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Bivalves are diverse and abundant constit-
uents of modern marine faunas, and they
have a rich fossil record that spans the
Phanerozoic (HALLAM & MILLER, 1988;
McROBERTS, 2001; FRAISER & BOTTJER,
2007). Due to the high quality of their
fossil record, they are well suited for inves-
tigating patterns of biodiversity change and
the processes that generate these patterns.
Extinction and its influence on patterns of
diversification in the Bivalvia have figured
prominently in a number of previous studies.
Did bivalves diversify exponentially over
geologic time with little long-term influ-
ence of mass extinction events (STANLEY,
1975, 1977), or were catastrophic extinction
events critical in shaping their dramatic post-
Paleozoic radiation (GouLD & CALLOWAY,
1980)? Extinction is an important process
in the evolutionary history of many clades.
Selective or chance survivorship can shape
morphological, ecological, and phylogenetic
diversity and disparity (Roy & Foott, 1997;
JaBLonski, 2005; ERwiN, 2008). Extinction
selectivity can also affect the susceptibility
of lineages to later periods of environmental
change (STANLEY, 1990a; JacksoN, 1995;
JaBLonski, 2001; Roy, HunT, & JABLONSKI,
2009). In addition, extinction can open up
opportunities for diversification through
the removal of incumbent taxa (WALKER &
VALENTINE, 1984; RoOsENZWEIG & MCCORD,
1991; BamBacH, KnoLL, & Serkoski, 2002;
JaBLoNski1, 2008b). Understanding how
and why some organisms, including many
bivalves, and not others became extinct in
the past may prove useful in predicting the
response of modern marine ecosystems to
environmental change (DIETL & FLESSA,
2009).

Here we briefly review those features
of the bivalve fossil record that make it

particularly suitable for investigating diver-
sity dynamics over geologic time. We then
introduce recently developed analytical
methods for estimating rates of extinction
and origination from paleontological data
that account for temporal variation in the
quality of the preserved and sampled fossil
record. Applying these methods to data for
marine bivalves, we present a new analysis
of extinction, origination, and preservation
rates for bivalve genera over the Phanerozoic
and examine the effect of extinction rate on
subsequent origination rate. We review the
growing literature on extinction risk in fossil
marine bivalves and summarize the roles of
several biological factors that have proven
important in predicting survivorship over
geologic time. Although recent and historical
extinction in freshwater mussels has been
well studied (WiLLiaMs & others, 1993;
Ricciarpr & RASMUSSEN, 1999; LYDEARD
& others, 2004; STRAYER & others, 2004;
Bocan, 2006), we focus on marine bivalves
due to the quality of their fossil record over
long time scales and the general congru-
ence between phylogenetic hypotheses and
morphologic taxonomies (JABLONSKI &
FINARELLI, 2009).

MARINE BIVALVES AS
A MODEL SYSTEM FOR
ECOLOGICAL AND
EVOLUTIONARY ANALYSIS

The marine bivalve fossil record has been
studied intensively by paleontologists and
malacologists for centuries. This body of
work has produced a detailed picture of the
history of the clade and has advanced our
general understanding of the processes that
generate and maintain biodiversity in marine
systems over time. Data for fossil bivalves
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have been instrumental in informing debates
concerning the roles of biological factors in
extinction risk (e.g., STANLEY, 1986a; Raur
& JABLONSKI, 1993; JABLONSKI, 2005; RivaD-
ENEIRA & MARQUET, 2007; CRAMPTON &
others, 2010), the tempo and mode of evolu-
tionary change (e.g., KELLEY, 1983; GEARY,
1987; ROOPNARINE, 1995), the processes
underlying geographic gradients in diversity
(e.g., Roy & others, 1998; CrRAME, 2002;
VERMEI], 2005; JaBLONSKI, ROy, & VALEN-
TINE, 2006), and the role of predation in
evolutionary trends (e.g., STANLEY, 1986b;
KEeLLEY, 1989; DIETL & others, 2002). This
depth of study is due in part to the high
preservation potential of bivalve shells in
shallow marine environments.

Marine bivalves are not free from the
taphonomic insults experienced by other
marine invertebrate taxa, but their fossil
record is relatively complete (VALENTINE,
1989; Footk & Raur, 1996; HARPER, 1998;
Foote & Sepkoski, 1999; KipweLL, 2005;
VALENTINE & others, 20006), and the tapho-
nomic biases that affect this record are increas-
ingly well understood (CoorER & others,
2006; VALENTINE & others, 2006). Taxa that
have readily soluble shell microstructures, are
small-bodied or thin-shelled, geographically
restricted, commensal or parasitic, epifaunal,
and/or occur in deeper water are less likely to
be preserved and sampled (Coorer & others,
2006; VALENTINE & others, 2006). Yet, the
probability of being preserved and sampled
is relatively high for bivalves living at shelf
to intertidal depths. Approximately 75% of
all living genera and subgenera of shallow
marine bivalves are also known from the fossil
record (VALENTINE & others, 2006). Although
postmortem dissolution of primary shell
aragonite has resulted in considerable loss
of molluscan skeletal material from the rock
record (CHERNS & WRIGHT, 2000, 2009), this
taphonomic filter does not appear to have
biased macroevolutionary patterns inferred
from fossil mollusks (KiDweLL, 2005).

Recent studies have shown significant
agreement between ecological metrics calcu-
lated for molluscan death assemblages and

the living communities from which they
are derived (KipweLr, 2001, 2002, 2005;
Lockwoop & CHASTANT, 2006; VALEN-
TINE & others, 2006). Notably, instances
in which the ecological agreement between
life and death assemblages is poor tend to
be associated with sites affected by recent
and pronounced anthropogenic environ-
mental change (e.g., eutrophication and
benthic trawling), and not postmortem shell
loss (KipweLL, 2007). These taphonomic
analyses provide a foundation for examining
ecological shifts in the Bivalvia over geologic
time as well as the susceptibility of bivalve
taxa with particular traits to extinction.

ESTIMATING EXTINCTION
AND ORIGINATION FROM
INCOMPLETE DATA

Accurately estimating extinction and origi-
nation rates is challenging for all taxa, due to
incomplete observations. In paleontological
studies, the observed stratigraphic distribu-
tion of fossil occurrences is affected by pres-
ervation and sampling, leading to temporal
offsets between a taxon’s true time of origi-
nation and extinction and its observed first
and last occurrences (SIGNOR & Lipps, 1982;
MARSHALL, 1990; MELDAHL, 1990; FOOTE,
2000; HorLLanD & Patzkowsky, 2002;
Foortk, 2003). Preservation and sampling
are biased by a number of factors, including
the rarity and body size of taxa, as well as
the overall quality and quantity (complete-
ness) of the fossil record. The complete-
ness of the fossil record varies systematically
through time with tectonic and/or climatic
factors (e.g., SMITH, GALE, & MoONKs, 2001;
CramrTON, FOOTE, BEU, COOPER, & others,
20065 S. PETERS, 2000). It is also affected by
the abundance of unlithified versus lithified
sediments (HENDY, 2009; SESsA, PATZKOWSKY,
& BRALOWER, 2009). Extinctions that occur
during intervals of poor preservation and
sampling appear to happen earlier in time
(back-smearing), whereas originations in
those same intervals appear to happen later
in time (forward-smearing). This problem
is not unique to studies of the fossil record,
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but rather it presents a general challenge to
any attempt to estimate extinction (or origi-
nation) from limited observations (SoLow,
1993, 2005; RivaDENEIRA, HUNT, & Roy,
2009).

The degree of discordance between the
timing of true extinction and origination
and the observed stratigraphic ranges of taxa
depends on temporal variation in preserva-
tion and sampling. Accounting for such vari-
ation can be critical in reconstructing diver-
sity dynamics over geologic time. Multiple
approaches have been developed to account
for variable preservation and sampling
in paleontological studies. The choice of
method depends on the specific question
being addressed and the spatiotemporal
scale of sampling. For example, at local or
regional scales, datasets may be partitioned
to examine only samples collected from
comparable taphonomic or stratigraphic
contexts (e.g., SCARPONI & KOWALEWSKI,
2007; N. Hemm, 2009). At the global scale,
two general approaches have been taken
to account for temporal variation in the
completeness of the known fossil record:
occurrence-based approaches that rely on
sub- or replicate-sampling methods, such
as rarefaction (e.g., ALROY & others, 2001;
BusH, MARKEY, & MARSHALL, 2004; ALROY
& others, 2008) and capture-mark-recapture
(e.g., ConNOLLY & MILLER, 2002; Liow &
others, 2008), and modeling approaches
that estimate rates of extinction, origination,
and preservation simultaneously from the
observed paleontological data (Footg, 2000,
2003, 2005). Preservation rate in this last
approach describes jointly the probability of

preservation and sampling over time.

MARINE BIVALVE
EXTINCTION AND
ORIGINATION DYNAMICS
THROUGH THE
PHANEROZOIC
Here we estimate extinction, origination,

and preservation rates simultaneously for
marine bivalve genera through the Phanero-

zoic using a likelihood-based modeling
approach developed by FootE (2003, 2005).
This approach uses numerical optimization
to identify the time series of extinction,
origination, and preservation rates most
likely to have generated the observed data
(i.e., the matrices of forward and backward
survivorship frequencies calculated from
the observed temporal distribution of first
and last occurrences of genera) under a
given model of evolution and preservation.
Our analysis of bivalve diversity dynamics
differs from previous studies (e.g., STANLEY,
1977; GouLb & CaLLowAy, 1980; Krug,
JABLONSKI, & VALENTINE, 2009), in that
completeness of the preserved and sampled
fossil record is explicitly taken into account
in estimating evolutionary rates. Our anal-
ysis also focuses on rates of extinction and
origination rather than diversification rate or
standing diversity (cf. STANLEY, 1977; GOULD
& CALLOWAY, 1980; MILLER & SEPKOSKI,
1988).

We use a global compilation of observed
first and last occurrences of marine bivalve
genera for rate estimation (SEPKOSKI, 2002).
Data for the 2861 bivalve genera in SEPKOs-
KUs Compendium of Fossil Marine Animal
Genera (2002) were compiled primarily from
the first Treatise on Invertebrate Paleontology
devoted to the Bivalvia (Cox & others,
1969; STENZEL, 1971); data for the revised
Treatise are as yet unavailable. The Paleo-
biology Database (ALrOY & others, 2001,
2008)—a global compilation of spatial and
temporal occurrences of fossil taxa through
the Phanerozoic—is another dataset that
could have been used to investigate bivalve
evolutionary rates. Although occurrence-
based data can also be analyzed in such a
way as to account for variable sampling
and preservation (see above), we chose to
analyze SEPKOSKI's Compendium of first
and last occurrences to provide a bench-
mark against which analysis of data from
the revised Treatise could be compared in
the future. While we are eager to see how
results differ following the taxonomic revi-
sions anticipated in the revised Treatise, we
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do not expect substantial changes. Studies
conducted at comparably broad spatial,
temporal, and taxonomic scales have shown
that taxonomic errors tend to be randomly
distributed and overall macroevolutionary
patterns are surprisingly robust (ADRAIN &
WEesTrROP, 2000; AusicH & PETERS, 2005;
WAGNER & others, 2007).

Rates of extinction, origination, and pres-
ervation for marine bivalve genera were esti-
mated for 71 time intervals that correspond
roughly to geologic stages. Data for some
stages were combined to minimize temporal
variation in interval duration (median interval
duration = 6.4 million years; interquartile
range, 4.4 to 10.2 million years). Extinction
and origination rates were calculated assuming
a pulsed model of taxonomic turnover in
which originations cluster at the start of each
interval and extinctions at the end of each
interval (FooTE, 2003, 2005). Under this
model, extinction rate equals the number of
genera last appearing in an interval divided
by the total diversity of the interval; origina-
tion rate equals the number of new genera
in an interval divided by the number present
at the start of the interval; and preserva-
tion rate equals the estimated probability of
being preserved and sampled per genus per
interval; see FOOTE (2003) for additional
methodological details. We have also exam-
ined extinction and origination rates generated
under an alternative evolutionary model in
which taxonomic turnover occurs continu-
ously (Footg, 2003). These models—pulsed
versus continuous turnover—both identify
peaks in origination and extinction rates for
marine bivalves through the Phanerozoic, but
the magnitudes and timing of the peaks differ
somewhat. We restrict our discussion to the
results of the pulsed turnover model, as this
model has greater support globally (FOOTE,
2005) and regionally (CramrTON, FOOTE,
Breu, MaxweLL, & others, 2006), and also
has the advantage of incorporating all genera,
including those confined to a single stage, in
the estimation of all three rates (FOOTE, 2003).

Rates of extinction, origination, and pres-
ervation estimated for marine bivalve genera

through the Phanerozoic are presented in
Figure 1. Rates of preservation vary consid-
erably over time, spanning nearly the full
range from zero to one, with a median rate
equal to 0.33. The median rate of preserva-
tion for bivalves in this analysis is lower than
previous estimates (FOOTE & SEPKOSKI, 1999;
VALENTINE & others, 2006). This moderate
rate of preservation overall, combined with
its volatility over time, underscores the
importance of accounting for temporal
variation in the completeness of the fossil
record when estimating extinction and
origination rates.

In general, bivalves exhibit moderate
rates of extinction and origination through
the Phanerozoic (median rate of extinction
= 0.1; median rate of origination = 0.2),
with rare intervals of elevated rates (Fig.
1). Prominent peaks in extinction occurred
during the late Cambrian, end-Ordovician,
Late Devonian, end-Permian, end-Triassic,
and end-Cretaceous, all times of elevated
extinction observed at much broader taxo-
nomic scales (FOOTE, 2003). These extinc-
tion peaks have previously been observed
in studies of the fossil record that assume
perfect preservation, but it is noteworthy
that they remain after accounting for the
dramatic temporal variation observed in
preservation rate.

A secular decline in bivalve extinction
and origination rates over the Phanerozoic
is observed; the Spearman rank order corre-
lation between extinction and origination
rate and time is 0.26 and 0.25, respectively
(p-value < 0.05 for both correlation tests).
The Phanerozoic-scale decline in rates of
extinction and origination has also been
observed at broader taxonomic scales (Raupr
& SEPKOSKI, 1982; VAN VALEN, 1984; FOOTE,
2003) and may result from the loss of extinc-
tion-prone lineages over time (Roy, HunT,
& JABLONSKI, 2009), although other mecha-
nisms have also been proposed (ALroY, 2008
and references therein). Differing taxonomic
practice could potentially contribute to the
observed temporal variation in bivalve rates
of taxonomic extinction and origination.
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Fic. 1. Extinction, origination, and preservation rates per interval for marine bivalves through the Phanerozoic.

The left panel presents the mean time series of rate estimates derived from 100 bootstrap replicate samples of the

observed data. The right panel presents the frequency distribution of rate magnitudes. Extinction and origination

rates were estimated assuming a pulsed model of taxonomic turnover. Under this model, extinction rate equals the

number of genera last appearing in an interval divided by the total diversity of the interval, origination rate equals

the number of new genera in an interval divided by the number present at the start of an interval, and preservation
rate is the estimated probability of preservation per genus per interval (new).

However, previous studies conducted at
comparable scales have generally found
taxonomic errors to be randomly distrib-
uted (ADRAIN & WESTROP, 2000; WAGNER
& others, 2007), and there is little reason

to expect rates of pseudoextinction and
pseudoorigination to decline toward the
present day.

To identify peaks of extinction that stand
out substantially above the baseline rate for
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F1G. 2. Residual variation in extinction and origination rates remaining after removing the secular decline in both
rates through the Phanerozoic using linear regression. The so-called Big Five mass extinctions recognized in marine
invertebrates are denoted with large black diamonds (new).

the portion of the Phanerozoic in which
they occur, the long-term secular trend in
both evolutionary rates was removed by
fitting a linear regression to the natural
logarithm of evolutionary rate against time
(ALrROY, 2008). When the residual varia-
tion in extinction rate is considered, the
late Cambrian, end-Permian, end-Triassic,
and end-Cretaceous are times at which
extinction was particularly severe for marine
bivalves (Fig. 2). Depending on the cut-off
value used to define a severe extinction, the
Eocene-Oligocene and Plio—Pleistocene
are also noteworthy. This is consistent with
previous studies that have documented
substantial molluscan extinction, at least
regionally, during these times (e.g., RaFFI,
STANLEY, & MARASTI, 1985; STANLEY, 1986a;
ALLMON & others, 1993; PROTHERO, IVANY,
& NESBITT, 2002; Dockery & LOZOUET,
2003; HANSEN, KELLEY, & HaASL, 2004).
Global patterns such as these emerge
as the sum of processes of extinction and
origination operating at finer spatial scales.
Processes of extinction and recovery are
biogeographically complex. There are
currently insufficient data to address spatial
variation in extinction and recovery in any
detail for many events. Intervals in which
extinction triggers are both pronounced
and widespread should result in greater
congruence between patterns of taxonomic

turnover at global and regional scales, but
such large events are relatively uncommon
in the history of life. The end-Cretaceous
(K/Pg, formerly K/T) mass extinction and
recovery is one example of a large-scale event
in which the biogeographic fabric of diver-
sity loss and rebound has received detailed
study. At this time, regions differed little
in the severity of extinction experienced by
marine bivalves, but markedly in the timing
and process of recovery (Raup & JABLONSKI,
1993; JaBLONSKI, 1998). Examples of more
biogeographically differentiated intervals of
extinction and recovery for marine bivalves
include the Triassic—Jurassic (e.g., HALLAM,
1981; ABERHAN, 2002) and Plio—Pleistocene
(e.g., RaFFI, STANLEY, & MARASTI, 1985;
STANLEY, 1986a; ALLMON & others, 1993;
TopD & others, 2002), among others.

DIVERSITY-DEPENDENT
DYNAMICS IN THE MARINE
BIVALVIA THROUGH THE
PHANEROZOIC

Over their history, marine bivalves have
experienced periods of elevated extinc-
tion and origination, as well as periods
of relative evolutionary quiescence (Fig.
1). To what extent have the dynamics of
extinction and origination been coupled
over time? Extinction may facilitate origi-
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nation through the removal of incumbent
taxa and opening up of ecospace. Under-
standing whether extinction and origina-
tion rates operate in a diversity-dependent
fashion has important implications for our
understanding of the role of biotic interac-
tions in diversification (SEPKOSKI, 1978;
MILLER & SEPKOSKI, 1988; KIRCHNER &
WEIL, 2000a, 2000b; ErwiIN, 2001; Lu,
Yoco, & MARSHALL, 2006; ALrROY, 2008;
JAaBLONSKI, 2008a). If diversity-dependent
dynamics have been important for marine
bivalves through the Phanerozoic, then
times of limited extinction should have been
followed by times of limited origination,
and times of elevated extinction by times of
elevated origination. Whether the response
of origination to extinction was immediate
or lagged by some period of time depends
on the nature of the recovery process. If
extinction empties niches, then origination
may respond rapidly to new ecological and
evolutionary opportunity. However, if niches
depend in part upon diversity and need to
be reconstructed following major perturba-
tions, then temporal lags between extinction
and origination peaks are to be expected.
Pseudoextinction—the apparent evolu-
tionary turnover of taxa resulting from
anagenetic morphological evolution and/or
variation in taxonomic practice—could also
contribute to a positive relationship between
extinction and subsequent origination, if
rates of pseudoextinction are elevated over
some intervals relative to others. If true, this
is not necessarily less significant, as pseudo-
extinction presumably reflects some amount
of morphological change. Thus, temporal
variation in rates of pseudoextinction could
offer insight into the evolutionary response
of taxa to changes in the biotic and abiotic
environment. In practice, pseudoextinction
is probably not a major factor governing
the variation we observe in rates of extinc-
tion and origination—as well as their asso-
ciation—over the Phanerozoic history of
marine bivalves. Previous studies conducted
at comparable spatial, temporal, and taxo-
nomic scales that have compared taxonomi-

cally standardized data with data aggregated
from the literature without taxonomic stan-
dardization have generally found taxonomic
errors to be randomly distributed (ADRAIN &
WESTROP, 2000; WAGNER & others, 2007),
and rate estimates, as a result, to be affected
little by the process of taxonomic standard-
ization (WAGNER & others, 2007; but see
AusIcH & PETERs, 2005). Anagenesis within
genera cannot be fully accounted for until
a comprehensive genus-level phylogenetic
framework exists for the Bivalvia.

To determine whether evolutionary rates
were diversity-dependent among marine
bivalves through the Phanerozoic, we exam-
ined the variation in rates of extinction
and origination that remains following the
removal of the long-term secular decline in
rates noted above. The effect of extinction
on origination was evaluated using the slope
of a linear regression model relating the rate
of extinction in an interval (t) to the rate
of origination in the next interval (t + 1).
We evaluated the support for an effect of
extinction on subsequent origination by
assessing whether the observed regression
slope was significantly greater than zero,
and whether it differed from that expected
solely by chance via a permutation test. The
distribution of null values against which the
observed slope was compared was generated
by randomly shuffling the detrended rates of
extinction and origination and calculating
the slope of the extinction versus origination
relationship, and repeating this procedure
10,000 times.

A significant positive relationship is
observed, such that periods of elevated
extinction are followed by elevated origina-
tion, and periods of moderate extinction
are followed by moderate origination (Fig.
3; Table 1). The results of the permutation
test also indicate that the observed relation-
ship between extinction rate and subsequent
origination rate among marine bivalves is
significantly greater than expected by chance
(Fig. 4). There is no indication of a lag in
the response of origination to extinction;
rather, origination responds immediately in
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relationship. A statistically significant positive relation-
ship is observed, indicating that diversity-dependent
processes have operated over the evolutionary history
of the Bivalvia (new).

the next interval, and this effect subsequently
weakens over time. The association between
extinction rate in an interval (t) and origi-
nation rate in the next interval (t + 1) was
approximately double that of extinction rate
and origination rate two intervals later (t + 2)
(i.e., slopes of 0.30 and 0.16 respectively).
These results are consistent with studies of
the relationship between extinction and orig-
ination for skeletonized marine invertebrates
as a whole (Lu, YoGo, & MARSHALL, 20006;
ALrOY, 2008), and corroborate previous
work on marine bivalves that documented
hyperexponential bursts of diversification
following mass extinction events (MILLER &
SepkOSsKI, 1988; KRUG, JABLONSKI, & VALEN-
TINE, 2009). It is important to note, however,
that the diversity-dependent relationship
between rates of extinction and origination
for marine bivalves is not limited to mass
extinctions and their associated recoveries.
While removing the most extreme extinc-
tion events from the analysis somewhat
weakens the relationship between extinction
and subsequent origination, intervals char-

TasLE 1. Effect of extinction on origination for
marine bivalve genera through the Phanero-
zoic. Effect was measured as the slope of the
linear regression of extinction rate in an inter-
val (t) on origination rate in the next interval
(t + 1). Rates were detrended prior to analysis;
details provided in text. A significant positive
relationship is observed; intervals of elevated
extinction are followed by intervals of elevated
origination, and intervals of moderate extinc-
tion followed by intervals of moderate origina-
tion. This diversity-dependent relationship be-
tween extinction and origination is not driven
simply by mass extinctions and their associated
recovery intervals. Excluding intervals char-
acterized by elevated extinction (e.g., the top
5% of extinctions, top 10%) does not mark-
edly weaken the overall relationship (new).

Data Effect p-value
All 0.3 0.02
excluding top 5% 0.25 0.07
excluding top 10% 0.22 0.12
excluding top 20% 0.26 0.09
excluding top 30% 0.33 0.04

acterized by relatively low extinction rates
also exhibit diversity dependence (Table 1).
Extinction has been an important evolu-
tionary process throughout the history of
marine bivalves, varying considerably in
intensity over time, but contributing consis-
tently to bivalve diversification, in part,
through its effect on rates of origination.

INFLUENCE OF BIOLOGICAL
FACTORS ON EXTINCTION
RISK AMONG MARINE
BIVALVES

Extinction selectivity, or the selective
removal of taxa that possess particular
ecological or evolutionary traits, also plays
an important role in shaping macroevo-
lutionary and macroecological patterns
through time. Extinction selectivity can
contribute to ecosystem reorganization by
eliminating dominant taxa and allowing
subordinate ones to diversify (GouLb &
CALLOWAY, 1980; JABLONSKI, 1986, 1989;
DROSER, BOTTJER, & SHEEHAN, 1997); it can
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redirect evolutionary or ecological trends by
eliminating important innovations (POJETA
& PALMER, 1976; FURSICH & JABLONSKI,
1984; JABLONSKI, 1986); and it can limit the
potential evolution of clades by reducing
variability (Norris, 1991; Liu & OLSSON,
1992). By studying extinction selectivity
over long time scales, one can assess not
only which taxa went extinct, but poten-
tially how and why they did so. This link
between extinction pattern and process can
help to bridge the gap between paleontology
and conservation biology (see papers in
DietL & FLESsA, 2009). If we can determine
which traits have influenced susceptibility to
extinction during periods of past environ-
mental change, then we may be better able
to predict which organisms are most likely
to go extinct or persist in the present day.

Extinction selectivity is thought to have
significantly influenced the evolutionary
trajectory of marine invertebrates and the
ecological structure of marine ecosystems
through geologic time. Bivalves are no
exception; indeed, several classic studies
of extinction selectivity have focused on
the long and relatively well-preserved fossil
record of marine bivalves (e.g., BRETSKY,
1973; KAUFFMAN, 1978; JABLONSKI, 1986;
STANLEY, 1986a; JABLONSKI, 2005). This
is in part because bivalves display suffi-
cient variation among taxa in traits such as
morphology, feeding mode, life habit, larval
type, geographic range, and stratigraphic
range to allow workers to independently
test the extent to which these traits relate to
taxon survivorship.

A review of the literature on extinction
selectivity in fossil marine bivalves published
in 2010 and before (see Appendix, p. 20)
demonstrates that selectivity among taxa
has been explored with respect to a wide
variety of traits, such as abundance, feeding
mode, life habit, geographic range, body
size, temperature tolerance, species richness,
and habitat breadth, among many others
(33 traits in total). This review includes 170
tests of extinction selectivity published in
69 studies. The vast majority of selectivity
studies have focused on Mesozoic (120
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tests) and Cenozoic (114 tests) bivalves,
with the Paleozoic receiving considerably
less attention (18 tests). The extinctions
represented in our database range from the
largest and most catastrophic mass extinc-
tions (including all of the so-called Big Five),
to six smaller, possibly regional-scale, events
(e.g., Eocene/Oligocene and Plio/Pleisto-
cene) and background intervals. Selectivity
has been examined at both the species (98
tests) and genus (80 tests) levels. Examining
the specific traits tested for selectivity, four
traits have received the most attention:
geographic range (27 tests), life habit (28
tests), body size (21 tests), and feeding mode
(15 tests).

If extinction is defined as the point in
time at which a taxon’s geographic range
and abundance decrease to zero, taxa
with broader geographic ranges should
be less prone to extinction. The primary
role that geographic distribution plays in
determining survivorship has long been
recognized for both modern and fossil taxa
(see references in GASTON, 1994; ROSEN-
ZWEIG, 1995; PaYNE & FINNEGAN, 2007).
An early assessment of global survivorship
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across four mass extinctions—the end-
Ordovician, Late Devonian, end-Permian,
and end-Triassic events—concluded that
geographically widespread bivalve genera
were more likely to survive, at least in the
initial stages of an extinction event, before
drastic deterioration of the physical envi-
ronment (BRETSKY, 1973). The event that
has been most thoroughly examined for
geographic range selectivity is the K/Pg mass
extinction, in conjunction with the interval
of background extinction leading up to it.
K/Pg survivorship patterns in bivalves and
gastropods, along the United States Gulf
and Atlantic Coastal Plain and globally,
suggest that the only trait reliably associ-
ated with genus survivorship is geographic
range, whereas several traits are associated
with genus- and species-level survivorship
during the preceding background interval
(JaBLONSKI, 1986, 1987, 1989; Raur &
JaBLONSKI, 1993; JaBLONSKI & Raup, 1995;
JaBLONsKI, 2005; JaLonskr & HUNT, 20006).
Data for Southern Hemisphere bivalves
across the K/Pg, also compiled at the genus
level, support this general pattern (STILWELL,
2003). In contrast, during the end-Triassic
extinction, European bivalve species with
broader distributions appear no more likely
to have survived this event than narrowly
distributed taxa (MCROBERTS & NEWTON,
1995; McROBERTS, NEWTON, & ALLA-
SINAZ, 1995). When the spatial scale of
analysis is expanded to global coverage, the
same nonsignificant species-level pattern is
observed for the end-Triassic (KIESSLING &
ABERHAN, 2007).

Taxonomic level and the intensity
of extinction complicate the pattern of
geographic range selectivity. The data
compiled here strongly suggest that wide-
spread bivalve species were significantly more
likely to survive background (JABLONSKI,
1986, 1987; JaBLoNskl & HuNT, 2006;
KiessLING & ABERHAN, 2007; CRAMPTON
& others, 2010; HARNIK, 2011), but not
mass extinction events (JABLONSKI, 1986;
HANSEN & others, 1993; McROBERTs &
NEWTON, 1995; MCROBERTS, NEWTON, &
ALLASINAZ, 1995; JABLONSKI, 2005; KIESSLING

& ABERHAN, 2007; for exceptions, see RODE
& LIEBERMAN, 2004, for the Late Devonian,
and STILWELL, 2003, for the K/Pg). Late
Neogene extinctions, intermediate in scale
between the Big Five events and background
extinction, differ in the effects of geographic
range on selectivity among regions.
Narrowly distributed species were more
likely to become extinct in western South
America (RIVADENEIRA & MARQUET, 2007)
and tropical America (ROOPNARINE, 1997),
but not in western North America, where
there is no evidence of selective extinction
(STANLEY, 1986b). These complex patterns
highlight the importance of assessing selec-
tivity across a range of extinctions that differ
in magnitude, as well as across a range of
taxonomic levels. It is possible that thresh-
olds exist, such that geographic range no
longer ensures the survival of a species, when
the scale of environmental perturbation
and extinction exceed a critical magnitude.
If true, this has enormous implications for
assessment of extinction risk and develop-
ment of effective management strategies in
modern ecosystems.

Bivalve life habit, specifically the sites the
animals occupy relative to the sediment-
water interface, is another ecological trait
that is thought to affect survivorship.
Which life habit favors survival probably
depends on the mechanism of extinction.
For example, epifaunal taxa are thought to
be more vulnerable to predation pressure
(STANLEY, 1977, 1982, 1986b; VERMEIJ,
1987), which could lead to decreased popu-
lation size and an increase in extinction risk.
In contrast, an epifaunal life habit may be
advantageous in escaping sudden changes in
bottom water chemistry and/or oxygenation.
Of the studies compiled here, 14 suggested
that epifaunal taxa were more likely to
become extinct than infaunal, 5 suggested
the opposite, and 8 found no evidence of
selectivity either way. When these results are
parsed according to the size of the extinction
event, an interesting pattern emerges. The
majority of background intervals studied
(8 out of 10) suggest that infaunal bivalves
were less likely to go extinct, while mass
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extinctions yield contradictory results (4
negative, 5 positive, 6 nonsignificant). When
the mass extinction events are broken down
by specific event, the results remain mixed.
For example, while bivalve genera glob-
ally did not exhibit differential survival
with respect to life habit across the end-
Permian mass extinction (JABLONSKI, 2005),
regional patterns from China suggested
greater losses of epifaunal than infaunal
bivalve genera (KNoLL & others, 2007).
Perhaps these differences reflect the extent
to which different geographic regions were
affected by environmental deterioration. In
another example, preferential extinction of
infaunal bivalve species was documented
across the K/Pg boundary in New Jersey
and the Delmarva Peninsula of the United
States (GALLAGHER, 1991), but subsequent
work found the opposite pattern for bivalve
species in Denmark (HEINBERG, 1999) and
the Southern Hemisphere (STILwELL, 2003).

Although global analyses of selectivity
can be very useful in secking possible causes
of extinction, they can obscure regional
patterns that may be less predictable and yet
likely to provide more information about
the interacting effects of biotic and abiotic
factors on survivorship. Spatial variation in
environmental change, coupled with spatial
heterogeneity in the distributions of taxa and
associated biological traits, effectively ensure
that patterns of selectivity will vary region-
ally (see FriTz, BiNniNDA-EMONDS, & PUrvs,
2009, for an example of geographic variation
in extinction risk among extant mammals).
Spatial variation may provide useful informa-
tion about gradients of environmental change
and the existence of environmental thresholds
affecting taxon survivorship. Despite the
clear importance of regional-scale studies in
modern conservation biology, paleontological
examples are few and far between.

Although large body size is widely thought
to increase extinction risk in vertebrates,
the link between size and extinction risk in
marine invertebrates is considerably more
ambiguous (HALLAM, 1975; STANLEY, 1986b;
Bupp & JoHNsON, 1991; JABLONSKI, 1996b;
SmitH & Roy, 2006). Among invertebrates,

increased body size is often associated
with increased fecundity, broader environ-
mental tolerance, and wider geographic
range (STANLEY, 1986b; McKINNEY, 1990;
ROSENZWEIG, 1995; HILDREW, RAFFAELLI, &
EpmMonDs-BrowN, 2007), which suggests
that larger taxa should have increased rates
of survivorship. Among marine bivalves,
however, large body size is not generally asso-
ciated with either extinction risk or survivor-
ship. Body size and extinction are positively
linked in only 7 and negatively linked in only
2 (out of a total of 21) studies. Four of the 7
studies that documented selective extinction
of large taxa focused on regional patterns
during intervals characterized by background
rates of extinction; these include the Jurassic
(HALLAM, 1975), Miocene (ANDERSON &
ROOPNARINE, 2003, for the Western Atlantic
and Caribbean, but not the Eastern Pacific),
and Pleistocene (STANLEY, 1986a, 1990b).
Interestingly, not a single one of the 10
studies that considered size across a mass
extinction event found a strong, conclu-
sive link between body size and extinction,
although the only 2 events investigated
thus far are the end-Triassic (MCROBERTS &
NEWTON, 1995; MCROBERTS, NEWTON, &
ALLASINAZ, 1995; McROBERTS, KRYSTYN, &
SHEA, 2008) and K/Pg (HANSEN & others,
1987; Raur & JABLONSKI, 1993; JABLONSKI
& Raupr, 1995; McCLURE & BOHONAK,
1995; JABLONSKI, 1996a; Lockwoob, 2005;
ABERHAN & others, 2007) events. Three
of these 10 studies documented a decrease
in bivalve size across a mass extinction
boundary (Norian—Rhaetian: MCROBERTS,
KRrysTYN, & SHEA, 2008; K/Pg: HANSEN &
others, 1987; ABERHAN & others, 2007),
but it is unclear in each case whether these
patterns were driven by extinction selectivity,
within lineage size change, or size-biased
origination.

One of the few instances in which a
connection between large body size and
survivorship has been documented convinc-
ingly focused on scallops across the Plio—
Pleistocene extinction in California (SMITH
& Roy, 20006). This positive relationship was
not apparent until phylogenetic relationships
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were considered. This emphasizes an under-
appreciated problem that may affect many
selectivity studies. Patterns of selectivity can
sometimes be masked or artificially exagger-
ated when phylogenetic relationships are not
taken into account (Purvis, 2008). Taxa may
share a particular trait and similar pattern
of survivorship because they are related
to each other and not necessarily because
the trait under consideration, by itself,
confers survivorship. A recent analysis (Roy,
HunT, & JABLONSKI, 2009) of Jurassic to
Recent bivalves demonstrated conclusively
that phylogenetic clustering of extinction
occurs. Phylogenetic relationships do not
always affect patterns of selectivity, however;
for example, patterns of selectivity among
Cenozoic mollusks from New Zealand did
not change appreciably after accounting
for phylogeny (FooTe & others, 2008;
CRAMPTON & others, 2010). The fact that
taxa in some clades are significantly more
extinction-prone than others does strongly
suggest that future paleontological studies
of selectivity should explicitly account for
phylogenetic effects.

In general, deposit feeding is thought
to represent a more generalized dietary
mode than suspension feeding and could
promote survivorship, especially across
events that involve a collapse in primary
productivity. LEVINTON’s (1974) observation
that genera of deposit-feeding bivalves were
geologically longer-lived than suspension-
feeders, has inspired an ongoing debate
over whether bivalves with different feeding
modes experience different extinction trajec-
tories. Building on this work, a qualitative
examination of background extinction in
Cretaceous bivalve species documented
particularly slow rates of evolution and long
stratigraphic durations in deposit-feeders
relative to suspension-feeders (KAUFFMAN,
1978). The majority of studies that have
explicitly tested for extinction selectivity
according to feeding mode have focused on
the K/Pg event, with mixed results. Seven
out of 11 studies have reported selective
extinction of suspension-feeding genera
(e.g., SHEEHAN & HANSEN, 1986; RHODES

& THAYER, 1991; Raur & JABLONSKI, 1993;
JaBLONSKI & Raup, 1995; JABLONSKI, 1996a;
STILweLL, 2003; ABERHAN & others, 2007).
There is preliminary evidence to suggest
that the strength of the selectivity may
have increased with distance away from the
United States Gulf Coastal Plain, which
raises the question as to whether proximity
to the killing agent, in this case the K/Pg
bolide impact that occurred in the Yucatan,
has an effect on selectivity patterns. Studies
limited to eastern Texas (HANSEN & others,
1987; HANSEN, FARRELL, & UPSHAW, 1993;
HANSEN & others, 1993, for exception see
SHEEHAN & HANSEN, 1986) or the United
States Gulf and Atlantic Coastal Plain
(McCLURE & BOHONAK, 1995), have yielded
either weak or no evidence for selectivity.
On the other hand, regional studies in the
Southern Hemisphere (e.g., STILWELL, 2003)
and Argentina (ABERHAN & others, 2007)
have suggested that proximity matters, as
they have shown strong evidence for selec-
tivity. Although JaBLONSKI's work (Raur &
JaBLONSKI, 1993; JaBLoNsk1 & Raup, 1995;
JABLONSKI, 1996a) clearly supports a global
pattern of selective extinction of suspension-
feeding bivalves at the K/Pg, he has argued
that this was driven by taxonomic factors,
rather than selectivity according to feeding
mode. He and his colleagues pointed to
anomalously low rates of extinction in the
two bivalve orders Nuculoida and Lucinoida
and argued that other attributes of these two
clades helped to promote their survivorship.
SHEEHAN and HANSEN (1986), HANSEN and
others (1987, 1993), and HANSEN, FARRELL,
and UprsHAW (1993) emphasized the shift
from molluscan communities dominated by
suspension-feeders to those dominated by
deposit-feeders across the K/Pg boundary, a
pattern that could have been caused by selec-
tive extinction against suspension-feeders,
preferential recovery of deposit-feeders,
or some combination of the two. Explicit
evaluation of this possibility, in addition to
detailed tracking of feeding mode across the
recovery interval, is still lacking. Although
early studies heralded the usefulness of
patterns of extinction selectivity based on
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feeding habits in differentiating among
possible extinction mechanisms, this poten-
tial has seldom been realized (but see KNOLL
& others, 1996, 2007, for exceptions). As
our understanding of changes in primary
productivity associated with mass extinc-
tions deepens, aided by geochemical proxies,
it should be possible to further refine and
test hypotheses bearing on the relationship
between feeding mode and extinction risk
across an array of marine environments.
Most of the studies outlined above focus
on the selectivity of single traits and do not
consider the potential interactions among
multiple traits. We have every reason to
believe, based on ecological studies of extant
bivalves and many other clades, that several
of these traits, for example, body size and
geographic range (JaBLoNsKI & Roy, 2003;
CRAMPTON & others, 2010; HARNIK, 2011),
are linked to one another. This raises the
question—to what extent do these interac-
tions influence patterns of selectivity? A
handful of recent studies have tackled this
question for marine bivalves (JABLONSKI &
HunTt, 2006; RIVADENEIRA & MARQUET,
2007; JaBLONSKI, 2008a; CRAMPTON &
others, 2010; HARNIK, 2011). Almost all
of them have found that geographic range
played a more important role in survivorship
than any other ecological trait. For example,
in a genus-level analysis of selectivity across
the K/Pg mass extinction, JABLONSKI (2008a)
independently tested the effects of body
size, geographic range, and species richness,
and found that the last two traits were both
statistically significantly correlated with
survivorship. However, once the covariation
among these three traits was controlled for,
geographic range yielded the only significant
evidence for selectivity. In what is perhaps
the most extensive multivariate selectivity
study to date, CRaMPTON and others (2010)
assessed the relative importance of several
traits, including geographic range, body size,
feeding mode, life habit, and larval type, in
promoting survivorship among Cenozoic
bivalve species from New Zealand. Once
again, in a multivariate framework, the
only trait to show demonstrable selectivity

was geographic range. Such multivariate
approaches are crucial to studies of selec-
tivity, offering considerable insight into the
direct and indirect effects of extinction on
the evolution of correlated traits. A clear
understanding as to how traits interact,
influencing extinction risk across a range of
past events, is needed, if bivalve workers are
to make such patterns relevant to managers
predicting biotic response to current extinc-
tion pressures.

CONCLUSIONS

One of the major insights of paleontology
is the importance of extinction in shaping
the diversity of life through time. The
effects of extinction on diversity dynamics
have been intensively studied in the marine
Bivalvia because of their relatively complete
fossil record, the considerable biological
variation that exists among taxa, and their
diversity and abundance in shallow marine
environments today and in the past. In this
contribution, we provide new estimates of
global extinction and origination rates for
marine bivalve genera through the Phanero-
zoic that explicitly account for temporal
variation in preservation. These analyses,
using data compiled primarily from the first
Treatise on Invertebrate Paleontology (Part
N: Cox & OTHERS, 1969; STENZEL, 1971),
underscore the important contributions of
the Treatise to our understanding of bivalve
macroevolutionary history. While rates of
extinction and origination are moderate
for marine bivalves overall, times of severe
extinction and times of general quiescence
are observed through the Phanerozoic. Inter-
vals of elevated global extinction for marine
bivalves correspond to intervals of elevated
extinction for marine invertebrates more
broadly, and bivalves exhibit secular declines
in rates of extinction and origination over
the Phanerozoic that are also observed at
much broader taxonomic scales. Throughout
their history, marine bivalves exhibited
coupled dynamics of extinction and origi-
nation, with periods of elevated extinction
followed by periods of elevated origination,
and moderate extinction by moderate origi-



14 Treatise Online, number 29

nation. This diversity-dependent process is
most pronounced following mass extinc-
tions, but operated consistently throughout
the history of the clade. Studies of marine
bivalves have yielded important insights into
extinction selectivity, and specifically, the
effects of biological traits on survivorship.
We review this literature, focusing on four
traits that have received the most attention.
Geographic range size is the most consistent
predictor of bivalve survivorship considered
to date. Traits like feeding mode and life
habit may also be important, but these are
probably more dependent on the particular
context of environmental change. Body
size is largely decoupled from extinction
risk despite reasons to expect otherwise.
The growing paleontological literature on
selectivity underscores the major contribu-
tion of fossil bivalves to our understanding
of the factors that influence extinction risk.
It highlights a fruitful area for collaboration
between researchers studying the effects of
extinction on marine systems today and in
the past.
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