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INTRODUCTION 
The Hippuritida Newell, 1965 (rudist 

bivalves) evolved from the Late Jurassic–
Cretaceous to characterize the only prolonged 
episode of Earth history when bivalves domi-
nated tropical and subtropical shallow-marine 
environments otherwise occupied by coral 
and calcareous algae as major carbonate 
producers (Gili, Masse, & Skelton, 1995; 
Scott, 1995; Skelton, 2000, 2003a; Steuber, 
2000). They diversified into a wide range of 
shell morphologies as reflected in a large 
number of taxa (approximately 1500 species 
in more than 160 genera). Much progress 
in refining the stratigraphic ranges of the 
Hippuritida has been made since the last 
compilation in the Treatise on Invertebrate 
Paleontology (Cox & others, 1969), as new 
methods of stratigraphy have been applied 
to the group, allowing for a better under-
standing of the dynamics of their evolution 
in relation to late Mesozoic global paleo-
environmental change. 

Range charts of genera and species of the 
Hippuritida have been compiled previously 
for individual regions of the Mediterranean 
(e.g., Polšak, Bauer, & Slišković, 1982; 
Bilotte, 1985; Cestari & Sartorio, 1995; 
Masse, 1996, 2003; Philip, 1998a) and 
the U.S. Gulf Coast and Caribbean (e.g., 
Coogan, 1977; Scott, 2010; Scott & 

Filkorn, 2007; Mitchell, 2013a, 2014). 
Earlier examples of calibrating ranges of 
rudist bivalves to the global stratigraphic 
charts included only relatively few taxa 
(Masse, 1998; Philip, 1998b) and/or differ 
substantially from the ranges compiled here 
(Philip, 1998b; Skelton, 2003b).

Biozonations based on rudist bivalves were 
more recently established for the Barremian–
Albian of the U.S. Gulf Coast (Scott & 
Filkorn, 2007), and for the Late Cretaceous 
of the central-eastern Mediterranean and 
the Arabian Plate based on numerical ages 
derived from strontium-isotope (Sr-isotope) 
stratigraphy (Steuber & Schlüter, 2012). 

The current range charts include all 
currently (as of July 2014) accepted genera 
of the Hippuritida (Skelton, 2013a, 2013b), 
except for a few that have poorly defined 
ranges and/or are known only from a single 
locality with dubious stratigraphy. 

RANGE CHART 
METHODOLOGY 

Ranges of genera are derived from a 
number of methods (see overview of current 
approaches to chronostratigraphy in Scott, 
2014); those methods that are most impor-
tant for the current compilation are discussed 
below. The range charts (Fig. 1–4) refer to the 
geologic time scale (GTS) of Gradstein, Ogg, 
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and Schmitz (2012). TimeScale Creator soft-
ware (Ogg & Lugoswki, 2011) version 6.1.2 
(2014) was used to create the chronostrati-
graphic templates for the charts presented 
here.

BIOSTRATIGRAPHY 

Ranges of many genera of the Hippuritida 
are derived from conventional biostratig-
raphy, involving the calibration of their 
occurrences with ranges and zonations of 
benthic or planktic foraminifera and, ulti-
mately, ammonites. This is the case for most 
Oxfordian–Cenomanian taxa and for Santo-
nian–Campanian genera of the Caribbean. 
Biostratigraphic ranges for some Berria-
sian–lower Aptian genera have been largely 
confirmed by Sr-isotope stratigraphy (Masse 
& Steuber, 2007), and ranges of many 
Barremian–Turonian taxa are calibrated to 
numerical ages using graphic correlation 
(Scott, 2014).

Rudist ranges based on biostratigraphy 
adopted here are derived from the most 
recent regional correlations, such as for the 
Lower Cretaceous of southeastern Spain 
(Masse, Arias, & Vilas, 1998) and southern 
France (Masse, 1996, Masse & Fenerci-
Masse, 2013a) and for the majority of 
American Caprinoidea d’Orbigny, 1847 
(Mitchell, 2013a, 2013b).

GRAPHIC CORRELATION

Graphic correlation is a quantitative, non-
statistical method that integrates various 
types of stratigraphic data and enables their 
calibration to chronostratigraphy. This 
is accomplished by a graphic process of 
comparing species ranges in multiple refer-
ence sections and scaling thickness units 
of occurrences to numeric time units. The 
iterative graphing of successive sections 
produces a database of ranges so that rudist 
ranges can be integrated with ammonites 
and other zonal taxa. Graphic correlation is 
thus a transparent and testable deterministic 
technique to correlate the occurrence of 
fossils to geologic time as represented in rock 

units (Scott, 2014). The accuracy of these 
ranges depends on the number of sections, 
preservation, and correct identification of the 
species. The method is described in detail in 
Scott (2009), and examples of ranges and 
biozones of taxa of the Hippuritida that are 
the result of applying graphic correlation can 
be found in Scott and Kerans (2004), Scott 
and Filkorn (2007), and Scott (2010, 2014). 
As of 2010, the ranges of 98 rudist species 
have been calibrated to numerical ages (Scott 
2010). Other quantitative methods, such as 
those described by Sadler (2004), have not 
yet been applied to rudist data.

STRONTIUM-ISOTOPE 
STRATIGRAPHY

Sr-isotope stratigraphy uses the changing 
Sr-isotopic composition of seawater for 
stratigraphic correlation (McArthur , 
1994). This requires geochemical screening 
to ga in conf idence that  the  or ig inal 
Sr-isotope composition of seawater has 
not been altered during diagenesis and 
is still retained in the skeletal material 
used for analysis (McArthur & others, 
1994; Steuber, 2003a). The thick, outer 
shell layer of many Hippuritida, originally 
composed of fibrous low-Mg calcite, is the 
preferred material for analysis and has been 
shown to have a large potential of retaining 
the original ultrastructure and geochemical 
composition (Steuber, 2003b). Sr-isotope 
stratigraphy provides rather precise numer-
ical ages, approximately +/- 0.7 myr, for 
time periods with a distinct gradient in 
the Sr-isotope composition of seawater, 
such as the latest Jurassic–Hauterivian, 
late Barremian–mid-Aptian, and Conia-
cian–Maastrichtian (McArthur, 1994). 
One advantage of the method is that it 
allows for correlation across biogeographic 
provinces and is not dependent on the 
availability of useful stratigraphic marker 
species. The method is thus suitable for cali-
brating biostratigraphic ranges to numerical 
ages, ultimately enabling comparison of 
ranges of biota from different depositional 
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environments and biogeographic realms. 
This is important for the evaluation of 
evolutionary patterns and their calibration 
to events or episodes of environmental 
change (Steuber, 2001; Steuber, Korbar, 
& others, 2005, 2009; Schlüter, Steuber, 
& Parente, 2008a). The method has been 
described in detail elsewhere (McArthur, 
1994; McArthur & others, 1994; Crame & 
others, 1999; Steuber, 2003a, 2003b), and 
the data used in the present compilation of 
ranges of genera are discussed in Steuber 
and Schlüter (2012). 

The Sr-isotopic composition of seawater 
has to be re-calibrated to numerical ages 
each time a new time scale becomes avail-
able. Consequently, the numerical ages for 
localities used here in the compilation of 
ranges of genera are different from those 
listed in Steuber and Schlüter (2012), 
which used GTS 2004 and the look-up 
table of McArthur, Howarth, and Bailey 
(2001; version 4b 08 04); they are here 
updated to GTS 2012 (Gradstein, Ogg, 
& Schmitz, 2012) using a re-calibration of 
the Sr-isotope evolution of seawater (McAr-
thur, written communication, 2013).

RANGE CHARTS 
Ranges of genera of the Hippuritida are 

grouped according to families, in some cases 
at the level of subfamilies, and presented in 
Figures 1–4, following the current system-
atics of the Hippuritida. A few genera of 
the Radiolitidae d’Orbigny, 1847, are not 
shown in the range charts. These genera are 
known only from single or few localities 
with imprecise stratigraphic data (Bystrickya 
Lupu, 1976, Santonian–early Maastrichtian; 
Horehronia Andrusov, 1976, Santonian–
Campanian; Kurtinia Karacabey-Öztemür, 
1980, Maastrichtian, but probably older 
according to associated taxa; Orestella Lupu, 
1982, Campanian–Maastrichtian; Paro-
nella Wiontzek, 1934, Upper Cretaceous; 
Parabournonia Douvillé, 1927, Santonian–
Campanian). The taxonomic status of some 
genera is currently under discussion. These 

genera are shown without a qualifier in the 
range charts (Fig. 1–4), as they are not yet 
formally revised.

The stratigraphic distribution of Late 
Jurassic and Early Cretaceous rudists is 
predominantly derived from biostratigraphic 
correlation (Masse, 1996; Masse & Char-
trousse, 1997; Masse, Arias, & Vilas, 
1998; Skelton, 1999; Masse, 2003; Masse 
& others, 2007; Scott & others, 2010), 
for some genera supported by Sr-isotope 
stratigraphy (Masse & Steuber, 2007), and 
for others by integrating various data using 
graphic correlation (Scott & Kerans, 2004; 
Scott & Filkorn, 2007; Scott, 2010, 2014). 
Ranges for late Turonian–Maastrichtian 
Hippuritidae Gray, 1848, Radiolitidae, and 
Trechmannellidae Cox, 1933, are predomi-
nantly based on Sr-isotope stratigraphy of 
Upper Cretaceous localities from Jamaica 
to the Middle East (Steuber & Schlüter, 
2012). Ranges of the Antillocaprinidae Mac 
Gillavry, 1937, are from Mitchell (2013a, 
2013b), based mainly on the well-established 
biostratigraphy of Jamaican rudist-bearing 
formations (e.g., Mitchell, 2013c). Sr-isotope 
data exist for some critical upper Campanian–
Maastrichtian localities of Jamaica (Steuber & 
others, 2002). Ranges of the Caprinuloideinae 
Damestoy, 1971; Caprinidae d’Orbigny, 
1847; Rethinae Yanin, 1990; and Youngicap-
rininae Mitchell, 2013a, are based on graphic 
correlation and conventional biostratigraphy 
(Mitchell, 2013b; Scott, 2010, 2014).

A summary of ranges of rudist genera 
shows the total numbers of genera and the 
numbers of originations and extinctions 
for each substage (Fig. 5). The stratigraphic 
distribution of the total number of genera 
is further subdivided into aragonite-versus 
calcite-dominated taxa (Fig. 6), and extinction  
and originations are shown separately for 
taxa with different shell mineralogy (Fig. 7). 
Shells of the Hippuritidae and Radiolitidae 
are considered to be calcite-dominated, 
whereas the Antillocaprinidae; Caprinoidea; 
Caprinulidae Yanin, 1990; Caprotinidae Gray, 
1848; Diceratidae Dall, 1895; Epidiceratidae 



4 Treatise Online, number 81

Fig. 1. Stratigraphic ranges of genera of the Epidiceratidae Rengarten, 1950; Requieniidae Kutassy, 1934; 
Diceratidae Dall, 1895; Monopleuridae Munier-Chalmas, 1873; Polyconitidae Mac Gillavry, 1937; and 

Caprotinidae Gray, 1848.

categories at the family level (e.g., Parastroma 
Douvillé, 1926, among the Hippuritidae), and 
that the proportion of these minerals may have 
changed with time in individual taxa (Pascual-
Cebrian & others, 2016). The dominant shell 
mineralogy is also compared with the global 
evolution of carbonate platforms and the 
changing carbon-isotope evolution of Late 
Jurassic–Cretaceous seawater (Fig. 6).

Rengarten, 1950; and Plagioptychidae 
Douvillé, 1888, originally had aragonite-
dominated shells. The Monopleuridae Munier-
Chalmas, 1873; Polyconitidae Mac Gillavry, 
1937; Requieniidae Kutassy, 1934; and Trech-
mannellidae are classified as having shells that 
originally contained both minerals, but none 
in a significantly dominant fraction. Note that 
there are a few genera that do not match these 
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Fig. 2. Stratigraphic ranges of genera of the Ichthyosarcolitidae Douvillé, 1887; Caprinidae d’Orbigny, 1847; 
Caprinuloideidae Damestoy, 1971; and Caprinulidae Yanin, 1990.
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Fig. 3. Stratigraphic ranges of genera of the Radiolitidae d’Orbigny, 1847. 
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Fig. 4. Stratigraphic ranges of genera of the Hippuritidae Gray, 1848; Trechmannellidae Cox, 1933; Plagioptychidae 
Douvillé, 1888; and Antillocaprinidae Mac Gillavry, 1937. 
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ISSUES FOR DISCUSSION

PRECISION OF DATA

Ranges derived from the different methods 
outlined above vary in precision, although 
precision may not necessarily reflect accuracy. 
Ranges based on biostratigraphy can result 
in correlation with ammonite biozones. 
The position of such ammonite biozones 
as related to numerical ages is shown in the 
range charts following the data provided by 
Ogg and Lugoswki (2011). Where biostrati-
graphic data do not allow for correlation with 
ammonite zones, the duration of the corre-
sponding substage is shown as the range. In 
a few cases, this results in an apparent range 
of, e.g., base of lower Albian–top of lower 
Albian, although the genus in question may 
be known only from a few occurrences or 
even a single locality, the age of which is not 
known more precisely than “early Albian.”

Ranges that result from Sr-isotope stratig-
raphy are based on numerical ages derived 
for localities with documented occurrence of 
the genus in question (Steuber & Schlüter, 
2012). Precision of Sr-isotope stratigraphy 
is not typically better than +/- 0.7 myr, and 
older or younger occurrences of the taxon 
may be identified in future studies. However, 
as these ranges are based on occurrences at 
localities with a published numerical age, 
they are based on data that are testable 
and can be improved in future studies. In 
contrast, conventional biostratigraphy and 
specifically calibration to ammonite zones 
often requires assumptions that result in 
conclusions that are not always transparent 
and may be impossible to test.

The method of graphical correlation has 
the advantage that calibration to chrono-
stratigraphy is based on fossil occurrences 
in well-documented outcrop sections or well 
cores. Fossil datums are integrated transpar-
ently with non-biostratigraphic datums in 
Global Boundary Stratotype Section and 
Points (GSSP) or their reference sections. 

As with Sr-isotope stratigraphy, the age 
ranges of taxa derived from graphic correla-
tion are preliminary, minimum ranges that 

may be extended as new data become avail-
able (Scott, 2014).

In order to compile a clear and testable 
database for future improvements of the 
current stratigraphic ranges of the genera 
of the Hippuritida, a database of localities 
of first and last occurrences of all genera is 
desirable. While such data in fact exist for 
a large number of genera, i.e., for ranges 
based on graphic correlation and Sr-isotope 
stratigraphy (Scott, 2014; Steuber & 
Schlüter, 2012), this goal has not yet been 
accomplished to the extent that justifies 
publication.

STRATIGRAPHIC DISTRIBUTION 
OF THE HIPPURITIDA

Whereas a detailed analysis of rates and 
patterns of origination and extinction (e.g., 
Foote, 2000) of the Hippuritida is beyond 
the scope of this contribution, a few char-
acteristic features of the diversity dynamics 
of the group can be noted. The general 
patterns of diversification and extinction 
have been outlined earlier (Masse & Philip, 
1986; Ross & Skelton, 1993; Philip, 1998a; 
Steuber & Löser, 2000; Steuber, 2002; 
Skelton, 2003b), but are presented here 
with improved stratigraphic precision and 
include all currently accepted genera of the 
group (Fig. 5). Major differences in patterns 
presented here compared to previous compi-
lations exist for many central and eastern 
Mediterranean Late Cretaceous taxa, many 
of which have been shown to be substantially 
older than previously believed (Steuber & 
Schlüter, 2012).

The number of genera increased in succes-
sive waves from the Oxfordian to the Campa-
nian (Fig. 5), with peaks in the early Aptian 
(25 genera), late Albian (30 genera), late 
Cenomanian (31 genera), and late Campa-
nian (62 genera). Two major reductions 
in the number of genera occurred during 
the mid-Aptian and during the Cenoma-
nian/Turonian transition. The Hippuritida 
became extinct at the end of the Cretaceous, 
only about five million years after the final 
and highest peak of generic diversity that 
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Fig. 5. Number of genera of the Hippuritida Newell, 1965, from the Oxfordian to the Maastrichtian, and number 
of originations (green) and extinctions (red) per substage. 

had followed a long-term increase in the 
number of genera since the early Turonian.

Peaks of originations occurred during the 
late Barremian–early Aptian, late Albian–

middle Cenomanian, and the Campanian 
(Fig. 5). Since the Coniacian, the number of 
extinctions gradually increased, but this was 
matched by a large number of originations 
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is significantly shorter than those of other 
genera of the Hippuritida (Table 1). A pres-
ervational bias of the fossil record of bivalves 
owing to the higher diagenetic reactivity 
of aragonite is not evident from the fossil 
record (Kidwell, 2005). Hence, the observa-
tions that aragonite-dominated genera have 
shorter durations and were more affected 
during crises in the evolution of the Hippu-
ritida deserve further attention. 

The Mg/Ca ratio of seawater has been 
considered to affect the mineralogical 
composition of marine calcifiers (Stanley 
& Hardie, 1998; Ries, 2010). During the 
evolution of the Hippuritida, the Mg/Ca 
molar ratio of seawater ratio was consistently 
low, below 2, favoring calcite rather than 
aragonite as the dominant marine carbonate 
(Stanley & Hardie, 1998; Steuber & 
Rauch, 2005; Gothmann & others, 2015). 
Due to the long residence time of Mg and 
Ca in seawater, rapid changes on time scales 
of a few million years are not possible, and 
the available data on seawater composi-
tion show no significant variation during 
the time period in question. The rise from 
the low Late Jurassic–Cretaceous Mg/Ca 
molar ratio of 2 to the modern value of 5 
may have started in the Campanian, but 
data derived from geochemical modeling 
(Stanley & Hardie, 1998), rudist skeletal 
calcite (Steuber & Rauch, 2005), and coral 
aragonite (Gothmann & others, 2015) are 
inconclusive about the exact timing of this 
increase. Consequently, the Mg/Ca ratio 
of seawater cannot be considered as a main 
cause for extinction of aragonite-dominated 
genera, but the consistently low Mg/Ca ratio 
of the Late Jurassic–Cretaceous may have 

in the Campanian, resulting in the highest 
number of genera during the evolution of 
the Hippuritida. This turnover, i.e., relatively 
large number of extinctions compensated 
by an even higher number of originations, 
resulted in an increasing degree of endemism 
of late Campanian–Maastrichtian rudists, 
with centers of high diversity developing in 
the Caribbean and Arabia. This increasing 
endemism may have been an important early 
milestone on the road to final extinction, as 
discussed below. 

Comparing the numbers of originations 
and extinctions, only the late Cenomanian 
and the late Maastrichtian are characterized 
by a much larger number of extinctions than 
originations (Fig. 5). While a large number 
of extinctions also occurred at the end of 
the early Aptian and the late Albian, these 
are matched by a relatively large number of 
originations, resulting in the endemic late 
Aptian–Albian associations on both sides of 
the Atlantic Ocean.

The prominent mid-Aptian and Ceno-
manian/Turonian reductions in the number 
of genera affected predominantly aragonite-
dominated genera (Fig. 6), including rela-
tively derived taxa that flourished especially 
on the outer margins of platforms (Skelton 
& Gili, 2012). Other taxa, such as the calcite-
dominated Radiolitidae (Fig. 6–7), continued 
to radiate across the Cenomanian–Turonian 
boundary. A similar pattern can be seen at 
the end of the Albian, when extinction did 
not affect calcite-dominated genera, and 
in the mid-Valanginian, when all (in this 
instance, relatively primitive) aragonite-
dominated genera disappeared. The average 
duration of aragonite-dominated genera 

Table 1. Duration (myrs) of genera of the Hippuritida Newell, 1965, with different shell mineralogy. Minimum 
possible duration was set at 0.5 myrs. SD, standard deviation.

Data Number Mean Median Minimum Maximum SD

all genera 167 12.3    8.5 0.5 80.8 11.8

calcite-dominated   76 13.5  10.8 0.5 41.8 10.7

aragonite-dominated   57   8.4    6.4 0.5 31.1   7.5

no dominance   34 16.2    8.9 1.4 80.8 17.0
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Fig. 6. Number of genera of the Hippuritida Newell, 1965, from the Oxfordian to the Maastrichtian, with calcite-
dominated shells (blue), aragonite-dominated shells (red), and dominance of neither calcite nor aragonite (gray) 
compared with relative changes in the carbon-isotopic composition of marine carbonates (adapted from Shipboard 
Scientific Party, 2002; Jarvis & others, 2006; Emeis & Weissert, 2009; and Thiebault & others, 2012) and with 
the extent of carbonate platforms in the Americas (New World)  and Europe, North Africa, and Arabia (Old World ) 
(adapted from Skelton, 2003a). Red dotted lines indicate major extinctions among the Hippuritida. Oceanic  
anoxic events indicated by gray bars: mid-Valanginian (Weissert); early Aptian (OAE 1a); and Cenomanian/Turonian 

transition (OAE 2). 
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Fig. 7. Originations and extinctions of genera of the Hippuritida Newell, 1965, from the Oxfordian to the  
Maastrichtian, with calcite-dominated shells (blue) and aragonite-dominated shells (red). Red dotted lines indicate 

major extinctions among the Hippuritida.
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favored the evolution of calcite-dominated 
Hippuritida and could have contributed to 
the higher risk of extinction of aragonite-
dominated genera during episodes of envi-
ronmental change.

The mid-Valanginian, mid-Aptian, and 
Cenomanian/Turonian extinction events 
broadly correspond to crises in carbonate 
platform evolution that have been associ-
ated with oceanic anoxic events (OAE), such 
as the Weissert event (mid-Valanginian), 
OAE 1a (early Aptian) and OAE 2 (Ceno-
manian/Turonian transition). These crises 
have been discussed in the context of major 
perturbations of the global carbon cycle 
and related changes in climate, nutrient 
cycling, chemical composition of seawater, 
and the CaCO

3
 saturation of seawater (e.g., 

Philip & Airaud-Crumiere, 1991; Parente 
& others, 2008; Föllmi, 2012; Skelton & 
Gili, 2012). Indeed, the episodes of sharp 
decreases in the number of genera, with 
aragonite-dominated genera being the main 
victims, show a remarkable correlation with 
positive carbon isotope excursions that 
reflect an increased burial of organic carbon 
(Fig. 6).

However, a closer evaluation reveals some 
significant differences between these three 
major phases of carbonate platform crises 
and reduction in the number of rudist 
genera. Whereas the Cenomanian/Turonian 
extinction event occurred during an episode 
of peak Cretaceous global paleotemperature, 
the Valanginian and Aptian extinction events 
coincided with climatic cooling (Steuber 
Rauch, & others, 2005; Föllmi, 2012; 
Skelton & Gili, 2012).

At least for the early Aptian OAE 1a, 
there is a substantial stratigraphic mismatch 
between evidence for climate change, sea-
level change, calcification crises of calcareous 
plankton, and rudist extinction (Masse & 
Fenerci-Masse, 2013b), which suggests 
that any possible linkage between these 
phenomena would have had to play out 
through a complex history of changes 
(Skelton & Gili , 2012). While many 
carbonate platforms along the northern 

Tethyan margin drowned during the time 
of the mid-Early Aptian OAE 1a and their 
biota regionally disappeared, others survived 
(Bover-Arnal & others, 2015). On the 
Arabian shelf, aragonite-dominated Caprin-
idae were abundant carbonate producers 
well after OAE 1a, and finally disappeared 
from the sedimentary record during a 
third-order sea-level highstand, around the 
early-late Aptian boundary (Strohmenger 
& others, 2010). Platform demise during 
the mid-Valanginian Weissert event and 
at the Cenomanian/Turonian transitions 
appears to be more globally synchronous 
(Philip & Airaud-Crumiere, 1991; Föllmi, 
2012), although these events have been less 
intensely studied when compared with the 
early Aptian crisis.

Extinctions related to the Weissert event 
and the OAE 1a preceded the positive carbon-
isotope excursions, while the Cenomanian/
Turonian event appears to have coincided 
with the extinction. A similar pattern exists 
with the areal extent of carbonate platforms, 
despite somewhat different patterns on both 
sides of the Atlantic (Fig. 6). The causal and 
temporal relationships between environmental 
change, perturbations in the carbon cycle 
and the related carbon-isotope excursions, as 
well as changes in seawater composition and 
carbonate saturation are topics of ongoing 
debate and research (Skelton & Gili, 2012; 
Föllmi, 2012). 

No major extinction events are recorded 
from the Turonian to the Maastrichtian. 
This time interval appears to have been a 
period of comparatively minor environ-
mental change and evolutionary pressure, as 
also reflected in less significant variations in 
the carbon-isotope record when compared 
to the Valanginian–Cenomanian interval.

The final extinction of the Hippuritida at 
the end of the Cretaceous, referred to as the 
Cretaceous–Paleogene boundary (K/Pg), was 
discussed recently (Steuber & Schlüter, 
2012) and is considered to have been abrupt 
(Steuber & others, 2002; Schlüter & others, 
2008b), rather than stepwise (Johnson & 
Kauffman, 1996). Latest Maastrichtian 
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rudist occurrences are typically of similar 
species-richness when compared with older 
Late Cretaceous associations, but are highly 
endemic. The increasing isolation of endemic 
populations together with a globally reduced 
area of carbonate platforms during the late 
Maastrichtian may have contributed to the 
extinction (Steuber & Schlüter, 2012), as 
endemic clades are more likely to become 
extinct during episodes of environmental 
change (Jablonski & Raup, 1995). The 
K/Pg impact and related environmental 
perturbations were possibly the ultimate 
cause that wiped out the already highly 
isolated and endemic associations of the 
late Maastrichtian Hippuritida (Steuber & 
Schlüter, 2012). 
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