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INTRODUCTION

Most bivalves provide an excellent flesh 
yield, in particular those with well-developed 
adductor musculature or a large foot. Their 
only potential drawback as a food source is 
the bivalve’s strong and rapid response to 
disturbance by shutting the valves, locking the 
tissue away within the confines of the protec-
tive shell. However, once the shell is breached, 
the meat is immediately available and is free 
from indigestible matter such as spicules; 
relatively few species have been found to be 
toxic. These factors, together with the wide-
spread occurrence of bivalves, often in high 
abundance in many marine and freshwater 
communities, make them prime prey targets, 
and they figure prominently in the diets of 
many different predatory (and scavenging) 
taxa. Somewhat inevitably, most of what we 
know about the predation of modern bivalves 
is heavily biased by studies of commercially 
important species, such as oysters, mussels, 
and scallops. Little is known about predation 
on taxa such as the protobranchs, arcoids, 
lucinids, or anomalodesmatans.

Few predators are fully specialized only for 
bivalve prey, and, in practice, most preda-
tors that take bivalves have catholic diets. 
However, in some habitats where a particular 
bivalve is very abundant, they may form 
the bulk of a predator’s diet. For example, 
hughEs and DunKin (1984) showed that 
the dogwhelk Thais lapillus may become 
habituated to taking the blue mussel Mytilus 
edulis. Conversely, any particular bivalve 
species may have a wide range of predators 
that use very different predatory techniques 
to attack them. For example, harpEr (2006, 
fig. 4C) illustrated a partial food web for 
Mytilus edulis showing eight higher taxa of 
potential predators. 

Predators may use a number of tech-
niques to access their bivalve prey, and 
some may use different methods on a single 
prey species, depending on the size of the 
individual tackled (McQuaiD, 1994; stEEr 
& sEMMEns, 2003). These techniques may 
be broadly categorized, for ease of discus-
sion, as swallowing, grazing, prising, pre-
ingestive crushing, and drilling (see also 
VErMEij, 1987; alExanDEr & DiEtl, 2003, 
for a slightly different classification). Each 
technique is practiced by a range of different 
taxa and in different ways. Below, we outline 
each of these methods and consider whether 
they provide diagnostic evidence for use in 
inferring the activities of particular preda-
tory groups for death or fossil assemblages 
of bivalves. We also provide an indication 
of the known fossil record of predatory 
behavior on bivalves. We then examine 
the ways in which predation is believed to 
have influenced bivalve evolution, before 
suggesting avenues for future research.

SWALLOWING

A number of predators feed simply by 
swallowing bivalves whole. These include 
a variety of worms, including the nemer-
teans (bourQuE, Miron, & lanDry, 2001) 
and polychaetes (EMson, 1977); intra-oral 
feeding starfish, e.g., Pycnopodia (MauzEy, 
birKElanD, & Dayton, 1968) and Luidia 
(McclintocK & lawrEncE, 1981); and a 
wide variety of chondrichthyan and osteich-
thyan fish, such as rays (yaMaguchi, Kawa-
hara, & ito, 2005); cod (arntz, 1978); 
wrasse (DEnny & schiEl, 2001); and, in 
freshwater, roach (prEjs, lEwanDowsKi, & 
stanczyKowsKa-piotrowsKa, 1990); and 
carp, catfish, and freshwater drum (thorp 
& coVitch, 2001; MagoulicK & lEwis, 
2002). Many of these fish are equipped 
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with powerful pharyngeal mills that crush 
the shells once ingested. A number of 
marine ducks (e.g., eider feeding on cockles 
and mussels; caDéE, 1994) swallow their 
prey whole and, in freshwater ecosystems, 
diving ducks such as scaup and tufted ducks 
feed extensively this way on zebra mussels 
(haMilton, anKnEy, & bailEy, 1994). 
In these instances, again, ingested shells 
are macerated by the action of a muscular 
gizzard.

Predators that feed in this way may be 
extremely important: lappalainEn, wEst-
ErboM, and hEiKinhEiMo (2005) argued 
that roach are important in structuring 
bivalve communities in the Baltic Sea, and 
their activities produce a significant propor-
tion of skeletal debris within the sediment; 
for example, caDéE (1994) estimated that 
the activities of eider and shelduck feeding 
on mussels and cockles in the Wadden Sea 
contribute at least 75% by weight of the 
carbonate fragments, and that physical frag-
mentation is rather unimportant. 

Simply swallowing prey whole is a basic 
form of predation, requiring no specializa-
tion of feeding apparatus, and the size and 
type of prey are limited to small individuals 
that fit through the mouth and throat of the 
predator. It is virtually impossible to identify 
diagnostic damage in dead or fossil shell 
material in order to attempt to recognize 
this type of predation, particularly where 
whole shells are voided by the predator (Fig. 
1). Where a pharyngeal mill or gizzard is 
employed to macerate shells, the resulting 
angular debris (Fig. 2) may be recognizable 
as distinct from the more rounded debris 
produced by abrasion during postmortem 
transport (oji, ogaya, & sato, 2003), 
although identification of the culprit(s) and 
quantification of their importance may be 
difficult. Similarly, the lack of specializa-
tion of predator functional morphology also 
means that it is difficult to identify with 
certainty which extinct predators fed in this 
way. However, discrete accumulations of 
angular shell debris, including that of trigo-
niid bivalves, have been found in otherwise 

fine-grained facies from the Middle Jurassic 
of Poland. zatoń and salaMon (2008) 
interpreted these as regurgitates of duropha-
gous predators, probably fish. It seems highly 
likely, however, that earlier examples exist. 
Such problems of predator identification 
also make it difficult to assess the relative 
importance of this type of predation over 
geological time.

GRAZING

Other predators, chiefly fish (e.g., rays, 
flatfish, sculpins), crabs, and birds (gulls 
and waders), are able to feed on larger 
prey by effectively grazing the soft parts of 
bivalves, most often the tips of the siphons 
(pEtErson & QuaMMEn, 1982; KVitEK, 
1991; MorEira,  1995, 1996; ansEll , 
harVEy, & günthEr, 1999; arrighEtti, 
liVorE, & pEnchaszaDEh, 2005) but also 
the foot (salas, tiraDo, & Manjón-cabEza, 
2001; MouritsEn & poulin, 2003) and 
mantle lobes (toDD, lEE, & chou, 2009). 
Such grazing may be acute; MorEira (1995) 
cited individual black-headed gulls taking up 
to 17 Scobicularia plana siphons per minute 
in winter. Walruses feed by exposing deep 
burrowing bivalves (e.g., Mya arenaria) using 
their flippers and by generating powerful 
water jets with their snouts and then either 
stripping the tissue from the intact shells by 
suction or by simply biting off the siphons 
(oliVEr & others, 1983; wElch & Martin-
bErgMann, 1990; gingras & others, 2007).

Prey subjected to grazing may often 
survive the attack and regenerate tissue, 
although at a cost to the bivalve’s fitness as 
evidenced by slower growth (coEn & hEcK, 
1991), particularly where the cropping also 
damages the shell edge. The costs of siphon 
nipping may also involve increased vulner-
ability to other predators; for example, 
DE goEij and others (2001) showed that, 
following siphon nipping by flatfish, individ-
uals of Macoma balthica are able to burrow 
less deeply and thus are more prone to preda-
tion by shorebirds, such as oystercatchers. 
Few studies have focused on identifying 
grazing predation from dead or fossil shell 
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assemblages. Siphon nipping may be inferred 
from concentration of damage (repaired 
or unrepaired), often as triangular divots, 
at the posterior shell margin of burrowing 
bivalves (pEtErson & QuaMMEn, 1982; 
caDéE, 1999; alExanDEr & DiEtl, 2001; 
KraEutEr, 2001). The extensive feeding 
activity of walrus herds in Pleistocene beds 
around Washington (United States) has 
been inferred from distinctive trace fossils 
intersecting bivalve burrows (gingras & 
others, 2007).

PRISING APART VALVES

Another broad set of techniques for 
feeding on bivalves involves prising apart 
the two valves and feeding through the 
gape produced. Key exponents of this 
method are the extra-oral feeding star-
fish, which use their suckered tube feet 
to overcome the strength of the adductor 

muscle(s) to create a gap between the valves 
just large enough to insert the stomach 
lobes to commence digestion (FEDEr , 
1955; MauzEy, birKElanD, & Dayton, 
1968). Starfish are known to be voracious 
predators of shellfish, causing enormous 
damage to shellfisheries (MEngE, 1982), 
and are an important determinant of the 
natural distribution of mussel beds (sEED 
& suchanEK, 1992). It is unfortunate that 
this type of predation leaves no diagnostic 
trace fossils; this factor, combined with 
the poor body fossil record of asteroids, 
makes it difficult to assess the impor-
tance of extra-oral feeding over geological 
time. There is disagreement over when the 
ability to feed in this way evolved because 
of different interpretations of the limited 
body fossils (see hErringshaw, sMith, & 
thoMas, 2007); however, exceptional pres-
ervation may provide evidence of starfish 

Fig. 1. Cerastoderma edule fragments regurgitated by a herring gull, Texel, The Netherlands. Note that some cockles 
remain unbroken, and one is even still articulated; scale in cm (new; photograph courtesy of Gerhard Cadée).
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caught in the act of feeding in this manner 
on an Ordovician bivalve (blaKE & guEn-
sbErg, 1994). Despite this evidence, it may 
be that extra-oral feeding in asteroids did 
not become widespread until the Jurassic 
radiation of forcipulate-solasteroid starfish 
in the Jurassic (blaKE, 1993). In addition 
to starfish, some octopods use their suck-
ered arms to pull apart bivalves (stEEr & 
sEMMEns, 2003). As with starfish, little 
evidence of such behavior in the fossil 
record can be expected. 

Another type of predation within the 
broad category of prising is shell wedging. 
Some groups of predators are specially 
adapted for wedging apart the valves of 
bivalves by inserting a lever between them 
to force them apart. These include members 
of the gastropod superfamily Buccinoidea 
(i.e., the families Buccinidae, Melongenidae, 
Fasciolariidae), in which the apertural lip 
of the shell is used (niElsEn, 1975; DiEtl, 

2003a, 2003b), and some crustaceans, for 
example, slipper lobsters, which use their 
dactyli (lau, 1987). 

Wedging may cause inadvertent breakage 
of the valve edges of the prey, and these 
predation traces may be sufficiently distinc-
tive to allow for their confident identifica-
tion in dry shell material (Fig. 3) (alExanDEr 
& DiEtl, 2003; DiEtl, 2003a, 2003b). 
Furthermore, in the case of buccinoid gastro-
pods, this type of predatory activity may 
inflict damage on the predator, where the 
apertural lip is itself damaged and later 
repaired. Such scars are distinct from those 
inflicted by the snail’s own predators; for 
instance, DiEtl, DurhaM, and KEllEy 
(2010) demonstrated that scars on Fascio-
laria (Cinctura) lilium hunteria produced by 
wedging predation on the oyster Crassostrea 
virginica were distinct from damage induced 
by crab predation on Fasciolaria. Recogni-
tion of these repairs in buccinoid shells at 

Fig. 2. Angular fragments of largely Mytilus edulis and Cerastoderma edule from the feces of eider duck,Texel, The 
Netherlands; scale in cm (new; photograph courtesy of Gerhard Cadée).
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least may be used to infer that they fed in 
this manner (DiEtl & alExanDEr, 1998; 
DiEtl, 2003a, 2003b; DiEtl, DurhaM, & 
KEllEy, 2010).

PRE-INGESTIVE BREAKAGE

A wide range of predators tackle relatively 
large, rewarding, bivalve prey by smashing 
the shell before ingesting the flesh. Many 
use jaws or claws to break open the shell to 
access the flesh within, for example malacos-
tracan crustaceans (crabs, lobsters, crayfish, 
stomatopods; sEED, 1992), xiphosurids 
(botton, 1984), birds (waders such as 
oystercatchers; hulschEr, 1996), fish (e.g., 
rays; gray, Mulligan, & hannah, 1997), 
and octopods (hartwicK, tulloch, & 
MacDonalD, 1981). sEED and hughEs 
(1995) showed the variety of different chela 
morphologies displayed by different crus-
tacean taxa as specializations for opening 
different prey types, whereas other small 
individuals and nonchelate crustaceans 
instead use their mandibles to chip away the 
valve margins of bivalve prey (lau, 1987; 
Morton & harpEr, 2008). Other preda-
tors have alternative methods to break open 

shells that do not require specialist jaws or 
appendages. For example, the sea otter uses 
a variety of tools, such as stones, to smash 
open the shells of its bivalve (and echi-
noid) prey (KVitEK, bowlby, & staEDlEr, 
1993). In the case of gulls (e.g., Larus 
argentatus), breakage of the shells of large 
mussels and cockles is achieved by drop-
ping them onto hard surfaces during flight 
(caDéE, 1989) or, in the case of the razor 
shell, shaking it vigorously (caDéE, 2000). 

Damage resulting in death caused by 
crushing predators is at least potentially 
recognizable in either dead modern or fossil 
individual material (alExanDEr & DiEtl, 
2003), but it may be extremely difficult to 
distinguish between shell debris produced 
by predators and that produced by other 
destructive processes, before or after death. 
Alternative, nonpredatory causes of fatal 
damage to live shells include percussion by 
rolling stones or ice (shanKs & wright, 
1986; caDéE, 1999) and, in modern mate-
rial, dredging activities (gaspar, rich-
arDson, & MontEiro, 1994) or, in the 
intertidal zone, human trampling (cintra-
buEnrostro, 2007). A variety of criteria 

Fig. 3. Feeding scar produced by a busyconine whelk; scale bar approximately 10 mm (new; photograph courtesy 
of Greg Dietl).
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that may be used to discriminate between 
predatory and nonpredatory damage have 
been discussed by KowalEwsKi (2002), who 
highlighted the repetitive nature of damage, 
complementary scars on both valves that 
have been attacked by scissorlike weapons, 
and indication of stereotypy and size selec-
tion. Nonetheless, where damage is severe, 
such tests may be hard to apply. oji, ogaya, 
and sato (2003) showed that shell fragments 
produced by postmortem transport tend to 
be rounded and abraded rather than sharp 
and angular, as occurs in predatory attacks.

Once it has been established that breakage 
was caused by a predator, the identity of the 
attacker may in some cases be determined. 
Some predators leave rather distinctive 
marks (alExanDEr & DiEtl, 2003) but 
many do not (Fig. 4). The challenge remains 
to catalog and understand damage by known 
predators so that comparison can be made 
with fossil material. 

As with other methods of predation, 
crushing predators are not always successful 
(see yaMaDa & boulDing, 1998, for an 

example), allowing the injured prey to repair 
its shell. Failure to complete an attack may 
be the result of effective defense by the prey, 
or because the predator has been disturbed 
by another organism (including its own 
predators), or a change in the physical condi-
tions in the environment. In the former case, 
failure is a very important selection agent in 
the evolution of defensive traits (VErMEij, 
1987): a predator that is 100% successful 
will not cause such adaptation. Similarly 
the prey may also survive other forms of 
shell breakage, including self damage during 
burrowing (chEca, 1993; alExanDEr & 
DiEtl, 2001).

Repairs may be identified by careful 
inspection of shell surfaces where normal 
growth lines are disrupted and there is clear 
evidence of a ragged scar where shell material 
has been lost before normal shell secretion 
resumes (Fig. 5). Disruption of growth lines 
alone, with no jagged scar, may simply reflect 
growth of the shell in confined spaces. Some 
repaired breaks show evidence of broken 
pieces of shell having been incorporated into 

Fig. 4. Angular debris produced by the shore crab Carcinus maenas feeding on Mytilus edulis; scale bar, 10 mm (new).
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the newly formed shell. Subsequent shell 
growth often appears to bulge out beyond 
the scar, and, in instances where the mantle 
has been badly damaged, shell growth in that 
region of the shell remains retarded relative 
to adjacent sections. 

The terminology applied to different 
types of shell repair was originally devel-
oped in the study of Paleozoic brachio-
pods (alExanDEr, 1981, 1986), and its 
application to bivalves is discussed in detail 
by alExanDEr and DiEtl (2001, 2003). 
Examination of repaired specimens may 
alleviate some of the problems of trying 
to discriminate between predatory and 
nonpredatory damage, because it is easier 
to recognize particular patterns and size 
relationships. However, the significance of 
the levels of repair seen in any population 
is difficult to interpret (alExanDEr, 1981; 
KowalEwsKi, 2002; lEighton, 2002; alEx-
anDEr & DiEtl, 2003): low repair frequen-

cies in a given species may indicate either 
infrequent attack on an unfavorable prey 
or high success rates of a highly efficient 
predator. In order to circumvent such prob-
lems in interpreting repair scars, staFForD 
and lEighton (2011) tested a method, 
initially proposed by VErMEij (1982a), for 
estimating frequency of crushing predation. 
They used shells with predatory drillholes 
(for which cause of death is known) to estab-
lish a taphonomic fragmentation baseline 
within an assemblage. Although the method 
was only tested on gastropods, staFForD and 
lEighton (2011) stated that it should also 
be applicable to bivalves. 

A number of different durophage groups 
(placoderm and chondrichthyan fish and 
phyllocarid and eumalacostracan crusta-
ceans) appear to have radiated during the 
middle Paleozoic (see signor & brEtt, 
1984; brEtt & walKEr, 2002; brEtt, 
2003). signor and brEtt (1984) argued that 

Fig. 5. Scalloped repaired marginal damage in Pycnodonte vesicularis, British Chalk, Sedgwick Museum (Cambridge 
University), SM. B.6534; scale bar, 10 mm (new).
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the activities of these durophages produced 
a selection pressure favoring spinosity in 
brachiopod and crinoid prey. Little research 
has yet been done on Paleozoic bivalves, 
but nagEl-MyErs, DiEtl,  and brEt t 
(2009) have shown relatively high levels of 
marginal repair in Middle Devonian pteri-
neid bivalves. Similarly, repaired marginal 
breakages attributed to predatory activity 
have been reported in Mesozoic inoceramids 
(KauFFMan, 1971; ozannE & harriEs, 
2002) and oysters (DiEtl, alExanDEr, & 
biEn, 2000) and linked to escalation of 
durophagous predation in the Cretaceous.

DRILLING 

A more subtle way of getting through the 
valves is practiced by predators that drill-
holes in shells, through which they feed, or 
as a way of delivering toxins in order to force 
the bivalve to gape. The principal culprits 
in modern seas are muricid and naticid 
gastropods, which attack (largely but not 
invariably) epifaunal and infaunal shelly 
organisms respectively, including bivalves. 
These gastropods use chemical dissolution 
by acidic secretions from their accessory 
boring organs (located in the proboscis and 
foot respectively in naticids and muricids) in 
combination with mechanical rasping by the 
radula, in order to drill through their prey 
shells (ziEgElMEiEr, 1954; carriKEr, 1981; 
carriKEr & grubEr, 1999). The distinctive 
round holes thereby produced have been 

referred to the ichnogenus Oichnus broMlEy 
(1981). Generally the two different groups 
produce holes of different morphology: 
those drilled by muricids are generally 
straight sided (Oichnus simplex) and those 
drilled by naticids are countersunk with 
the outer borehole diameter being greater 
than the inner diameter (O. paraboloides; 
broMlEy, 1981; carriKEr, 1981) (Fig. 
6). Recognition of these morphological 
differences can, therefore, be used to distin-
guish between the activities of these preda-
tors in shell accumulations (e.g., aDEgoKE 
& tEVEsz, 1974; taylor, clEEVEly, & 
Morris, 1983; Kabat, 1990; KowalEwsKi, 
1993; alExanDEr & DiEtl, 2001; KEllEy 
& hansEn, 2006), although some caution 
must be exercised (broMlEy, 1981). It is 
clear that discrimination based on drill-
hole shape alone is not always accurate: the 
muricids Trophon, Chicoreus, and Phyllonotus 
produce holes that might well be assigned to 
O. paraboloides (gorDillo, 1998; harpEr & 
pEcK, 2003; DiEtl, hErbErt, & VErMEij, 
2004), requiring the use of additional char-
acteristics, such as drillhole size or position 
to distinguish the driller. Other modern 
gastropods, for example some marginellids, 
are also known to drill into bivalves (ponDEr 
& taylor, 1992), leaving small holes similar 
to those made by naticids.

Drillholes produced by predatory octo-
pods are small and often (but not invari-
ably) of a distinctive oval or teardrop 

Fig. 6. 1, Drillhole in crassatellid from the Sarasota Formation, Florida; 2, drillhole in Stewartia anodonta from the 
Caloosahatchee Formation, La Belle, Florida; scale bars, 10 mm (Kelley, 2008; photograph courtesy of Timothy Kelley). 

1 2
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shape (nixon, 1980; broMlEy, 1993) (Fig. 
7). They frequently show a high degree 
of stereotypic placing over the victim’s 
adductor muscles, thus allowing rapid 
delivery of the toxins to the muscle system 
(broMlEy ,  1993; cortEz ,  castro, & 
guErra, 1998). 

Drillholes in shell material represent 
perhaps the easiest form of predation to 
infer, and, as a result, there have been 
numerous studies of drilling predation. The 
distinctive morphology of fossil drillholes 
and the recognition of established ichnotaxa 
means that, with caution (see broMlEy, 

1981; KowalEwsKi, 1993), at least the higher 
taxon (i.e., family) of the predator can be 
identified. Approaches to identifying the 
drilling predator below the family level 
have been proposed using microstructural 
characteristics of drillholes (schiFFbauEr 
& others, 2008) or the ratio of inner and 
outer borehole diameters (grEy, boulDing, 
& brooKFiElD, 2005), but have not yet 
been demonstrated to be reliable (see DiEtl 
& KEllEy, 2007). The body fossil record of 
naticid and muricid gastropods dates to the 
Early Cretaceous (Albian); it is apparent that 
they have been active drillers of bivalves since 

Fig. 7. Scanning electron micrograph of Oichnus ovalis drilled by Octopus vulgaris in Recent Perna perna, South 
Africa; scale bar, 200 µm (new).
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then and particularly so since the beginning 
of the Cenozoic (taylor, clEEVEly, & 
Morris, 1983; KEllEy & hansEn, 1993, 
2003, 2006; harpEr, 2003). However, given 
the multiple evolution of drilling within 
gastropods, it is possible that other, extinct 
taxa may have also drilled bivalves. Indeed, 
drillholes in Lower Jurassic infaunal bivalves 
(harpEr, ForsythE, & palMEr, 1998) and 
Permian bivalves (hoFFMEistEr & others, 
2004) predate the known body fossil record 
of extant drilling gastropods. Octopod drill-
holes, despite their distinctive morphology 
and distribution, seldom have been reported 
in the fossil record (broMlEy, 1993; harpEr 
2002), with most examples coming from 
Pliocene scallops, and the oldest recognized 
examples being from the Eocene (toDD & 
harpEr, 2011).

In addition to identifying predators, 
detailed study of drillholes may provide a 
wealth of other data. Drillhole diameter is 
generally thought to be related to predator 
size (KitchEll & others, 1981; carriKEr & 
grubEr, 1999), which permits examination 
of predator–prey size selection, for instance 
by correlating prey size and drillhole size 
(e.g., ansEll, 1960; KitchEll, 1986; KEllEy 
& hansEn, 1996b). Many drilling predators 
display amazing constancy in drillhole loca-
tion, suggesting a well-developed behavioral 
stereotypy. This site selectivity is particularly 
evident in naticid gastropods, which tend 
often to drill in the umbonal or central 
region (thoMas, 1976; KEllEy, 1988; 
KingslEy-sMith, richarDson, & sEED, 
2003), and for octopods, which target the 
adductor and pallial musculature (cortEz, 
castro, & guErra, 1998). The basis for 
selecting particular regions may relate to 
minimizing drilling time by drilling thinner 
areas of the shell (KitchEll, 1986), ease 
of handling (thoMas, 1976), or gaining 
direct access to calorically rewarding tissue 
(hughEs & DunKin, 1984). Similarly, for 
this form of predation, it is relatively easy to 
quantify successful and unsuccessful drilling 
attempts by the recognition of complete 
holes (which penetrate the entire thickness 

of the valve) and incomplete (or repaired, 
see DiEtl, 2000) drillholes, respectively. 
Some caution must be used in interpreting 
incomplete holes. Successful attacks by 
naticids, in which the prey suffocated during 
drilling, may yield incomplete holes (see 
ansEll & Morton, 1987, for a laboratory 
example), and when multiple muricids 
attack a prey simultaneously, they may 
abandon a partially completed hole once the 
prey is breached and feed through the gape 
(taylor & Morton, 1996). Nonetheless, 
study of drillhole size and positioning and 
also success rate, and in particular changes 
in them over geological time, has indicated 
evolution of particular behavioral traits on 
the part of the predator (e.g., selectivity of 
prey species or size and drillhole site on 
the prey; KEllEy, 1988, 1989; KEllEy & 
hansEn, 1996b) or of defensive adaptations 
by the prey (KEllEy, 1989, 1991; KEllEy 
& hansEn, 2001; KEllEy & others, 2001).

PREDATION AND BIVALVE 
EVOLUTION

There can be little doubt that predation 
has been an important force in the evolution 
of marine communities (VErMEij, 1987; 
stanlEy, 2008). The fossil record provides 
good evidence for radiations of duropha-
gous predators during the middle Paleozoic 
(signor & brEtt, 1984; VErMEij, 1987; 
brEtt & walKEr, 2002; brEtt, 2003), 
and as part of the Mesozoic Marine Revolu-
tion (stanlEy, 1977; VErMEij, 1977, 1987; 
walKEr & brEtt, 2002; harpEr, 2003).

Because bivalves are such cosmopolitan 
organisms, and they appear to be a favored 
prey by such a wide range of different preda-
tory groups, we might anticipate that these 
great radiations of predatory activity must 
have had an impact on their evolution. 
We could predict that those individuals or 
taxa that are in some way less vulnerable 
to predation (for example, in terms of life 
habit, behavioral, or morphological traits) 
will survive better than those that are more 
susceptible. As long as not all predatory 
attempts are successful, we might predict 
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the evolutionary selection of particular traits 
(VErMEij, 1982b).

Defensive adaptations of bivalves have 
been discussed by a number of authors 
(cartEr, 1968; ansEll, 1969; VErMEij, 
1987; harpEr & sKElton, 1993a), and 
it is clear that the adaptive responses of 
particular taxa may be shaped by factors that 
are various and complex, involving the need 
to defend against different types of predator. 
Defenses against one predator may make the 
species more susceptible to other predators, 
however (DiEtl & KEllEy, 2002). In addi-
tion, different taxa may be either preadapted 
to, or constrained from, evolving particular 
defensive features (DE angElis, KitchEll, 
& post, 1985; harpEr & sKElton, 1993a).

The bivalve form is very susceptible 
to damage. Failed predation that breaks 
the valve margins is difficult to seal, and 
the resulting opening leaks metabolites 
and/or blood, which may weaken the 
bivalve and attract secondary predation 
(VErMEij, 1983). As a result, repair is rather 
less frequently seen in bivalves than it 
is in gastropods, which are more able to 
withstand such damage. VErMEij (1983) 
suggested that bivalves have consequently 
responded to increased predation pressure 
over the Phanerozoic not by emphasizing 
armor (as gastropods have done; VErMEij, 
1977) but by evading capture (and the 
threat of damage) by changes in life habits 
and behavior. Various life habits have been 
described as providing safety from preda-
tors and may have evolved in response to 
increased predation pressure, including 
deep burrowing (stanlEy, 1968), cemen-
tation (harpEr, 1991), boring into hard 
substrates (stanlEy, 1977; palMEr, 1982), 
and traits such as ability to swim (e.g., 
scallops and limids) and leap (e.g., cockles 
and trigoniids) when threatened (ansEll, 
1969; hayaMi, 1991; DonoVan, Elias, 
& balDwin, 2004). It is of interest that 
these life habits are considered derived 
and are largely post-Paleozoic innova-
tions. sKElton and others (1990) pointed 
out that among epifaunal bivalves, these 

new habits have evolved at the expense 
of diversity of the exposed byssate taxa. 
Furthermore, other vulnerable life habits, 
such as free reclining, exploited so success-
fully by gryphaeid and exogyrid oysters in 
the Mesozoic, also declined over a similar 
time frame (labarbEra, 1981).

Whereas the predominant form of defense 
in bivalves is thought to be flight rather 
than fight, some taxa have been reported to 
show active responses to predatory attack. 
Most well documented are the responses of 
mussels to drilling muricids; the offending 
gastropods are captured and trapped by 
byssal threads or dislodged by active move-
ments of the foot or valves (pEtraitis, 1987; 
waynE, 1987; Day, barKai, & wicKEns, 
1991). stasEK (1965) and wilKEns (1986) 
reported Tridacna maxima deterring fish 
predators by accurately squirting them with 
a jet from the siphons. There are also more 
anecdotal accounts of would-be predators 
becoming trapped by their prey snapping 
shut on them (e.g., burrEll, 1977; harpEr 
& sKElton, 1993a). 

Few bivalves have been shown to be toxic 
and, where such reports occur, the toxicity is 
usually secondary, being acquired from dino-
flagellates or diatoms rather than secretions 
by the bivalve. Nonetheless, there is evidence 
that such acquired toxicity may have definite 
value in deterring the bivalve’s predators. For 
example, sea otters and wading birds have 
been shown to modify their prey choices 
to avoid bivalves that have been especially 
affected by toxic algal blooms (KVitEK, 
1991; KVitEK & brEtz, 2004, 2005).

Bivalves may also evade capture by using 
camouflage. Cryptic coloration in the hyper-
trophied mantles of tridacnids may inhibit 
fish that use visual cues (toDD, lEE, & 
chou, 2009), whereas scallops, spondylids, 
and chamids acquiring a coating of sponges 
and other epibionts may confuse predators 
that hunt using both visual and chemosen-
sory information (VancE, 1978; FEiFarEK, 
1987). These bivalves may promote the 
growth of camouflaging epibionts by virtue 
of their spiny ornaments. Several authors 
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suggest that the sponge coatings of certain 
scallops may also inhibit attack by extra-oral 
feeding asteroids by interfering with the 
attachment of their tube feet (blooM, 1975; 
Marin & lópEz bElluga, 2005; FarrEn 
& DonoVan, 2007). Epibionts may also 
provide a chemical defense to their bivalve 
hosts (lauDiEn & wahl, 2004).

Despite the importance of avoiding 
capture, there are a number of morpholog-
ical traits in bivalves that may offer defense 
against predators. Such traits may be consid-
ered using the nomenclature of goulD 
and Vrba (1982) as those that are adaptive 
(i.e., traits that have been selected for by 
predation pressure) or those that are exap-
tive (i.e., traits for which defensive value is 
secondary or incidental to the primary selec-
tive advantage). However, such distinctions 
may be extremely difficult to determine (e.g., 
harpEr, 1994; KarDon, 1998). 

Many predators are limited in the size of 
prey that they are capable of handling, either 
because of the additional time required 
to manipulate larger prey items (ElnEr 
& hughEs, 1978) or because of absolute 
limits to predator abilities. For example, 
prey size is limited by the size of the mouth 
for predators that swallow their prey, or by 
the size of the foot for naticid gastropods 
that envelope their prey within their foot for 
drilling. Particularly rapid growth in some 
taxa may mean that potential prey reach a 
size as refuge from predation (DE angElis, 
KitchEll, & post, 1985; sEED, 1990). 

Proposed morphological defenses include 
protection against the acids secreted by drilling 
gastropods by either thickening the outer 
periostracum or incorporating organic layers 
within the shell in corbulids, ostreids, and 
lucinids (lEwy & saMtlEbEn, 1979; taylor, 
1990; harpEr & sKElton, 1993b; KarDon, 
1998; ishiKawa & KasE, 2007). DE angElis, 
KitchEll, and post (1985) argued, based 
on modeling, that increasing shell thickness 
should be an evolutionary strategy of bivalves 
experiencing naticid gastropod predation. 
Such thickening of the shell was reported by 
KEllEy (1989, 1991) and KEllEy and hansEn 

(2001) for several Eocene and Miocene bivalve 
lineages of the United States Coastal Plain in 
response to naticid predation. harpEr and 
sKElton (1993a) noted that taxa with thicker 
shells generally employ shell microstructures, 
such as foliated calcite and crossed lamellar 
aragonite, that are known to be low in organic 
matrix and consequently may be cheaper to 
secrete (palMEr, 1992); such microstructures, 
although mechanically weaker in terms of 
resistance to bending, impact resistance, and 
compression, are harder, and crossed-lamellar 
structures may be more resistant to abrasion 
(taylor & layMan, 1972). It is also notable 
that shell thickening may be induced in some 
species by exposure to predators (trussEll 
& sMith, 2000; chEung & others, 2004). 
Such induced defenses may be favored when 
pressure from the predator is variable and 
unpredictable but sometimes strong, when 
cues are available to trigger the defense, and 
when the defense is effective but costly or 
involves tradeoffs.

Shell ornamentation has been postulated 
to serve as an antipredatory adaptation 
(thoMas, 1978; KEllEy & hansEn, 1996a). 
Bivalve ornamentation that may protect 
against predation includes radial or concentric 
costae or folds, as well as spines. For instance, 
DiEtl, alExanDEr, and biEn (2000) found 
that radial costae increased in Cretaceous 
exogyrine bivalves as an evolutionary response 
to durophagous predation. Radial folds are 
also more common in Recent tropical bivalves 
exposed to intense predation than in cooler 
water faunas (alExanDEr & DiEtl, 2003). 
The antipredatory function of such orna-
mentation may represent an exaptation, as 
stanlEy (1988) interpreted many cases of 
bivalve sculpture as facilitating burrowing 
and/or stability within the substrate.

The occurrence of elaborate spiny orna-
ment in bivalves appears to increase over 
geological time and with decreasing latitude 
(harpEr & sKElton, 1993a). Spines may have 
a multitude of defensive (and other) func-
tions, including increasing the effective size 
of the bivalve (and thereby defending against 
predators that swallow their prey whole), 



Predation of Bivalves 13

providing direct defense, and encouraging 
epibiont settlement (FEiFarEK, 1987; stonE, 
1998; han & others, 2008). Spines are a 
prime example, however, of an adaptation 
that, however effective, is restricted to taxa 
with particular preadaptations, for example 
the thin, flexible periostraca necessary to 
describe their templates (harpEr & sKElton, 
1993a). Interestingly, although mytiloids and 
arcoids are unable to form calcareous spines, 
some have long flexible processes attached to 
the periostacum, which provide some defense 
(e.g., wright & Francis, 1984). These 
processes are not periostracal in origin but 
are pedal secretions onto outer surface of the 
periostracum (ocKElMann, 1983). 

Flexible valve margins, as seen, for 
example, in pterioids and ostreoids, may 
provide defense against attack by creating 
a hermetic seal that prevents the escape of 
cues that attract chemosensory predators 
(VErMEij, 1983, 1987; EstEban-DElgaDo 
& others, 2008) and also by excluding 
predators that chip at the shell margins, by 
promoting sealing following unsuccessful 
attack (cartEr & tEVEsz, 1978). DiEtl 
and alExanDEr (2005) showed that repair 
frequencies are higher in pinnoids than in 
bivalves with more rigid margins, suggesting 
that the former are better able to survive 
unsuccessful predation attempts. Overlap-
ping valve margins (as in corbulid bivalves) 
may have a similar effect of sealing the valves 
(as well as resisting compressive forces gener-
ated by shell-crushing predators; VErMEij, 
1987). The need to seal gaps between the 
valves, which may allow the egress of chem-
ical cues, seems to be underscored by the 
reduction of taxa with permanent gapes at 
lower latitudes (where presumably predation 
pressure is more intense; VErMEij & VEil, 
1978). Some bivalves (e.g., scallops and 
cockles) have crenulated margins, which 
have been suggested to provide protection 
by either enhancing the hermetic seal or 
by preventing shearing between the valves 
(rEiF, 1978; VErMEij, 1987).

The evolutionary mechanisms involved in 
the evolution of bivalve defenses against their 

predators remain an active area of research. In 
particular, debate has concerned whether such 
evolution can be characterized as involving 
escalation or coevolution (and which model 
of coevolution might be involved). A key 
question concerns the extent to which prey 
influence the evolution of their predators 
(DiEtl & KEllEy, 2002). In coevolution, 
two or more species (i.e., predator and prey) 
evolve in response to one another; adaptation 
is reciprocal. In contrast, escalation represents 
evolution in response to enemies (VErMEij, 
1994). Escalation recognizes asymmetry in 
selection; typically the selective pressures 
imposed by predators on prey are stronger 
than those imposed by prey on their predators 
(the so-called life-dinner principle, in which 
failure by the prey causes loss of life but failure 
by the predator only means loss of a meal; 
DawKins & KrEbs, 1979, p. 489). 

Both coevolution and escalation could 
account for response of bivalve prey to 
their predators (as predators represent 
enemies to their prey), but escalation 
views the effect of prey on their preda-
tors as unimportant unless the prey are 
dangerous (and therefore enemies) to their 
predators. When escalation occurs between 
predators and dangerous prey, responses 
can be reciprocal (and thus considered 
coevolution). Evolution of antipredatory 
defenses by bivalves in response to naticid 
gastropod predation has been considered 
to represent escalation; KEllEy (1992) 
found that Miocene naticids did not 
evolve offenses to counter the evolution 
of their bivalve prey but instead responded 
evolutionarily to their own predators. 
However,  the bivalve Mercenaria  was 
considered dangerous to its busyconine 
gastropod predator because the predator 
frequently breaks its shell while chipping 
open the prey (DiEtl, 2003a). The evolu-
tion between Mercenaria and its busyco-
nine predator can thus be considered an 
example of coevolution. 

In evaluating the importance of processes 
such as escalation and coevolution on a 
predator-prey system, considerat ion 
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must be given to the role of other species 
affecting the interaction; such species may 
impose selection pressure that either rein-
forces or opposes selection due to the inter-
action of interest (DiEtl & KEllEy, 2002). 
The presence of multiple predators may 
have emergent effects on a prey, in which 
the effect of a particular predator on its 
prey is either lessened or intensified by the 
additional predators (sih, EnglunD, & 
woostEr, 1998). In other words, the effect 
of multiple predators need not be additive. 
Both risk enhancement and risk reduction 
have been observed due to the presence of 
multiple predators. For instance, if a prey’s 
defenses against one predator increase its 
vulnerability to another predator, preda-
tion frequency may be increased more 
than would be expected based on the effect 
of either predator alone. Conversely, if 
predators interfere with or prey upon one 
another, the presence of multiple predators 
may reduce risk to their prey.

Attention must also be paid to the 
geographical and temporal scale of the 
interaction. For instance, the geographic 
structure of populations has been consid-
ered to contribute significantly to poten-
tial  causes of long-term evolutionary 
s t a s i s  and  sho r t - t e rm evo lu t i ona r y 
dynamics (ElDrEDgE & others, 2005). 
The geographic mosaic theory of coevolu-
tion explicitly considers the role of spatial 
variation in the outcome of interspecific 
interactions in coevolution (thoMpson, 
1994, 2005). thoMpson ’s view recog-
nizes a geographic mosaic of hot spots in 
which interacting species have reciprocal 
effects on each other’s fitness and recip-
rocal adaptation occurs, and cold spots in 
which reciprocal selection is not occurring 
(for example, because other interactions 
exert stronger selective pressure or because 
one species is too rare). Although coevolu-
tion may generate novelty in local areas, 
spatial variation in selection is likely to 
produce stasis on a larger geographic 
and temporal scale (ElDrEDgE & others, 
2005).

thoMpson (2005) proposed a process 
of coevolutionary alternation with esca-
lation in which natural selection favors 
predators that preferentially attack the 
least defended prey, leading to evolution 
of improved defenses in those prey. At the 
same time, selection should favor the loss 
of defenses in unattacked prey species. 
Geographic variation in selection should 
thus produce geographic variation in prey 
defenses and predator preferences. DiEtl 
and KEllEy (2007) tested this hypothesis 
of coevolutionary alternation with esca-
lation by examining spatial variation in 
morphological defenses of bivalve prey 
and in predator preferences indicated by 
naticid gastropod drilling frequencies in 
the Miocene Calvert Formation of Mary-
land. Results did not support the hypoth-
esis of coevolutionary alternation with 
escalation. Predators did not prefer the 
least defended (thinnest) prey species, nor 
did prey defenses and preference rank-
ings by the predator vary geographically 
as predicted. DiEtl and KEllEy (2007) 
concluded that the discrepancy may occur 
because the hypothesis of coevolutionary 
alternation focuses on evolution of local, 
highly specialized adaptations, whereas 
the bivalve defense examined (shell thick-
ness) is a more general response to classes 
of enemies. Further work is needed to 
determine whether the hypothesis of coevo-
lutionary alternation with escalation can 
explain more complex evolutionary patterns 
of defenses and counter defenses found in 
the fossil record. 

OPPORTUNITIES FOR 
FUTURE RESEARCH

The above examples show the wide range 
of adaptive responses suspected or demon-
strated to have resulted from predation 
pressure. In fact, a great many of them rely 
principally on rather anecdotal evidence. 
There is great scope for testing putative 
defensive adaptations, both in terms of 
demonstrating that they do truly have the 
benefit commonly ascribed to them, but 
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also demonstrating unambiguously that 
there are plausible coincidences between 
the onset of a particular style of predation 
pressure with the evolution of particular 
traits. The matter is, however, complicated 
by the fact that many bivalve taxa may have 
a multitude of different predators using a 
wide range of techniques upon them. No 
single defensive adaptation is effective 
against all types of attack and, importantly, 
there may be trade offs required between 
particular strategies.

Further understanding of the impact 
of predators on the evolution of bivalves 
requires more data from both modern 
and fossil faunas. There is much scope for 
refining our knowledge of when particular 
predatory methods evolved and quantifying 
their impact over geological time. Such 
work will certainly involve utilizing novel 
methods for recognizing particular modes 
of predation.

Much of the quantitative data collected 
to date concerns drilling predation, and in 
particular, the activities of naticid gastro-
pods. It would be beneficial to gain further 
understanding of other predator groups, 
including novel ways of recognizing their 
activities from dead or fossil shell material. 
Moreover, understandably, most published 
research on predation of modern bivalves 
has concentrated on commercially impor-
tant species; data for other taxa would be 
welcome. Furthermore, studies that report 
predation frequencies (both modern and 
fossil) are understandably focused on sites 
where levels are significant, but there is 
a need to further understand variability 
in levels across a range of environmental 
scales.

There is also a notable bias in our data 
toward North America and western Europe 
(harpEr, 2006). There is a clear need to 
further evaluate hypotheses with data on 
the impacts of other types of predators 
and from a wider range of geographic areas 
and environments. Predation studies that 
incorporate current ecological theory (e.g., 
various processes of coevolution and/or 

escalation; inducible defenses; emergent 
effects of multiple predators) would also 
be welcome. 
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