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INTRODUCTION
Living Coleoidea are active and skilled 

predators whose diets consist mostly of crus-
taceans, mollusks, and bony fish, and can also 
include polychaetes, chaetognaths, sipho-
nophores, and echinoderms. During their 
lifetime, coleoids may take a wide spectrum 
of prey: some will feed on the same species 
of prey but of increasing size; others, after 
reaching a particular size, change their prey 
species; some may take their own species, 
while some scavenge (Nixon, 1987, 1988a). 
Recent Coleoidea exhibit various methods 
of prey capture, usually due to the diverse 
morphology of their prey (Nixon, 1985). 

The morphology of the buccal appa-
ratus of living forms, and effects of surgical 
removal of one or more features, give some 
indication of its functions in prey capture 
and early stages of the digestive process. This 
may aid in studies of the buccal apparatus of 
fossil cephalopods, which can survive under 
special conditions of fossilization; this occurs 
mostly in ectocochleates, where the shell 
provides protection.

BUCCAL MASS
The buccal mass and its relationship with 

the whole animal can be seen in hemisections 
of three living coleoids: Sepia, Alloteuthis, 
and Spirula (see Nixon, 2011, fig. 7). It lies 
at the base of the brachial crown, and is a 
distinct, almost spherical mass, its shape 
determined by the chitinous upper and lower 
beaks (jaws, mandibles), which are largely 
encased in muscles. A buccal mass, with 
upper and lower beaks, is a constant feature, 

although the beaks may vary in shape and 
form; calcification may be absent or present 
(Nixon, 1988b, 1996; see Nixon, 2011, fig. 
14–15). The buccal mass and its features 
have been described in Recent Nautilus 
(Messenger & Young, 1999) and several 
living coleiods (Nixon & Young, 2003). The 
beak of Nautilus is dense and black with white 
calcareous tips, whereas those of living cole-
oids are firm and range from translucent, pale 
amber to dense, impenetrable dark brown or 
black. They are composed of a chitin-protein 
complex in Octopus vulgaris, and analysis of 
three regions of the upper and lower beaks 
showed differences in the percentages of 
chitin and protein present (Table 1) (Hunt & 
Nixon, 1981). Mass spectrometric techniques 

Table 1. Recent Coleoidea. The percentage 
of chitin and protein in chitinous structures 
of two coastal squids and an octopod (Hunt 

& Nixon, 1981).

     Species	 Structures	 % Chitin	 % Protein

Loligo vulgaris	 Gladius	 41.8	 58.2

Octopus vulgaris	 Upper beak		
 	   Rostrum	 6.6	 93.4
	   Lateral wall	 10.8	 89.2
	   Crest	 7.5	 92.5
	
	 Lower beak
	   Rostrum	 6.0	 94.0
	   Lateral wall	 12.3	 87.7
	   Crest	 7.8	 92.2
			 
	 Radula	 18.0	 82.0

Alloteuthis subulata	 Esophageal	   7.4	 92.6
	 cuticle		
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revealed a chitin-protein composition in 
the beaks of Nautilus belauensis, and the 
Humboldt squid, Dosidicus gigas; however, 
analysis of comparable material of fossil taxa 
from Upper Cretaceous localities in North 
America and Japan showed no compounds 
from the chitin-polymer complex, but it did 
show the presence of aromatic compounds 
(Gupta & others, 2008). The beaks form 
a cavity, which provides the space for the 
activity of the radula and its support system 
(Nixon, 1968; Messenger & Young, 1999) 
(Nixon, 2011, fig. 13). The radula, a charac-

teristic feature of Mollusca, is an elongated 
membrane bearing teeth and supported by 
muscles. Within the cavity are the lateral 
buccal palps and salivary glands; secretions of 
the latter aid the passage of whole prey and/or 
the breakdown of the prey into pieces small 
enough to enter and pass along the esophagus 
(Fig. 1). The esophagus has a cuticular lining 
of a chitin-protein complex (Table 1) (Hunt 
& Nixon, 1981). Four pelagic octopods, 
Ocythoe tuberculata, Haliphron atlanticus, 
Tremoctopus violaceus, and Argonauta argo, 
have a thick cuticle on the lateral buccal 

Fig. 1. Scanning electron micrograph of a hemisection of the buccal mass of the coastal squid, Alloteuthis subulata 
(120 mm mantle length) to show radula and other features within buccal cavity; bec, beccublasts; eso, esophagus; 
l be, lower beak; lat buc palp, lateral buccal palp; man mus, mandibular muscle; r, rostrum; rad, radula; subm gl, 
submandibular gland; u be, upper beak; u lip, upper lip; field width 3300 μm (see Nixon, 2011, fig. 13) (new).

rad
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palps, and lining the esophagus, presumably 
to protect adjacent soft tissues including the 
circumesophageal lobes of the central nervous 
system (Nixon & Young, 2003). 

The beaks are attached to the mandibular 
muscles of the buccal mass via a layer of 
tall columnar cells: the beccublast cells 
(Fig. 2). Three main groups of cells have 
been found on the upper beaks of Octopus 
vulgaris and Alloteuthis subulata (Dilly & 
Nixon, 1976b). The first group has cell-long 
fibrils, which may have contractile and/or 
tensile properties, and are attached to the 
complex trabeculae, which extend from the 
beccublast cells into the matrix of the beak, 
leaving imprints visible in scanning electron 
micrographs (see Nixon, 2011, fig. 16). 
At the other end, these cells are anchored 
to the beccublast-muscle cell interface, 
which is closely associated with muscles that 
move the beak. The second group of cells 
contain masses of endoplasmic reticulum, 
the cisternae of which are arranged along the 
long axis of the cell, and also dense granules 
that are probably the major source of the 
hard tissue of the beak. The third cell group 
contains a mixture of fibrils and secretory 
tissue (Dilly & Nixon, 1976b). Similar 
imprints have been found on the beak of the 
goniatite Girtyoceras limatum (Doguzhaeva, 
Mapes, & Mutvei, 1997), in living Sepia 
esculenta, and two ammonoids (Tanabe & 
Fukuda, 1999). 

The muscles and connective tissues of 
the buccal mass of Octopus bimaculoides, 
Sepia officinalis, and Lolliguncula brevis 
have been examined to identify the mecha-
nisms responsible for the complex opening, 
closing, and shearing movements of the beak 
(Uyeno & Kier, 2005). Anterior, posterior, 
superior, and lateral mandibular muscles 
connect the upper beak and lower beaks. 
However, the lateral mandibular muscles 
originate on the upper beak and insert on 
the connective tissue sheath surrounding 
the buccal mass, but do not connect with 
the lower beak. Notably, the upper and 
lower beaks do not make contact with each 
other, as the rostrum of the upper beak fits 

within that of the lower one. These authors 
considered that the buccal mass of coleoid 
cephalopods could represent a flexible joint 
mechanism and, to test their hypothesis, 
electromyography electrodes were implanted 
in muscles of the isolated buccal mass and 
the position of the beaks recorded (Uyeno 
& Kier, 2007). These results were consis-
tent with the hypothesis that the lateral 
mandibular muscles were active when the 
beak opened, and it was concluded that the 
buccal mass of cephalopods forms a flex-
ible joint in which the lateral mandibular 
muscles function as a muscular hydrostat 
and provide the force necessary to open the 
beaks (Kier & Smith, 1985). 

The activity of the radula and its support 
system has been observed within the buccal 
cavity of Octopus vulgaris, after excising the 
rostrum of the upper and lower beaks (see 
Nixon, 2011, fig. 13), and recorded on cine 
film; drawings from single frames show some 
of the actions (Fig. 3; Nixon, 1968). The 
radula, and its teeth, its supporting system, 
and the lateral buccal palps, which lie on 
either side of the radula, follow a cycle of 
movements: as the radula moves towards the 
floor of the buccal cavity the lateral buccal 
palps move towards the midline and meet 
above the radula. The ribbon changes its 
form around the bending plane, and with 
each cycle of movement the teeth become 
erect and/or splayed laterally; as the bending 
plane is passed, the marginal teeth collapse 
medially towards the rachidian and lateral 
teeth (Nixon, 1968). Some indication of 
the function of the buccal apparatus comes 

Fig. 2. Diagram of section through rostral region of 
upper beak of Alloteuthis subulata, showing major 
types of beccublasts; 1, tall columnar cells, most having 
mainly secretory cytoplasmic contents with some fibrils; 
2, slightly shorter cells with mainly fibrillar and some 

secretory cells; 3, mainly fibrillar cells (new).
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from an experimental study of Octopus 
vulgaris in which the intake of food was 
measured before and after surgical excision 
of one or other of its chitinous parts: loss of 
the rostrum of the lower beak reduced the 
intake from crabs to 37%, of the upper beak 
to 69%, and of the radula to 86%, whereas 
the intake remained at or close to 100% 
in normal and control animals (Altman & 
Nixon, 1970). This octopus can drill holes 
in mollusk shells after removal of part of 
its radula, but not after surgical removal of 
the papilla of the posterior salivary gland 
(Nixon, 1979, 1980; Nixon & Macon-
nachie, 1988). 

BEAKS OF RECENT CEPHALOPODA

Owen (1832) gave the first illustration of 
the upper and lower beaks of Nautilus after 

examining the buccal mass of the first living 
Nautilus pompilius brought to England. He 
noted the black, horny, beaks and their 
similarity to those of the parrot, but differing 
in that the rostral region of the lower beak 
encases that of the upper beak, and named 
the major regions internal and external 
laminae. The extreme tip of the upper beak 
is white, calcareous, dense, and resembles an 
arrowhead, and Owen (1832, p. 21) conjec-
tured that “certain fossils called Rhyncholites 
. . . . as appertaining to the Cephalopoda.” 
His study confirmed that these fossils had 
formed the calcareous tip of fossil nautilids. 
The beaks of Recent Nautilus are chitinous 
and their tips calcitic, the lower beak has 
a delicate calcareous covering termed the 
conchorhynch (Teichert ,  Moore ,  & 
Zeller, 1964). The rhyncholite and the 

Fig. 3. Drawings of single frames from a cine film looking toward esophagus of octopod Octopus vulgaris, after 
removal of rostra of beaks to show lateral buccal palps (l.b.p.) and radula within buccal cavity; some phases of cycle 

of movements of structures have been illustrated; scale unavailable (Nixon, 1968).
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concorhynch usually carry several rows of 
denticles on their oral surfaces in both fossil 
and living Nautilus (Saunders & others, 
1978). 

The beak of a giant squid, Architeuthis, 
was found within the buccal mass when it 
was washed ashore in the Kattegat in 1853 
and taken to Steenstrup, who gave a short 
description of it to The Natural History 
Society (1855), although illustrations of the 
beaks and details of his nomenclature did not 
follow until 1898. He termed the anterior 
projecting tip, the rostrum; the larger interior 
horny plate, the palatal plate; the smaller 
outer part, the frontal part; the upper internal 
part forming the floor of the cavity, the gular 
plate; the lower outer horny plate, the mental 
part; and the prolongations extending from 
the frontal part to the most anterior region of 
the gular plate, the wings (Volsøe, Knudsen, 
& Rees, 1962). After examining the buccal 
apparatus from several giant squids, Architeu-
this, and isolating the beaks, Verrill (1879, 
p. 204) adopted the nomenclature that was 
“essentially that used by Professor Steen-
strup.” Naef (1921) described the beaks of a 
coleoid and termed the tip of the upper beak 
the biting process, and the backward exten-
sion, the outer plate. Clarke (1962, 1986) 
listed the names given by these early authors 
to features of the beaks together with new 
terms that he introduced; the main features 
are shown with their nomenclature in Figure 
4. The upper beak has a rostrum, which is 
usually sharp and pointed with a downward 
curve and its anterior tip quite hard (Fig. 1). 
The outer side of the rostrum expands toward 
the posterior end of the beak to form the 
hood, and the inner side expands posteriorly 
to form the lateral walls and the crest. At each 
side of the hood is the wing, which is small in 
the upper beak. From the beak angle to the 
wing is the shoulder; this region usually forms 
a cutting edge and shows wear. The features of 
the lower beak are essentially the same as those 
of the upper beak, but they differ in their 
relative sizes. The rostrum of the lower beak 
is broader than that of the upper beak, which 
it accommodates when the beaks are closed. 

Fig. 4. Drawings illustrating main features of isolated 
upper (a) and lower (b) beaks of giant squid Architeu-
this, with 208 cm mantle length; nomenclature follows 

Clarke (1962, 1986) (new).

The hood is shorter from front to back in the 
lower beak than in the upper beak. The lateral 
walls are nearly flat and meet together at the 
crest, and the wings are notably much more 
developed than in the upper beak and extend 
beyond the free edges of the lateral walls. It 
was found that the lower beaks have features 
which allow the identification of cephalopods 
from isolated beaks recovered from the stom-
achs of predators, such as cetaceans (Clarke, 
1980, 1996), seals (Klages, 1996), seabirds 
(Croxall & Prince, 1996), and fishes (Smale, 
1996). Furthermore, Clarke (1980, 1986) 
demonstrated that measurements of isolated 
lower beaks made it possible to estimate the 
mantle length and body weight of coleoids 
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ingested by predators and calculate their 
biomass. In their morphometric analysis, 
Neige & Dommergues (2002) found that 
differences in coleoid beak shape reflect phylo-
genetic relationships.

The shape and form of the upper and 
lower beaks of the giant squid Architeuthis  
and coastal octopod Octopus vulgaris are 
shown in Figure 4. The lower beak of the 
coastal squid, Loligo forbesi (see Nixon, 
2011, fig. 15), and the lower beak of many 
living cephalopods were illustrated by 
Clarke (1962, 1980). In 1986, Clarke 
provided stereoscopic pictures of the lower 
beaks of 113 genera of cephalopods, some 
represented by several species. Clarke and 
Maddock (1988) suggested that the lower 
beak of the early coleoid developed from 
a beak similar in shape to the chitinous 
part of the lower nautiloid beak. Their 
brief analysis indicated a close relationship 
between the following pairs of families: 

Loliginidae and Sepiolidae; Architeuthidae 
and Thysanoteuthidae; Octopoteuthidae 
and Lepidoteuthidae; Onychoteuthidae and 
Pholidoteuthidae; and Enoploteuthidae and 
Lycoteuthidae. Fewer similarities were found 
among other families.

The beaks of coleoid paralarvae and 
hatchlings are often translucent and pale in 
color, but the rostral tips may be dark, and 
from here the darkening process spreads 
progressively over the hood and lateral 
walls to the wings, but the distribution and 
density varies. This darkening process was 
followed in the beaks of 18 species of Medi-
terranean cephalopods, and differences were 
found in the distribution of the pigmenta-
tion between species (Mangold & Fioroni, 
1966), and in ontogenetic series of Octopus 
vulgaris (Nixon, 1969, 1973), Psychroteuthis 
glacialis (Groeger, Piatkowski, & Heine-
mann, 2000), and Todaropsis eblanae, for 
which a scale for the darkening process was 

denticles on rostra

lip
upper beak

lower beak

10 µm

Fig. 5. Drawing from a scanning electron micrograph of mouth of newly hatched Octopus vulgaris, seen from in 
front, to show lips and rostrum with denticles on oral edge of upper and lower beaks (Nixon & Mangold, 1996).
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constructed (Hernandez-Garcia, 2003). 
The beaks also thicken progressively during 
life in all species, especially at the rostral-edge 
and shoulder (Clarke, 1980). Changes in 
the beaks have been followed during growth 
from embryo to maturity in Octopus vulgaris; 
at embryo stage XVII–XVIII, the beaks 
are translucent but subsequently darken 
(Nixon, 1969, 1973); and the oral surfaces 
of the upper and lower beaks of hatchlings 
have denticles (Fig. 5), which Boletzky 
(1971) noted on the beaks of teuthoids 
and octopods, and are also present in the 
pigmy squid, Idiosepius (Adam, 1986). The 
denticles are retained while the young octo-
puses are pelagic and living in the plankton, 
but the oral denticles are lost or resorbed by 
the time they settle on the sea bed and their 
beaks have distinct, thickened rostral tips. 
The denticles aid the young to capture and 
feed on larval crustaceans, such as shrimps 
and crabs, when in the plankton (Nixon & 
Mangold, 1996).

The buccal mass forms a notable propor-
tion of the embryo and its length can be 

expressed as a percentage of the mantle 
length in living coleoids; this diminishes 
with growth (see Nixon, 2011, fig. 12). 
The length of the buccal mass of some 
ammonoids was related to the shell diameter 
(Morton & Nixon, 1987; Nixon, 1988a). 
Jäger and Fraaye (1997) examined the diet 
of Harpoceras falciferum and summarized 
the remains present in the crop/stomach 
of some other well-preserved ammonites 
(Table 2). The buccal mass of the coleoid 
Dorateuthis syriaca forms 6.2% of the mantle 
length, and the crop or stomach of this fossil 
was found to include entire vertebrae and 
large rib segments from fish too large to 
ingest (Table 2). Thus it had reduced the 
fish to pieces small enough to pass along the 
esophagus; well-digested material, chyme, is 
present in a sac near the stomach (Fig. 6) 
(Lukeneder & Harzhauser, 2004). 

The prey of living coleoids is varied: small 
prey is ingested whole and larger prey reduced 
to small pieces. Debris in the stomach is often 
identifiable to genus and sometimes species 
(Tanabe & others, 2008). The coleoids feed 

Table 2. Stomach contents of fossil Coleoidea and Ammonoidea species; in addtion to Dorateuthis 
syriaca Woodward, 1883, stomach contents are known from numerous species of fossil Coleoidea.  
Coleoidea	 Crop or Stomach Contents

Late Cretaceous
Dorateuthis syriaca	 Fish remains, whole vertebrae, large rib segment (Lukeneder & 		
	 Harzhauser, 2004).

Ammonoidea	 Buccal Cavity Contents
Late Cretaceous 

Baculites sp. 	 Fragments of isopods adult and juvenile, planktotrophic gastropod shell,		
	 and crustacean fragments (Kruta & others, 2011).

Ammonoidea	 Crop or Stomach Contents 
Early Jurassic	

Hildoceras levisoni	 Jaw apparatus of small ammonites. Calcitic debris resembling 			
	 echinoderm stereom; another specimen has aragonitic shell debris 		
	 (Lehmann & Weitschat, 1973; Riegraf, Werner, & Lörscher, 1984).

Hildoceras serpentinum 	 Small aptychi (Riegraf, Werner, & Lörscher, 1984).

Harpoceras falciferum	 Mostly pereiopods of small decapod crustaceans, rarely abdomens or 		
	 telsons of the same crustaceans. Crustaceans (dead or exuviae?) remains 		
	 often concentrated in densely packed balls, 10–50 mm diameter, and 		
	 even filling much of body chamber indicating storage potential (Jäger & 		
	 Fraaye, 1997).

Arnioceras sp.	 Foraminiferans and ostracod shells (Lehmann, 1972).

Ammonoidea	 Crop or Stomach Contents

Triassic 	
Svalbardiceras spitzbergense 	 Many fragments of ostracods (Lehmann, 1985).
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Fig. 6. Examples of Late Cretaceous coleoids with remains of the digestive system; a, Dorateuthis syriaca, 
NHMW 1998z0105 (Naturhistorisches Museum Wien, Austria), upper Santonian, Sahil Alma, Lebanon, whole 
specimen, gladius length 97 mm, showing buccal mass, esophagus, and stomach containing food remains, 
scale bar, 10 mm (adapted from Lukeneder & Harzhauser, 2004); b, Glyphiteuthis libanotica, CRE034, upper 
Cenomanian–upper Santonian, Hakel and Hadjoula, Lebanon, dorsal view of upper and lower beaks, scale 
bar, 1 mm (Fuchs & Larson, 2011b); c–d, Dorateuthis syriaca, BHI5579 (Black Hills Institute, Hill City, South 
Dakota, USA), enlarged view of cranial cartilage (c) and posterior region (d), scale bars, 10 mm (adapted from 

Fuchs & Larson, 2011b).
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mostly on crustaceans, fish, and mollusks, 
and to a lesser extent on echinoderms, poly-
chaetes, siphonophores, chaetognaths, and 
other invertebrates (Table 3) (Nixon, 1987). 
A review of the early life of Octopus vulgaris 
showed that its newly hatched young are 

planktonic and prey upon zooae of crusta-
ceans of increasing size until the octopus 
settles on the sea floor, where it feeds on young 
crabs (Nixon & Mangold, 1996). Secretions 
of the salivary glands include a toxin, cepha-
lotoxin, which immobilizes a crab in less than 

Table 3. Recent Coleoidea. Material identified in the crop or stomach of wild-caught specimens.
Recent Coleoidea	 Crop or Stomach Contents

Decabrachia	
Spirulida

Spirula spirula	 Whole copepods and ostracods, and others half-digested (Nixon & 		
	 Young, 2003).

Teuthoidea		
Myopsida	 	

Loligo forbesi	 Fish vertebrae, lenses, otoliths, scales, coleoid beaks (Martins, 1982).

Loligo opalescens	 Prey in fragments, including fish scales, eyes, vertebrae, bones, 
	 dismembered crustaceans, and crania; beaks, radulae, suckers from 
	 squid of same species (Fields, 1965).
Oegopsida

Ommastrephes sloani	 Remains of fish, crustaceans, mollusks including Ommastrephes sloani 		
	 (Okutani, 1962).

Moroteuthis ingens	 Teleost fish, mostly myctophids; cephalopods, squids; crustaceans, 		
	 small amphipods and copepods (Phillips, Jackson, & Nichols, 2001).

Chiroteuthis imperator	 Remains of fish, crustaceans, and squid; and spectra of micronektonic 		
	 organisms (Kubota, Koshiga, & Okutani, 1981).

Gonatus fabricii 	 Juveniles took zooplankton, copepods, euphausids, a few pteropods,
	 and subadults-amphipods. (Nesis, 1965). 
	 Juveniles fed on amphipods, isopods, probably also prawns and
	 mysids. Vertebrae, ribs, fin rays, scales, and lenses from the fish,
	 capelin, Mallotus villosus; a change of prey took place and adults took
	 a larger percentage of fish and cephalopods, and fewer crustaceans
	 (Kristensen, 1984).

Octobrachia	 Crop or Stomach Contents
Octopoda

Incirrata
Octopus vulgaris	 Crustaceans including Brachyura, Anomura, Natantia, Isopoda,
	 Stomatopoda, Ostracoda, Amphipoda (Nigmatullin & Ostapenko,
	 1976). 

	 Scale worms (Budelmann & Nixon, 1984).

Bolitaena sp.	 Whole small copepods, bitten flesh from arms and other parts of
	 smaller bolitaenids (Nixon & Young, 2003).

Japetella diaphana	 Crustaceans, calanoids, euphausids and decapods, chaetognaths,
	 mollusks, and fishes (Passerella & Hopkins, 1991).

Argonauta boettgeri, A. argo	 Heteropods, pteropods; small fish have severed heads and flesh eaten;
  	 also feeds on gonads of jellyfish (Nesis, 1977; Beebe, 1926; Clarke &
	 Herring, 1971; Heeger, Piatkowski, & Möller, 1992).

Tremoctopus violaceous 	 Small fish, crustaceans, jaws and spicules of polychaetes (Nixon &
	 Young, 2003).

Ocythoe tuberculata	 Crustaceans, and bite-size pieces taken from sardines (Nixon &
              	 Young, 2003).
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30 seconds (Ghiretti, 1959, 1960). External 
digestion also occurs in Octopus vulgaris, as a 
crab retrieved 90 seconds after capture cannot 
be pulled apart, but after 27 minutes is easily 
dismembered, although it is limited to the 
arthrodial membrane and musculo-skeletal 
attachment mechanisms, as the exoskeleton 
separates at the joints and the muscles can 
be withdrawn from the appendages (Nixon, 
1984). Paralarvae of Octopus vulgaris left only 
whole empty skeletons of zooae belonging to 
three species of crab (Hernandez-Garcia, 
Martin, & Castro, 2000). Subsequently, 
this species increases the variety and size of its 
prey with growth (Smale & Buchan, 1981), 
and shows temporal and regional differences 
in feeding habits (Hatanaka, 1979). The 
features of the digestive system of Octopus 
vulgaris suggest it is sophisticated in its mode 
of capture and breakdown of its prey. 

BEAKS OF FOSSIL FORMS

An experiment followed the decay and 
fossilization of nonmineralized tissue of whole 
specimens of Recent coleoids, namely the 
squids Alloteuthis subulata and Loligo forbesi, 
and the sepiolid Sepiola atlantica, in sea water 
(Kear, Briggs, & Donovan, 1995). Degrada-
tion was recorded for periods from one day 
to fifty weeks, and the material examined, or 
sampled, at intervals. The process occurred 
at comparable rates in the soft tissues. After 
ten weeks, a few sucker rings remained recog-
nizable, and after fifty weeks, the beaks, 
parts of the radulae, crystals, and a mass of 
semi-liquid tissue survived. Disintegration 
of muscles was rapid and ultrastructural 
details lost in less than two days, although 
the tunic layers, intramuscular connectives, 
and the collagenous component of the muscle 
survived longer. Cells of the crest area of the 
upper beak retained some fine structure for 
more than four weeks, and in scanning elec-
tron micrographs the fibers appeared to insert 
directly onto the beak and seemed to form 
clumps 70–100 µm in diameter. Within these 
clumps were smaller bundles, 10 µm in diam-
eter, which could mimic the beccublast cells 
in Alloteuthis and Octopus (Dilly & Nixon, 

1976b) (see Nixon, 2011, fig. 16). The beaks 
survived with little alteration throughout the 
experiment. Individual fibers, about 2 µm, 
probably represent the fibrillar phase of the 
beccublast cells, rather than the mandibular 
muscles, and their survival may reflect their 
structural nature and the protected position of 
the buccal mass. The beaks, radulae, suckers, 
gladii, lenses, and statoliths proved more 
decay resistant (Kear, Briggs, & Donovan, 
1995), the first four being chitin-protein 
complexes (Table 1) (Hunt & Nixon, 1981). 
Several well-preserved Jurassic genera were 
examined: in Mastigophora the ultrastructure 
was seen in a continuous series of tissues 
from the outer tunic, through the mantle 
and gladius, to the muscular sheath of the 
digestive gland (see Nixon, 2011, fig. 28); 
and in Belemnotheutis the radial and circular 
muscle, the outer collagenous tunic, and the 
supporting meshwork of intramuscular fibers 
were preserved (Kear, Briggs, & Donovan, 
1995; and see Nixon, 2011, fig. 28). 

The buccal mass of fossil Cephalopoda 
can survive under special conditions of 
fossilization, but the beaks and radulae 
usually remain obscured by the mandibular 
muscles. Beaks of Nautiloidea (Saunders 
& Richardson, 1979) and Ammonoidea 
(Lehmann, 1967, 1981) occur most often, 
and those of Coleoidea rarely (Lukeneder 
& Harzhauser, 2004). The earliest record 
of a beak from a fossil coleoid was found 
by Quenstedt (1858) in a quarry near 
the village of Nusplingen, Germany, who 
preliminarily assigned it to Plesioteuthis 
prisca (Fig. 7a–c). The same specimen was 
examined by Naef (1922); it has a sharp 
rostrum darkened at the tip, a hood, deep 
lateral walls, and a long crest, and resembles 
the upper beak of living coleoids. 

Jurassic

Well-preserved fossil coleoids were discov-
ered in the Moltrasio Limestone Forma-
tion, lower Sinemurian, Lower Jurassic, in 
Osteno, Italy, some with partially preserved 
soft tissues; line drawings illustrate an upper 
and lower beak (Garassino & Donovan, 
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Fig. 7. Fossil isolated upper beaks of Plesioteuthis prisca, Upper Jurassic lithographic limestone slates, Nusplingen, 
southwestern Germany; a, drawing (Quenstedt, 1858); b, original specimen of Quenstedt (1859), GPIT QU1885 
(Geological Paleontological Institute, Tübingen) scale bar, 2 cm (new, photographs courtesy of Dirk Fuchs); c, ?Ple-
sioteuthis prisca, SMNS64603 (Staatliches Museum für Naturkunde, Stuttgart), scale bar, 1 cm (Klug & others, 2005, 
fig. 8A–B); d, reconstruction of specimen in part c (adapted from reconstruction in Klug & others, 2005, fig. 12B).

a

b

2000). More than 20 coleoid beaks have 
been recovered from the Nusplingen Quarry, 
Germany, Upper Jurassic (Kimmeridgian), 
and the finds included lower beaks and 
upper beaks (Fig. 8). In addition, a pair of 
associated structures was found and inter-
preted as a lower and upper beak of one 
individual, possibly Trachyteuthis hastiformis, 

with gladius (Klug & others, 2005). From 
the same site, a new specimen was identi-
fied as Plesioteuthis prisca, and comprised 
an upper beak with a gladius in situ, thus 
linking a specific form of beak to the species 
(Fig. 7d). This made reconstruction of the 
upper and lower beaks possible (Klug, 
Schweigert, & Dietl, 2010) and shows 

c

d
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Fig. 9. Trachyteuthis hastiformis, SMNS 65478 (Staatliche 
Museum für Naturkunde, Stuttgart, Germany), Jurassic, 
Germany, upper beak in lateral view, and lower beak from 

above, ×1.5 (Klug & others, 2005).

a

Fig. 8. Reconstructions of beaks; a, Trachyteuthis, lower 
beak; b, Leptotheuthis, upper beak (Klug & others, 

2005, fig. 11B, 12A).

a

b

The length of the lateral wall of one lower 
beak measures 29 mm, and of the upper 
beak 20 mm, the gladius being 268 mm. 
The lower beak displays the remains of the 
lateral wall and the hood. The rostrum and 
hood of the upper and lower beaks are dark-
ened, but this fades posteriorly. The upper 
beaks of other specimens of the same species, 
including the largest one, have smoothly 
rounded rostral tips; from these new speci-
mens it became possible to reconstruct both 
beaks (Klug & others, 2010). 

One large, complete, specimen from the 
same formation in the Nusplingen quarry 
was identified as Leptotheuthis gigas. It 
comprised a pair of fins, gladius, head, small 
eyes, funnel, and several arms, including 
cirri, all readily visible, although the beaks 
are faint (Fig. 10). An isolated upper beak, 
tentatively assigned to the same genus 
because of its large size, has a length of 19 
mm and height of 27 mm, but as it had 
settled at an oblique angle it is distorted; the 
rostrum is stout and darkened in some parts 
(Klug & others, 2005). 

Klug and others (2010) described the first 
belemnitid beak discovered, Hibolithes semi-
sulcatus, also from Nusplingen; it is a typical 
coleoid beak without evidence of a calcified 
rostrum as in nautiloids. Compared with coex-
isting gladius-bearing coleoids, both the upper 

the upper one to be like that illustrated by 
Quenstedt in 1858 (Fig. 7a). 

From the same formation at Nusplingen, 
four forms of lower beak and three of upper 
beaks were found. Their morphology and 
the association of beak pairs with a gladius 
characteristic of Trachyteuthis hastiformis 
allowed taxonomic assignment of the two 
beak forms (Fig. 9) (Klug & others, 2005). 
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and lower beaks of Hibolithes have a much more 
pointed rostrum, similar to Recent Decabrachia.

Cretaceous

The buccal mass is frequently preserved 
in the Upper Cretaceous Lebanon Lime-
stones, but coleoid beaks are poorly known 
(Fuchs & Larson, 2011a, 2011b). A spec-
imen of Dorateuthis syriaca, Plesioteu-
thidae Naef, 1921, Upper Cretaceous, 
Sahil Alma, Lebanon, has preserved soft 
tissues (Fig. 6a). The buccal mass has a 
well-defined beak, 6 mm in length, that 
curves to an anterior apical point. Behind 
the buccal mass, the esophagus emerges 
and leads to the stomach, both of which 
have a chitin lining; the stomach contains 
only fish remains, including entire verte-
brae and large rib segments from prey 
too large to be ingested whole (Table 2). 
The amount of food debris indicated it to 
be a voracious feeder. There is a region, 
slightly overlapping the stomach, with 
well-digested fragments, or chyme; this 
specimen has a gladius 97 mm in length 
(Lukeneder & Harzhauser, 2004, 2005). 
Fuchs  and Larson  (2011a) examined 
further specimens of Dorateuthis syriaca, 
from the Cenomanian-Santonian Platten-
kalks of Lebanon, that included the buccal 
mass, esophagus, and in some specimens 
a distinct cord, which passes through the 
cephalic cartilage (Fig. 6c). The position 
of the stomach is sometimes indicated by 

an accumulation of chopped fish, and one 
specimen preserves the cuticular lining of 
the stomach. The division of the stomach 
into two parts is confirmed and another 
specimen has a long band of undigested 
fish remains between the anterior mantle 
and the stomach.

Marine deposits from the North Pacific, 
Hokkaido, and Vancouver Island Upper 
Cretaceous yielded isolated and well-
preserved upper and lower beaks (Tanabe, 
Hikida, & Iba, 2006; Tanabe & others, 
2008; Tanabe & Hikida, 2010). The speci-
mens occurred individually in calcareous 
concretions and retain their original shape 
and form; they are composed of black 
carbonate apatite (Tanabe & others, 2008). 
Comparison of the lower beaks of fossil 
and living forms, especially the posteriorly 
projected inner lamella and the absence of 
an anterior calcareous tip, made it possible 
to refer the fossil beaks to the Coleoidea, 
Nanaimoteuthis jeletzkyi, family uncertain, 
and to Paleocirroteuthis haggarti and P. paci-
fica, suborder Cirrata (Tanabe & others, 
2008; Tanabe, 2012). A calcareous nodule, 
collected from Kamikinenbetsu Creek, 
Hokkaido, the Upper Cretaceous (Turonian) 
of Japan (Tanabe, Hikida, & Iba, 2006) 
contained an upper beak, 33 mm in length, 
with a well-developed lateral wall, and a 
sharply pointed rostrum, 18.2 mm in length. 
The genus and species to which the beak 
belongs has been assigned to Coleoidea, 

Fig. 10. Leptotheuthis gigas, SMNS 64923 (Staatliche Museum für Naturkunde, Stuttgart, Germany), Jurassic, Germany; a, 
lower and b, upper beak in oblique lateral views from moderately preserved specimen, scale in mm (Klug & others, 2005).

ba
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but order and family uncertain, and genus 
indeterminate (Fig. 11a–b). 

A nodule recovered from Wakkawenbetsu 
Creek, Upper Cretaceous, Campanian, of 
Hokkaido, Japan, revealed an almost complete 
upper beak of black horny material. The 
beak is 97 mm in length, with a lateral wall 
22.5 mm in length; the rostrum is sharply 
pointed, the hood is 56.2 mm in length, 
and the wing is well developed, with a 
length of 50.4 mm. Its size is comparable 
with that of the living giant squid, Archi- 
teuthis sp., and it was placed in the Teuthida, 
Oegopsida, but of uncertain family, as a new 
species, Yetzoteuthis gigantus Tanabe, Hikida, 
& Iba, 2006 (Fig. 11c–d). 

A concretion from the Upper Creta-
ceous, lower Campanian, from Vancouver 
Island, Canada, contained a lower beak with 
a large outer lamella and relatively short 
inner lamella; both are of a black material, 
probably originally of chitin (Fig. 12a). 
The hood covers 75% of the crest when 
viewed in profile. The rostrum is distinct, 
with a point. The maximum length of the 

beak is 54.0 mm. By comparing the diag-
nostic features of the lower beaks of living 
cephalopods it was possible to place the 
fossil with the Coleoidea, order Vampy-
romorpha, and assign it to a new species, 
Nanaimoteuthis jeletzkyi Tanabe & others, 
2008, family uncertain. Tanabe and Hikida 
(2010) described a new species, Nanaimoteu-
this yokotai, Upper Cretaceous, Turonian, 
from two lower beaks found in Hokkaido, 
Japan, and placed in the Vampyromorpha. 
The inner and outer lamellae are of equal 
length, and the maximum length is 63.7 
mm; this is larger than that of N. jeletzkyi, 
indicating a larger body size. Lower beaks 
of Nanaimoteuthis and Paleocirroteuthis, 
38–110 mm maximum length, are also large 
compared with those of living vampyro-
morphs and cirrates, respectively.

In the same formation, another concretion 
was found containing a lower beak. The beak 
has a large, thick outer lamella covering 65% of 
the crest in profile; the inner lamella is longer 
and presumably both were originally of chitin. 
The rostrum has a sharp tip and the beak angle 

b

c

d

a

Fig. 11. a–b, genus and species indeterminate (MM 28665, University Museum, University of Tokyo), middle 
Turonian, Obira, northwestern Hokkaido, Japan, incomplete upper jaw, left lateral (a) and dorsal (b) views, scale 
bar, 10 mm; c–d, Yetzoteuthis gigantus (NMA-335, Nagasaki Museum Natural History), Teuthida, Campanian, 
Nakagawa, northern Hokkaido, Japan, left lateral view of an almost complete upper beak (c) and dorsal view (d), 

scale bar, 10 mm (Tanabe, Hikida, & Iba, 2006).
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is obtuse. Comparison of the lower beak of this 
fossil with those of living forms led to its assign-
ment to a new genus and species, Paleocirroteu-
this pacifica (Fig. 12b), and a second specimen 
with similar features to Paleocirroteuthis haggarti, 
both species of the order Octopoda, suborder 
Cirrata (Tanabe & others, 2008).

Miocene
One upper beak and three lower beaks of 

sepiolid coleoids, from the middle Miocene, 
were collected in Voslau, Austria. The upper 
beak, 4.1 mm in length, is poorly preserved 
and consists of the rostrum, crest, and parts 
of the hood (Fig. 13a). The rostrum and 
hood are largely pigmented, with only the 
posterior edges being clear but yellowish; 
the crest is amber colored and lacks dark 
pigmentation. In the best preserved of the 
three lower beaks, the rostrum, hood, and 
almost complete wings survive, although the 
posterior edge of the hood-wing complex 
shows damage (Fig. 13b). The rostrum and 
a narrow area close to the beak angle displays 
darkening, whereas the wings and crest are 
pale. The rostral edge is nearly straight with 
a small tip, and the narrow, elongated wing 
broadens toward the inner end. The general 
features of the upper and lower beak are 
coleoidlike and considered to show similarity 
with those of modern decabrachian sepiolids 
(Harzhauser, 1999).

Fig. 12. Lower beaks of fossil Coleoidea. a, Nanaimoteuthis jeletzkyi, CDM 2006.1.1 (Courteney and District 
Museum and Paleontology Center, Vancouver Island, Canada), Cirrata, lower Santonian, Hokkaido, Japan, right 
lateral view (Tanabe & others, 2008); b, Paleocirroteuthis pacifica, CDM 2006.2.1, Cirrata, lower Campanian, 

Pender Formation, (Tanabe & others, 2008).

RADULA
Recent Coleoidea

The radula is a characteristic feature of the 
buccal apparatus of the phylum Mollusca. 
The morphology and histology of the buccal 
masses of living coleoids—Sepia, Hetero-
teuthis, Alloteuthis; Teuthowenia, Leachia, 
Vampyroteuthis, Cirrothauma, and Octopus—
were described by Nixon and Young (2003). 
The radular apparatus of living Nautilus, its 
ontogeny, breakdown, and resorption of the 
radular teeth, was described by Messenger 
and Young (1999). 

The radula is a chitin-protein complex 
(Table 1), and, in Recent Cephalopoda, 
is an elongated ribbon bearing teeth that 
are regularly arranged to form transverse 
and longitudinal rows (Fig. 14).  The 
radula is formed within the radular sac 
(Raven, 1958), which lies at the back of the 
buccal mass and below the esophagus (see 
Nixon, 2011, fig. 13). Teeth are added to 
the ribbon continuously by odontoblasts, 
which lie at the blind end of the radular 
sac; the rachidian (central) tooth is formed 
first, followed by the teeth on either side 
in mediolateral order (Williams, 1909). 
The ribbon is wider and the teeth larger as 
they emerge from the radular sac and the 
radula proceeds forward to the front of the 
radular complex, where it turns acutely 

10 mm
ba 10 mm
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and ventroposteriorly at the bending plane 
(Fig. 1) (see Nixon, 2011, fig. 13). The 
teeth emerging from the sac are larger than 
the preceding ones; this is illustrated in 
the oegopsid squid, Teuthowenia megalops 
(Dilly & Nixon, 1976a), and the coastal 
octopod, Octopus vulgaris (Nixon, 1968). 
As the radula approaches and passes the 
bending plane, the teeth may display wear 
and degradation; it terminates near the 
subradular gland (Fig. 1) and the teeth lost 
or resorbed, presumably as a result of the 
action of the enzymes secreted by the gland 
(Nixon, 1998b).

The elements in each transverse row are 
repeated in number, shape, and form in 
the preceding and succeeding rows and are 
named from the center to the periphery 
(Table 4). The radula of Recent Nautiloidea 
is wide, and each transverse row has thir-
teen elements; these comprise the rachidian 
tooth with, on each side, two lateral teeth, 
a marginal tooth and marginal plate, and a 
second marginal tooth and plate; the number 
of elements is constant (Fig. 15a). If the two 
outer elements on each side are omitted, 
then the names for the central nine elements 
can be retained for those radula of fossil 

b

a

Fig. 13. Sepiolida, middle Miocene, Voslau, Austria; a, NHMW 1999z0050/0001 (Museum of Natural History, 
Wien, Austria), upper beak, lateral view, ×33; b, NHMW 1999-z0050/0050/0002, lower beak, oblique lateral 

view, ×27 (Harzhauser, 1999).
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and living Coleoidea (Fig. 15b–d), namely 
a rachidian tooth, two lateral teeth, one 
marginal tooth, and one marginal plate on 
each side; the marginal plates may be present 
or absent, depending upon the species. There 
are some exceptions. For example, in Spirula 
spirula, the radula is vestigial (Kerr, 1931), 
but notably the lateral buccal palps bear 
a very thick cuticle with numerous stout 
teeth (Nixon & Young, 2003). Several 
species of the genus Gonatus have only five 
teeth in each transverse row (Sars, 1878; 
Kristensen, 1981b), and in some deep-sea 
octopods the radula may be present, reduced, 
or absent (G. L. Voss, 1988b). Radular 
teeth exhibit wear as they reach and pass 
the bending plane (Fig. 14). The ribbon 
and its elements terminate as they reach the 
subradular organ (Young, 1965) in which 
there are cells formed from modified odon-
toblasts (odontoclasts). These cells act to 
dissolve the elements of the radula and absorb 
the debris (resorbtion) in the subradular sac; 
they were described in Nautilus and Octopus 
by Messenger and Young (1999). The 
nomenclature makes it possible to represent 
the elements of the radula of Cephalopoda by 
a formula, using abbreviations for each tooth 
and marginal plate (Table 4); such a formula 
permits comparisons and allows modifica-
tions to represent other features of the teeth 
as they are recognized (Nixon, 1995). 

Three types of radula are recognized among 
extant coleoids (Fig. 15b–d). The most 

Table 4. The names and abbreviations for 
the radular elements in a single row of teeth;  
radichian (central) tooth, with the lateral 
teeth, marginal teeth, and marginal plates on 
one side of the ribbon (Nixon, 1995, 1998b).

Radular element	 Abbreviations

Rachidian (central) tooth	 R
Lateral tooth 1	 L1
Lateral tooth 2	 L2
Marginal tooth 1	 M1
Marginal plate 1	 MP1
Marginal tooth 2	 M2
Marginal plate 2	 MP2

c

b

a

Fig. 14. Recent Loligo vulgaris, a coastal squid, mantle 
length 250 mm, weight 75 g; radula has been isolated and 
flattened and is 7.91 mm long, with fifty-one transverse 
rows of teeth; a, newly formed teeth within and just 
beyond radula sac; b, distal end of radula with oldest and 

smallest teeth; c, region of the bending plane (new).
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common is the heterodont radula, in which 
there is an ectocone (cusp) on the mesocone, 
or main cusp, of the rachidian tooth, and 
usually also on the first lateral teeth. The 
second is the homodont radula, in which the 
teeth have but a single cusp, and the third is 
the ctenodont radula, in which all of the teeth 
are multicuspid. In the heterodont radula 
of some octopods, the mesocones of the 
rachidian teeth bear ectocones whose position 
alters in a sequential manner. This phenom-
enon was observed in the 19th century but 
only described in the 20th century by Robson 
(1925), who recognized two forms that he 
termed symmetric and asymmetric seriation. 
In symmetric seriation, ectocones occur on 
one mesocone, then on the following third 
and fifth ones, continuing in the same order. 
In asymmetric seriation, successive rachidian 
teeth have ectocones on either side of the 
mesocone, and their position is repeated in 
groups; the ectocones shift downward and 

outward on the mesocone of a series of rows 
until becoming outermost, when the series 
begins again (Naef, 1923). Seriation was 
considered by Robson (1925) to be unique 
among Octopodinae but has since been found 
in four species of a small pygmy squid, Idiose-
pius (Adam, 1986).

Fossil Radulae

The first radula recognized to belong to 
a fossil cephalopod was that of Glaphyrites 
(Eoasianites), a Permian ammonoid, which 
has nine elements in each transverse row 
(Table 5) (Closs & Gordon, 1966; Closs, 
1967). Radulae were then sought in other 
Ammonoidea (Lehmann, 1981, 1990; Klug 
& Jerjen, 2012); most of those found so far 
have seven teeth and two marginal plates 
(although in some it is not certain whether 
they are present or absent). A partial recon-
struction of an orthocerid radula, Michelino- 
ceras, indicates seven teeth in each transverse 

M1 L2 L1

MP2
M2

MP1
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MP1
M1 L2
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d

Fig. 15. Recent Cephalopoda; teeth present in one transverse row of radula of a, Nautilus (Nautiloidea), b, Octopus, 
Octopoda (heterodont), c, Japetella, Octopoda (ctenodont), and d, Sepia, Sepioidea (homodont); see Table 4 for 

explanation of abbreviations (adapted from Nixon, 1995).
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row (Mehl, 1984). An unidentified ortho-
cone, from the Upper Ordovician Soom Shale, 
has four or five elements, although other 
elements may have been obscured during 
fossilization, but no marginal plates are present 
(Gabbott, 1999). Two isolated radulae from 
Mazon Creek, upper Carboniferous, closely 
resemble those of Recent Nautilus, although 
they could not be related directly to the nauti-
loids present. A ten-armed squid was present, 
including its radula, together with another 
individual (Saunders & Richardson, 1979), 
and both have been redescribed (see below) 
(Doguzhaeva, Mapes, & Mutvei, 2010a). 
The radula of endocochleate cepahlopods 
has little chance of surviving the process of 
fossilization in the absence of an external shell. 
Currently, the radulae of both fossil coleoids 
so far described (Doguzhaeva, Mapes, & 
Mutvei, 2010a) have eleven elements in each 
transverse row (Fig. 16; Table 5). A radula has 
been exposed in one belmnoid, Acanthoteu-

this, Upper Jurassic, Fossillagerstatte, south-
western Germany (Klug & others, 2011), 
and it resembles those of Recent Coleoidea. 
The paucity of coleoid radulae in the fossil 
record makes it useful to include the formulae 
of those of Nautiloidea, Orthocerida, and 
Ammonoidea currently known, allowing 
comparison between some Recent and fossil 
forms (Table 5). In the early stages of coleoid 
evolution, a radula with eleven elements 
(seven teeth and four plates) may have been 
derived from the nautiloid radula, which has 
thirteen elements (seven teeth, four marginal 
teeth, and four marginal plates) by resorbtion 
or loss of marginal tooth 2 (Fig. 15).

Two fossils from Mazon Creek, Illinois, 
United States, Carboniferous, Middle Penn-
sylvanian, were assigned to the Jeletzkya 
douglassae by Saunders and Richardson in 
1979, but new data on the morphology of 
the shell, radula, arm hooks, mantle muscle 
tissue and traces of ink in two specimens (PE 

Table 5. Formulae for the elements of the radulae of some living and fossil forms; see Table 4 
for abbreviations.

	         Genus	           Formula	           Reference

Fossil Cephalopoda 
  Unnamed coleoid	 coleoid	 R+L1+L2+M1+MP1+MP2	 Doguzhaeva, Mapes, & 			 
			   Mutvei, 2010a
  Donovaniconida	 Saundersites illinoisiensis	 R+L1+L2+M1+MP1+MP2	 Doguzhaeva, Mapes, & 			 
			    Mutvei, 2010a
  Nautiloidea	
   Nautilida	 Paleocadmus herdinae	 R+L1+L2+M1+MP1+M2+MP2	 Saunders & Richardson, 1979
   Nautilida 	 Paleocadmus pohli	 R+L1+L2+M1+MP1+M2+MP2	 Saunders & Richardson, 1979
  Ammonoidea	 	 	
   Goniatitida	 Girtyoceras limatum	 R+L1+L2+M1+MP1	 Doguzhaeva , Mapes, & 			
			   Mutvei, 2010a
   Goniatitida	 Glaphyrites (Eoasianites)	 R+L1+L2+M1	 Closs & Gordon, 1966
   Ammonitida	 Eleganticeras	 R+L1+L2+M1	 Lehmann, 1981
   Ammonitida	 Dactylioceras	 R+L1+L2+M1	 Lehmann, 1981
   Ammonitida	 Arnioceras	 R+L1+L2+M1	 Lehmann, 1981
   Ammonitida	 Aconeceras trautscholdi	 R+L1+L2+M1+MP1	 Doguzhaeva & Mutvei, 1992
   Ammonitida	 Baculites sp.	 R+L1+L2+M1+MP1	 Kruta & others, 2011

Recent Cephalopoda 
  Nautiloidea	 Nautilus	 R+L1+L2+M1+MP1+M2+MP2	 Nixon, 1995
  Spirulidea	 Spirula spirula	 Teeth absent from radula	 Kerr, 1931
  Oegopsida	 Thysanoteuthis rhombus	 R+L1+L2+M1	 Naef, 1923
  Oegopsida	 Teuthowenia megalops	 R+L1+L2+M1+MP1	 Dilly & Nixon, 1976a
  Oegopsida	 Gonatus fabricii	 R+L1+M1	 Sars, 1878; Kristensen, 1981b
  Myopsida	 Loligo vulgaris	 R+L1+L2+M1+MP1	 Adams, 1954
  Sepioidea	 Sepia officinalis	 R+L1+L2+M1	 Robson, 1924
  Vampyromorpha	 Vampyrotheuthis infernalis	 R+L1+L2+M1	 Pickford, 1949
  Octopoda, Cirrata	 Grimpoteuthis	 R+L1+L2	 G. L. Voss, 1988b
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32521 [holotype], PE 20808 [paratype]), led 
Doguzhaeva, Mapes, & Mutvei (2007) to 
redescribe them as Saundersites illinoisiensis, 
Donovaniconidae, order Donovaniconida. 
This is the earliest coleoid radula yet described, 
and each transverse row has eleven elements 
with two adjacent marginal plates on each 
side of the teeth (Fig. 16a; Table 5). The shell 
length of PE 32521 is 56 mm, the radula about 
3.5 mm long and 2.5 mm wide, with some 
thirty transverse rows of teeth visible. The 
central, rachidian tooth, distinguished by its 
position in a transverse row and symmetrical 
shape, is about two and a half times shorter 
than the marginal teeth; it has a broad, stout 
basal region, and triangular upper part with 
an apical point. On either side of the seven 
teeth there are two adjacent marginal plates, 
with marginal plate 1 adjacent to marginal 
tooth 1 (Fig. 16a). The lateral teeth are poorly 
preserved and cannot be described in detail. 
The marginal tooth is tall, curved backwards 
and its apex pointed, the basal portion is wide.

A concretion, recovered from the Eudora 
Shale, Oklahoma, United States, upper 
Carboniferous, Missourian, is known only 
from its radula, arm hooks, and possible 
debris of cranial cartilage, and is unnamed 
(Doguzhaeva, Mapes, & Mutvei, 2010a). 
Some parts of the radula are more completely 
preserved than others. There is a symmet-
rical, rachidian tooth with a broad, stout, 
basal portion, and an upper part that is 
triangular, with an angle of 35 degrees, 
and reaches an apical point. On either side 
there appear to be two, slightly taller lateral 
teeth, and two, tall, asymmetrically curved 
marginal teeth with apical points. This 
radula has 11 elements in each transverse 
row with 2 adjacent marginal plates on each 
side of the teeth (Fig. 16b; Table 5).

DRILLING AND FEEDING IN 
RECENT AND FOSSIL OCTOPODS

Cavities made by living octopuses in the 
exoskeletons of their prey are ovoid to sub-
circular in shape, with a diameter of 0.8 to 
4.0 mm on the surface that tapers to 0.3 to 
1.57 mm at the point of penetration (Nixon 

& Maconnachie, 1988). Living “species of 
several genera of octopus occupy the summit of 
the trophic pyramid as top carnivore of marine 
benthic communities throughout the world’s 
seas and oceans” (Bromley, 1993, p. 167). 

The steps taken from first sighting the 
prey to capture and ingestion can be followed 
in the species for which there is most avail-
able evidence, Octopus vulgaris. It detects 
its prey visually (Boycott, 1965), and a 
juvenile octopus can reach it in 3.8 seconds 
in the laboratory (Maldonado, 1963). The 
captured prey is enveloped within the inter-
brachial web and held by the arms and suckers 
(Boycott, 1965). Tens of thousands of 
morphologically distinct receptors are present 
on each sucker, including chemo- and mecha-
noreceptors (Graziadei, 1964, 1971), as well 
as numerous putative receptors on the slender 
terminal tips of the arms (Nixon & Young, 
2003, fig. 31.7). The muscles of the arms 
and suckers (Graziadei, 1971) manipulate 
the prey into a position in which the octopus 
can attempt to open a bivalve or withdraw the 
body of a gastropod. O. dierythraeus will also 

Fig. 16. Fossil Coleoidea, rachidian (central) tooth (R) 
and those of the right side of a transverse row of teeth of 
radulae; see Table 4 for explanation of abbreviations; a, 
unnamed coleoid, PE20808 (Field Museum of Natural 
History, Chicago), upper Carboniferous, Eudora Shale, 
Oklahoma, USA; b, Saundersites illinoisensis, PE 32521 
(Field Museum of Natural History, Chicago), upper 
Carboniferous (Moscovian), Mazon Creek, Illinois, 
USA (adapted from Doghuzhaeva, Mapes, & Mutvei, 

2007, 2010a).
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initially attempt to pull a bivalve apart and 
spend more energy to access the flesh quickly 
before it will drill (Steer & Semmens, 2003). 
If O. vulgaris fails to gain access, then it sites 
the buccal mass over the musculo-skeletal 
attachments of the prey (Nixon & Macon-
nachie, 1988; Fiorito & Gherardi, 1999), 
as does O. rubescens (Anderson, Sinn, & 
Mather, 2008). O. vulgaris preys on crusta-
ceans, which it will drill over or close to the 
large adductor muscle of the chela (Mather 
& Nixon, 1995), or drill their joints (Altman 
& Nixon, 1970); another octopod, Eledone 
cirrhosa, will puncture the eye (Grisley, 
Boyle, & Key, 1996). 

After penetrating the exoskeleton, the 
saliva from the paired posterior salivary 
glands, which lie behind the head, can be 
introduced through the duct. The saliva 
includes a toxin, cephalotoxin, which rapidly 
subdues the prey (Ghiretti, 1959, 1960; 
Songdahl & Shapiro, 1974; Cariello & 
Zanetti, 1977). The paired anterior salivary 
glands, in the lateral buccal palps, secrete 
mucus (Gennaro, Lorincz, & Brewster, 
1965) and other substances including hyal-
uronidase (Romanini, 1952), One, or both, 
sets of glands, together with the radula and 
radular complex, are involved in excavating 
the prey. 

The microstructure of the molluscan shell 
is formed of calcite prisms (Mohs scale of 
hardness 3), aragonite tablets (Mohs scale 
of hardness 3.5–4), and organic matrix. 
It is well organized when the fracture face 
is seen at high magnification in a scan-
ning electron microscope (SEM). Ambrose, 
Leighton, and Hartwick (1988, p. 491) 
suggested “that Octopus dofleini employs 
chemical dissolution of the shell during 
drilling.” After being subjected to the actions 
of the octopus’s saliva, radula, and radular 
complex, the fracture surface of the shell 
shows disorganization, dissolution and 
etching of the tablets and prisms when seen 
at high magnification with the SEM (Nixon, 
Maconnachie, & Howell, 1980). 

Hydrophones recorded sounds from 
Octopus vulgaris that were attributed to its 

drilling activities (Arnold & Arnold, 1969; 
Wodinsky, 1969). The radular teeth at and 
beyond the bending plane are often worn 
(Nixon, 1998b), indicating their involve-
ment in drilling, at least in the early stages. 
However, the radula is often too wide to reach 
the bottom of the cavity and penetrate the 
shell (Nixon, 1979), but the eversible tip of 
the posterior salivary gland—with its many 
chitinous denticles, 40 μm in height at the 
tip, and small denticles, 15 μm in height, 
packed around its base—could complete the 
excavation (Nixon, 1979, 1980). However, 
these denticles are not as hard as the prisms 
and tablets of the molluscan shell (chitinous 
radulae of topshells and winkles have a hard-
ness of 2.0–2.5 on Moh’s scale (Crothers, 
2001) and may produce vibrations rather 
than sounds from the interaction of either the 
muscle attachments or the prisms and tablets.

The shape and form of the holes drilled 
by living octopuses in the exoskeletons of 
their prey have a number of characteristic 
features, some being visible in the light 
microscope, but examination at very high 
magnification with a SEM is necessary 
to confirm that the activities are due to 
octopods. These features result from the 
actions of the radular complex and salivary 
glands on the mineral and organic material 
of the exoskeletons of mollusks and crusta-
ceans (Nixon & Maconnachie, 1988), and 
include the following.
1. The drill holes are usually associated 

with the region of attachment of muscles 
to the exoskeleton; the myostracum in 
bivalves, the spire and area close to the 
columella in gastropods (often on the 
opercular side); and in shells in which 
the columella is short or absent and 
the final whorl is large, distribution is 
random. 

2. The innumerable receptors of the arms 
and suckers (Graziadei, 1964, 1971) are 
presumably involved in the location of 
drill sites. 

3. Holes drilled in crustaceans: in carapace, 
0.4–1.0 mm to 0.7–2.0 mm, on the 
internal and external surfaces, respec-
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tively (Guerra & Nixon, 1987); in the 
chelae 0.1–0.8 mm to 0.5–1.8 mm, on 
the internal and external surfaces, respec-
tively (Mather & Nixon, 1995). Another 
octopod, Eledone cirrhosa, punctures the 
eye of its crustacean prey (Grisley, Boyle, 
& Key, 1996).

4. The surface is ovoid or subcircular, with 
or without a lip, sometimes surrounded 
by a sheen. 

5. The external surface although small, 
0.21–1.57 mm, is larger than the penetra-
tion point, 0.26–0.73 mm.

6. The walls slope, with the angle depending 
on thickness or the mineral and structural 
form of the shell, and may be stepped. 

7. The properties of the mollusk shell are 
important in determining the shape, 
form, and size of the cavities drilled.

8. Effect of the radular teeth, radula 
complex, and saliva, on the exoskeletons 
of mollusks and crustaceans, is visible 
with the light microscope, but it can only 
be confirmed with the SEM. 

Cavities Drilled by Fossil Octopods

The characteristic features of cavities drilled 
by Recent octopods in mollusk shells and 
crustacean exoskeletons are closely similar to 
those found in fossils from the Early Miocene, 
Pliocene, and Pleistocene. The habits of octo-
pods, as well as the organs involved in all of the 
processes from capture to ingestion (described 
above), must have been established early. 

There are two major groups of fossils, trace 
fossils and body fossils. Trace fossils “are struc-
tures produced by the activity of organisms in 
unconsolidated sediment or hard sediments” 
(Bromley, 1981, p. 55) and represent an inter-
action between organisms and their substrates.

The exoskeletons of fossil mollusks and 
crustaceans have been found with small 
cavities, and these have been termed trace 
fossils or ichnofossils. Those with cylindrical 
holes and straight sides were named Oichnus 
simplex Bromley, 1981, and the ones that are 
ovoid in shape at the surface and taper to the 
point of penetration were named Oichnus 
ovalis Bromley, 1993.

A collection of 267 disarticulated valves of 
the lower Eocene bivalve Venericor clarendo-
nensis included 38 specimens that had been 
penetrated by holes (0.70 mm to 2.14 mm 
diameter on the surface, tapering to 0.48 
mm to 1.83 mm at the entry point), concen-
trated over musculo-shell attachment sites 
(Todd & Harper, 2011). Numerous shells 
of Pecten jacobaeus from the Pliocene have 
an ovoid cavity at the surface, 0.46 mm by 
0.74 mm, which tapers to 0.17 mm by 0.27 
mm at the point of entry (Bromley, 1993). 

Pliocene sessile acorn barnacles were exam-
ined, and a drill hole found with an outer 
diameter of 0.74 by 0.46 mm and penetra-
tion hole of 0.27 by 0.17 mm (Klompmaker, 
Portell, & Karasawa, 2014). Many scallops 
from Plio-Pleistocene shell beds have holes of 
0.80 mm to 1.60 mm on the surface, mostly 
located between ribs on the so-called upper 
left valve, opening directly into the adductor 
myostracum (Harper, 2002). Comparison of 
the features present in cavities drilled by living 
octopuses in mollusk shells, visible with the 
light and at very high magnification in the 
SEM, shows that the effects of the radula, 
radular complex and salivary glands are strik-
ingly different from those on fracture surfaces 
(Nixon, Maconnachie, & Howell, 1980). 
Notably, the cavities found in fossil shells 
have features that are closely similar to those 
in the shells drilled by living octopuses, and 
thus the internal organs of Recent octopods 
were almost certainly present and functional 
in the fossil ancestors of octopods.

DISCUSSION
The description and subsequent recon-

struction of the beaks of ammonoids since 
the 1960s indicate variation in the presence 
or absence of calcitic parts, shape and form, 
and size differences between the upper and 
lower beaks (Lehmann, 1981; Tanabe & 
Fukuda, 1999). The upper and lower beaks 
are visible in the fossil coleoid, Dorateuthis 
syriaca (Lukeneder & Harzhauser, 2004).

From Nusplingen, Germany, specimens 
with upper and lower beaks, which represent 
the Nautiloidea, Ammonoidea, and Coleoidea, 
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have been described and reconstructed (Klug 
& others, 2010). Beaks of ammonoids, from 
the Carboniferous to the Cretaceous, are 
best known, and exhibit differences in shape 
and form, size, presence or absence of associ-
ated calcitic structures, inner lamella shorter 
or longer than outer lamella; most of these 
changes appear to occur in the lower beak, 
notably the disparity in length between the 
upper and lower beak (Lehmann, 1981, 1990; 
Nixon, 1996; Tanabe & Fukuda, 1999). In 
some ammonites, the lower beak is notably 
larger than the upper beak and a calcified 
protective covering is present in a few, for 
example Hildoceras. It is feasible that these 
ammonites could have ingested a large volume 
of seawater only to expel the fluid from the 
buccal cavity later, and retain the prey.

Electron micrography of fossil cepha-
lopods has revealed muscle tissues (e.g., 
Kear, Briggs, & Donovan, 1995). The 
muscle scars of Aconeceras indicate strong 
retractor muscles to the head and funnel, 
and small scars a complex muscular system 
(Doguzhaeva & Mutvei, 1991, 1993). The 
spherical buccal apparatus with the beak, 
esophagus and crop/stomach are visible in 
Dorateuthis syriaca (Fig. 6b) (Lukeneder 
& Harzhauser, 2004), and the cephalic 
cartilage, and cuticular wall of the stomach, 
recognized in further specimens (Fuchs & 
Larson, 2011a; Lukeneder & Harzhauser, 
2004). Such special conditions for preserva-
tion of soft parts occur in the lithographic 
limestone, Upper Jurassic, Kimmeridgian, 
of Nusplingen Quarry, Germany (Klug & 
others, 2010); Upper Cretaceous, upper 
Santonian, in Sahil, Lebanon (Lukeneder 
& Harzhauser, 2004); and in Upper Creta-
ceous, upper Cenomanian, of Hâqel and 
Hâdjoula, Lebanon, (Fuchs & Larson, 
2011b; Fuchs, Bracchi, & Weis, 2009). 

The morphology of the buccal mass, 
muscle attachments, and secretory tissue, is 
little known because of the rarity of pres-
ervation of soft tissues in fossils, making 
morphological changes difficult to ascertain 
since these tissues leave little or no trace. 
In the living coleoids Octopus bimaculoides, 

Sepia officinalis, and Loliguncula brevis, three 
muscles (the anterior, posterior, and superior 
mandibular muscles) connect the upper 
and lower beaks, and the lateral mandibular 
muscles originate on the connective sheath 
surrounding the buccal mass but do not 
connect with the lower beak (Uyeno & Kier, 
2005, 2007). Attachment of mandibular 
muscles to the beak of living coleoids is via a 
layer of beccublast cells, which leave imprints 
(see Nixon, 2011, fig. 16) (Dilly & Nixon, 
1976a); similar imprints have been found 
on the beaks of the ammonites Girtyoceras 
(Doguzhaeva, Mapes, & Mutvei, 1997), 
and Gaudryceras (Tanabe & Fukuda, 1983, 
1999). 

Clarke (1962, 1980, 1986) found that 
the lower beaks of living coleoids have char-
acteristic features useful for identification. 
However, Clarke and Maddock (1988, 
p. 123) commented that “no great differ-
ences in the food are known which would 
seem likely to account for the differences in 
lower beak shape;” the capture of prey by the 
tentacles, and its breakdown by the cutting 
or shearing actions of the beaks is probably 
similar amongst most squids (see Table 3). 
The salivary glands of several cephalopods, 
including Octopus vulgaris, secrete a toxin, 
cephalotoxin, which subdues captured crabs 
(Ghiretti, 1959, 1960), and an enzyme, 
which acts to separate the exoskeleton so that 
only soft tissues are ingested (Nixon, 1984). 
Experimental evidence indicates that loss of 
the rostrum of the lower beak reduces food 
intake (Altman & Nixon, 1970). 

Survival of the crop and/or stomach 
and their contents in some fossils suggest 
predatory habits. The beak of the coleoid, 
Dorateuthis syriaca (Fig. 7b), has sharp 
rostra, reminiscent of living coleoids, and 
its prey is relatively large as the crop/stomach 
contents include whole vertebrae and long 
rib segments (Table 2) (Lukeneder & 
Harzhauser, 2004, 2005). Living coleoids 
prey mostly on crustaceans, fish, and cepha-
lopods and their young ingest whole small 
prey (Table 3). Ammonoids took small prey 
and ingested it whole (Table 2). 
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The esophagus of the open-sea octopods, 
Japetella diaphana, Tremoctopus violaceous, 
Argonauta argo, Haliphron atlanticus, and 
Ocythoe tuberculata is wide, with a rela-
tively thick lining of chitin, sometimes 
even laminated (Nixon & Young, 2003). 
Such a lining presumably acts to protect the 
digestive tract and the surrounding central 
nervous system from sharp exoskeletal mate-
rial. The thin chitin lining of the esophagus 
of Octopus vulgaris usually protects the 
surrounding tissues, but serial sections of 
brains included setae from the polychaete 
Hermione hystrix; setae were also found near 
the brain and between the digestive tract and 
posterior salivary gland duct (Budelmann & 
Nixon, 1984).

The radulae of eighty-three living cepha-
lopods have been examined; these specimens 
represent only about 8% of the currently 
known 650 living species. In the radulae 
of the following Recent forms, there are 
three elements in the octopod Vosseledone 
charrua, five in Gonatus fabricii (Kristensen, 
1981b), and up to thirteen elements in 
others. In a very small number, the radula is 
vestigial or absent: for example, the spirulid 
Spirula spirula and the cirroctopod Cirro-
thauma murrayi (Nixon, 1998b). At present, 
between seven and thirteen elements have 
been found in the radulae of just twenty 
cephalopods (Fig. 16; Table 5); this repre-
sents only a miniscule percentage of the 
group (Nixon, 1996). Doguzhaeva, Mapes, 
and Mutvei (2007) suggested that the eleven 
elements in early Carboniferous coleoids 
may have been inherited from the mono-
placophoran radula or the archaic radula of 
early cephalopods. The most persistent of 
the radula, through fossil and living forms, 
is the rachidian tooth, which is the first to 
develop in the radular sac (Raven, 1958). 
Such changes in the elements of the radula 
could have been inherited from the mono-
placophoran radula or the archaic radula 
of early cephalopods. Changes may have 
occurred by the addition of a marginal tooth 
between the two marginal plates, or by loss 

or resorption of the second marginal tooth. 
The latter is perhaps more likely, as Octopus 
vulgaris has a subradular gland, which lies 
at the end of the radula and acts to loosen, 
or resorb, teeth as they reach the end of the 
ribbon (Nixon & Young, 2003). A later step 
may be either the fusion of the two adjacent 
marginal plates, or the loss or resorption 
of one, but until there is further evidence 
uncertainty remains. 

Changes during growth of living cephalo-
pods are apparent in the shape and form of the 
beak, and in the number, shape, and form of 
the elements of the radula. Factors involved in 
these developments may include the mode of 
capture, availability, and diverse morphology 
of the prey, which is either ingested whole 
or reduced to pieces small enough to enter 
the esophagus. Whether modifications of the 
mouthparts and/or digestive tract are due to 
diet, or to other factors, is uncertain in Recent 
coleoids, and more obscure in fossil forms. The 
soft tissues identified among fossil specimens, 
including stomach contents, provide evidence 
of diet as well as morphological changes. 
Lukeneder and Harzhauser (2005, p. 06376) 
commented that this “calls for putting more 
emphasis on soft part morphologies of excep-
tionally well-preserved specimens in future 
studies.” 
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