & Rigby, 2004c
				    Subfamily Preperonidellinae Finks & Rigby, 2004c
					     Preperonidella Finks & Rigby, 2004c (P–T)
					     Bisiphonella Wu, 1991 (P)
					     Radiofibra Rigby & Senowbari-Daryan, 1996a (P–T)
				    Subfamily Permocorynellinae Rigby & Senowbari-Daryan, 1996a 
					     Permocorynella Rigby & Senowbari-Daryan, 1996a (P–T)
					     Djemelia Rigby & Senowbari-Daryan, 1996a (P)
					     Saginospongia Rigby & Senowbari-Daryan, 1996a (P)
				    Subfamily Precorynellinae Termier & Termier, 1977
					     Precorynella Dieci, Antonacci, & Zardini, 1968 (P–T)
					     Bicoelia Rigby & Senowbari-Daryan, 1996a (P)
					     Imperatoria de Gregorio, 1930 (O, P)
					     Minispongia Rigby & Senowbari-Daryan, 1996a (P)
					     Ramostella Rigby & Senowbari-Daryan, 1996a (P)
					     Stollanella Bizzarini & Russo, 1986 (T)
				    Subfamily Heptatubispongiinae Rigby & Senowbari-Daryan, 1996a 
					     Heptatubispongia Rigby & Senowbari-Daryan, 1996a (P)
					     Marawandia Senowbari-Daryan, Seyed-Emami, & Aghanabati, 1997 (T)
			   Family Fissispongiidae Finks & Rigby, 2004c
					     Fissispongia King, 1938 (D–Ca)
			   Family Maeandrostiidae Finks, 1971
					     Maeandrostia Girty, 1908b (Ca–T)
					     Stylopegma King, 1943 (P)
Class Calcispongiae de Blainville, 1830 
	 Subclass Calcinea Bidder, 1898
		  Order Stellispongiida Finks & Rigby, 2004c
			   Family Stellispongiidae de Laubenfels, 1955
				    Subfamily Stellispongiinae de Laubenfels, 1955
					     Stellispongia d’Orbigny, 1849 (?J, Cr)
					     Amorphospongia d’Orbigny, 1849 (J)
					     Blastinoidea Richardson & Thacker, 1920 (J)
					     Conocoelia Zittel, 1878 (Cr)
					     Diaplectia Hinde, 1884 (J) 
					     Elasmoierea de Fromentel, 1860 (Cr)
					     ?Elasmostoma de Fromentel, 1860 (J, Cr–Ce)
					     Euzittelia Zeise, 1897 (J–Cr)
					     ?Heteropenia Pomel, 1872 (Cr)
					     Lutia Senowbari-Daryan, 2005a (T)
					     Pachymura Welter, 1911 (Cr)
					     Pachytilodia Zittel, 1878 (Cr)
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					     Pareudea Étallon, 1859 (T–J) 
					     Paronadella Rigby & Senowbari-Daryan, 1996a (P–J)
					     Peronidella Zittel in Hinde, 1893 (J–Cr, R) 
					     Steinmanella Welter, 1911 (Cr)
					     Trachypenia Pomel, 1872 (Cr)
					     Trachysinia Hinde, 1884 (J) 
					     Trachysphecion Pomel, 1872 (J, R)
				    Subfamily Holcospongiinae Finks & Rigby, 2004c
					     Holcospongia Hinde, 1893 (J)
					     Actinospongia d’Orbigny, 1849 (J)
					     Astrospongia Étallon, 1859 (J)
					     Calicia Dullo & Lein, 1980 (T)
					     Enaulofungia de Fromentel, 1860 (?T, J, ?Cr)
					     Eudea Lamouroux, 1821 (T–J, R)
					     Mammillopora Bronn, 1825 (J, ?Cr, R)
					     Oculospongia de Fromentel, 1860 (P, ?T, J–Cr)
					     Tremospongia d’Orbigny, 1849 (Cr)
					     Tretocalia Hinde, 1900 (Ce)
Class and Order Uncertain
					     Bortepesia Boiko, 1984 (T)
					     Cornuaspongia Senowbari-Daryan, 1994b (T–J)
					     ?Corynospongia Deng, 1990 (P)
					     Lamellispongia Boiko, 1984 (T)
					     ?Trammeria Senowbari-Daryan, 1994b (T–J)
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