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INTRODUCTION
Animals are involved in a broad range of 

beneficial trophic symbioses with unicellular 
symbionts, which facilitate breakdown of 
otherwise undigestible nutrients or provide 
fixed carbon through chemo- or autotrophy. 
Trophic symbioses are well documented 
in bivalves and characterize several major 
clades. Xylophagine pholads and teredinids 
harbor bacteria that facilitate the digestion 
of cellulose, allowing them to derive nutri-
tion from the wood they bore (disteL & 
others, 2002; Waterbury, CaLLoWay, & 
turner, 1983). Sulfide-oxidizing and, less 
commonly, methane-oxidizing bacteria live 
in the gills of Solemyidae, Nucinellidae, 
Bathymodiolinae, Lucinidae, Thyasiridae, 
Montacutidae, Vesicomyidae, Teredinidae, 
and Saxicavellinae in chemosymbiotic asso-
ciations that provide their host with fixed 
carbon (FeLbeCK, ChiLdress, & somero, 
1981; Fisher, 1990; oLiver, 2013; oLiver, 
southWard, & dando, 2013; disteL & 
others, 2017). Photosymbiotic associa-
tions between unicellular algae and giant 
clams (yonGe, 1936; trenCh, Wethey, & 
Porter, 1981; norton & others, 1992) 
and related fragine cockles (summarized in 
KirKendaLe, 2009) are well known, whereas 
more poorly known associations have been 
documented in pectinids, unionids, and 
trapezids (naidu & south, 1970; Pardy, 
1980; morton, 1982). 

MARINE INVERTEBRATE 
PHOTOSYMBIOSES: 

DIVERSITY AND FUNCTION
Photosymbioses are trophic associations 

between heterotrophic hosts and autotro-
phic symbionts (CoWen, 1983; yeLLoWLees, 
rees, & LeGGat, 2008). Photosymbiotic 
associations are widespread among marine 
invertebrates and protists as hosts, including 
numerous lineages among the Porifera, 
Cnidaria, Platyhelminthes, Mollusca, 
Urochordata, Foraminifera, and Radio-
laria (Fig. 1). A diverse suite of autotrophic 
symbionts participate in these partnerships, 
including cyanobacteria, chlorophytes, dino-
flagellates, diatoms, rhodophytes, chryso-
phytes, and even free chloroplasts (yonGe, 
1975; Zann, 1980; rutZLer, 1990; Lee & 
anderson, 1991). Associations range from 
facultative to obligate for both host and 
symbiont, extra- to intracellular, and mutu-
alistic to parasitic for either the host or the 
symbiont (dimond & CarrinGton, 2008; 
banasZaK, GarCía ramos, & GouLet, 2013; 
deCeLLe, 2013).

The first-discovered and best-studied 
photosymbiotic association among marine 
animals is that between stony corals (Scler-
actinia) and dinoflagellate algae (zooxan-
thellae, a term for golden algal symbionts) 
(dana, 1846 in 1846–1849; yonGe, 1936; 
LaJeunesse & others, 2004; daLy & others, 
2007; yeLLoWLees, rees, & LeGGat, 2008). 
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About half of the more than 1500 species 
of scleractinians, including most shallow 
tropical forms, are photosymbiotic with 
dinoflagellates of the genus Symbiodinium 
FreudenthaL, 1962. Genetic evidence 
indicates that these simple, unicellular 
algae have radiated extensively across hosts 
and biogeographic regions (LaJeunesse 
& others, 2004; PoChon, LaJeunesse, & 
PaWLoWsKi, 2004; Finney & others, 2010; 
LaJeunesse & others, 2010; PoChon & 
Gates, 2010; LaJeunesse & thornhiLL, 
2011; Pettay & others, 2011). Nine clades 
(A through I) and an estimated 160 distinct 
Symbiodinium types, each of which may 
represent distinct species, are now recog-
nized (yeLLoWLees, rees, & LeGGat, 2008; 
PoChon & Gates, 2010). There is substan-
tial variation among both symbionts and 
hosts in the degree of specificity, ranging 
from highly species specific to very broad 
associations (baKer, 2003). 

Symbiodinium is the dominant photo-
symbiont on coral reefs today, as it is the 
alga inhabiting all reefal cnidarians and the 
bulk of studied molluscs. Forams, sponges, 
and urochordates on reefs have more diverse 
symbionts. PoChon and others (2006) 
proposed that Symbiodinium is a relatively 
young lineage, originating in the Eocene. 
Evidence for this hypothesis was based on 
a molecular clock calibrated with the origin 
of soritid Foraminifera and with divergence 
between selected soritid-associated Symbio-
dinium on the two sides of the isthmus of 
Panama. However, both calibration points 
are based on single dates, and both are 
conflicted in their data: some Symbiodinium 
that inhabit soritids branched off earlier 
than the putative origin of soritids (inter-
preted to have been secondarily invaded), 
and some soritids show much lower diver-
gence on the two sides of the isthmus 
than the lineages chosen for calibration 

FiG. 1. Tropho-endo-photosymbiotic marine invertebrate hosts occur in diverse phyla. 1, Foraminifera: Soritidae; 
2, Porifera: Dysidea sp.; 3–6, Cnidaria: Anthelia sp. (3), octocoral (4 ), Acrhelia sp. (5 ), Mastigias papua Lesson, 
1830 in 1830–1832 (6 ); 7–8, Mollusca: Tridacna squamosa LamarCK, 1819 in 1818–1822 (7 ), Plakobranchus sp. 

(8); 9, Chordata: Trididemnum sp. (new).
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(PoChon, LaJeunesse, & PaWLoWsKi, 
2004). If the interpretation of PoChon 
and others (2006) is correct, then Mesozoic 
and Paleozoic corals and mollusks were 
either not photosymbiotic or had other 
types of algal symbionts (vermeiJ, 2013). 
Alternatively, Symbiodinium might be a 
much older clade. 

Vertical transmission of symbionts gener-
ates the most specific associations because the 
host selects, retains, and passes the symbiont 
to its offspring, leading to potential cospe-
ciation between host and symbiont (briGht 
& buLGheresi, 2010; Fig. 2.1). In hori-
zontal transmission, on the other hand, each 
generation acquires zooxanthellae anew from 
the environment, and strict coupling is less 
likely (Fig. 2.2). Recent studies, including 
one on the chemosymbiotic bivalve Solemya 
velum say, 1822 (KrueGer, GustaFson, & 
CavanauGh, 1996), have revealed phyloge-
netic incongruence in some vertically trans-
mitted systems, implying some horizontal 
transmission of symbionts as well, resulting 
in mixed transmission (Fig. 2.3). Although 
horizontal acquisition is less likely to result 
in coevolution between host and symbiont 
than vertical transmission, evidence suggests 
that cnidarians and giant clams with hori-
zontal acquisition nevertheless are selective 
in the uptake of zooxanthellae strains from 
the available pool (LaJeunesse & others, 
2004). 

Transfer of photosynthate and inorganic 
nutrients between host and symbiont 
can make photosymbiotic holobionts 
compet i t i ve l y  supe r io r  to  au t rophs 
in oligotrophic tropical environments. 
Photosymbionts can fix and translocate 
s o m e  o r g a n i c  c a r b o n  t o  t h e  h o s t ; 
the provision of photosynthate can be 
critical for host nutrition (CoWen, 1983; 
yeLLoWLees, rees, & LeGGat ,  2008). 
Symbionts in turn are thought to benefit 
not only from protection within the host, 
but also from access to a steady supply of 
normally limiting nutrients (N, P, and Fe) 
(CoWen, 1983; douGLas, 1994; roWan, 
1998; riChardson, 2001). 

PHOTOSYMBIOSIS AMONG 
EXTANT BIVALVIA

Most photosymbiotic taxa, including 
corals and shell-less opisthobranch molluscs, 
have exposed soft tissues and large surface 
areas that facilitate light exposure to symbi-
onts (CoWen ,  1983). In contrast, the 
opaque, hard shells of bivalves are clearly 
not preadapted for photosymbiosis. Never-
theless, shelled molluscs are prone to infes-
tation by zooxanthellae, as recently demon-
strated in numerous lineages of prosobranchs 
that harbor healthy zooxanthellae (berner, 
WishKovsKy, & dubinsKy, 1986; banasZaK, 
GarCía ramos, & GouLet, 2013). banasZaK, 
GarCía ramos, and GouLet (2013) argued 
that such associations in shelled gastropods 

FiG. 2. Modes of symbiont transmission. 1, Horizontal 
transmission (from environment); 2, vertical transmission 
(from mother); 3, vertical transmission (from mother) 
with occasional symbiont switching (Bright & Bulgheresi, 
2010; reprinted by permission from Macmillan Publishers 

Ltd., Nature Reviews Microbiology). 
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are mutualistic during larval life, but they 
turn parasitic in mature animals. A para-
sitic origin of photosymbiosis is an attrac-
tive hypothesis that needs to be evaluated 
in facultatively symbiotic bivalves. Seven 
photosymbiotic lineages are currently known 
in the Bivalvia, but obligate associations 
are limited to tropical representatives of 
the Cardiidae, which also exhibit a suite of 
behavioral, anatomical and microstructural 
adaptations. 

The freshwater unionids Anodonta 
cygnea (Linnaeus, 1758) and Unio pictorum 
(Linnaeus, 1758) harbor green algal symbi-
onts (zoochlorellae) in tissues that receive 
maximum illumination; these symbionts 
may translocate fixed carbon to their host 
(Pardy, 1980). Fluviolanatus subtortus 
(dunKer, 1857), a bizarre putative trapezid 
clam that inhabits estuaries in tropical 
and temperate Australia, was described as 
harboring presumed zooxanthellae in its 
ventral mantle margin (morton, 1982). 
Recent observations suggest that the brown 
coloration may be due to pigmentation and 
not zooxanthellae (Fig. 3.1), and genetic and 
histological testing is underway to confirm 
this new interpretation. The temperate 
scallop Placopecten magellanicus (GmeLin, 
1791 in 1791–1793) has also been noted to 
harbor zoochlorellae in its mantle (naidu & 
south, 1970). 

In addition to the two tropical photo-
symbiotic lineages among cardiids, the rela-
tively large, temperate cockle Clinocardium 

nuttallii (Conrad, 1837) harbors zooch-
lorellae in mantle, siphon, and foot tissues 
(hartman & Pratt, 1976; Fig. 3.2). These 
algae, provisionally identified as a Chlorella 
species, inhabit only older clams that have 
become epifaunal, and live both intra- and 
intercellularly (Jones & JaCobs, 1992). Algal 
cells are aggregated in colonies, suggesting 
opportunistic proliferation rather than a well-
regulated symbiotic association. At present, 
there is evidence for neither benefit nor harm 
to the host from this association (hartman & 
Pratt, 1976). The four known zoochlorellal 
associations—Anodonta LamarCK, 1799; 
Unio PhiLiPsson, 1788; Placopecten verriLL, 
1897; and Clinocardium Keen, 1936—are 
all temperate, opportunistic, and may repre-
sent invasion of the host by algal cells. They 
require further study to ascertain the details of 
association, especially to evaluate the poten-
tial transfer of nutrients. It is plausible that 
these partnerships represent early forays, 
trials, or intermediate stepping stones in the 
evolution of bivalve photosymbiosis (Jones 
& JaCobs, 1992). 

All giant clams (Cardiidae: Tridacninae) 
possess zooxanthellae; the added nutri-
tion provided by photosymbionts (Fitt 
& trenCh, 1981; trenCh, Wethey, & 
Porter, 1981; Fitt, Fisher, & trenCh, 
1986), coupled with a fully functional gut, 
has allowed them to attain great sizes: adults 
of all species reach at least 15 cm in length, 
with the largest, Tridacna gigas (Linnaeus, 
1758), attaining lengths of more than 1 

FiG. 3. 1–2, Live collected specimens of Fluviolanatus subtorta (dunKer, 1857) from Western Australia, showing 
brown coloration of siphons (possibly due to presence of pigments not zooxanthellae), white coloration of gills, 
and brown particles in mantle. 3, Posterior mantle area around siphons of Clinocardium nuttallii (Conrad, 1837); 

note clumped colonies of green zoochlorellae (new).
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meter. They were the first photosymbiotic 
association documented among bivalves 
(yonGe, 1936), roughly a century after the 
discovery of photosymbiotic partnership in 
corals (dana, 1846 in 1846–1849). Unlike 
most cardiids or heterodonts, tridacnines are 
epibenthic and, thus, have moved out from 
the sediment into the sunshine. This transi-
tion in habit was accompanied by a reorga-
nization of the body that involved a great 
expansion of the posterior, siphonal region 
at the expense of the anterior anatomy, 
including the loss of the anterior adductor. 
The mantle of this posterior region is greatly 
hypertrophied and is exposed upward to 
the light between widely gaping valves; in 
Tridacna bruGuière, 1797 in bruGuière 

& others, 1791–1827 (but not Hippopus 
LamarCK, 1799), the mantle also extends 
beyond the shell margins (Fig. 4). 

Because of their apomorphic morphology, 
giant clams were long placed in a sepa-
rate family, but they are now recognized 
as highly modified cardiids (sChneider, 
1998; herrera  & others, 2015). The 
number of giant clam species is growing, 
with two new species recently recognized 
(su & others, 2014; monseCour, 2016; 
Table 1), and others under study. Aside 
from corals, these are the best-characterized 
marine photosymbiotic taxa, with studies 
on their phylogenetic relationships, both 
morphological (sChneider, 1998) and 
molecular (sChneider & Ó FoiGhiL, 1999); 

FiG. 4. Typical cardiid (1) contrasted with Tridacna bruGuière, 1797 in bruGuière & others, 1791–1827 (2), 
highlighting the expansion of the posterior mantle in the latter (Yonge, 1975; reproduced with permission, copyright 

©1979 Scientific American, Inc., all rights reserved). 
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tabLe 1. Photosymbiosis in extant Bivalvia; the host-symbiont relationship is defined as obligate, if 
mortality followed bleaching or no specimens observed without symbionts, or facultative if speci-
men observed both with and without symbionts; host species listed under family and subfamily 

headings (in boldfaced type); taxonomy based mostly on WoRMS, 2014 (new).
Host species Photosymbiosis evidence Symbiont type Nature of 
   relationship

Cardiidae, Tridacninae
Hippopus hippopus (Linnaeus, well established Symbiodinium Freudenthal,   obligate
1758)  1962 expected (strain  
  unknown); Jameson, 1976 
H. porcellanus Baillie, Belda-Baillie, & Symbiodinium expected obligate
Rosewater, 1982 Maruyama, 2000 (strain unknown)
Tridacna sp.  Baillie, Belda-Baillie, &  Symbiodinium A6 specific to unknown
Bruguière, 1797 in Bruguière  Maruyama, 2000; LaJeunesse &  tridacnid clams 
& others, 1797–1827 others, 2004, Japan
T. crocea Lamarck, 1819 DeBoer & others, 2012, table 3 Symbiodinium: C>D, also A obligate
in 1818–1822
T. derasa (Röding, 1798) Klump & Lucas, 1994 Symbiodinium (strain unknown) obligate
T. gigas (Linnaeus, 1758) Norton & Jones, 1992 Symbiodinium (strain unknown) obligate
T. lorenzi Monsecour, 2016 well established Symbiodinium expected obligate
  (strain unknown)
T. maxima (Röding, 1798) DeBoer & others, 2012, table 3 Symbiodinium: A, C, D obligate
T. mbalavuana Klump & Lucas, 1994,  Symbiodinium expected obligate
Ladd, 1934 as T. tevoroa (strain unknown)
T. noae (Röding, 1798) Su & others, 2014 Symbiodinium expected obligate
  (strain unknown)
T. rosewateri Sirenko &  well established Symbiodinium expected obligate
Scarlato, 1991
T. squamosa Lamarck, 1819 DeBoer & others, 2012, table 3 Symbiodinium: D>C obligate
in 1818–1822
T. squamosina Sturany, 1899 Richter & others, 2008, as  Symbiodinium expected obligate
 T. costata (strain unknown)
Cardiidae, Fraginae
Corculum aequale unknown unknown unknown
(Deshayes, 1855)
C. aselae Bartsch, 1947  unknown unknown unknown
C. cardissa (Linnaeus, 1758) Kawaguti 1941, 1950, 1968;  S. corculorum Trench in obligate
 Farmer, Fitt, & Trench, 2001;  Farmer, Fitt, & Trench, 2001
 Kirkendale, 2009
C. impressum (Lightfoot, 1786)  unknown unknown unknown
C. lorenzi Huber, 2013  unknown unknown unknown
C. monstrosum (Gmelin, 1791  unknown unknown unknown
in 1791–1793)
C. roseum (Gmelin, 1791  unknown unknown unknown
in 1791–1793)
Fragum fragum (Linnaeus, 1758) Kawaguti, 1983; zooxanthellae obligate
  Kirkendale, 2009
F. erugatum (Tate, 1889) Morton, 2000; Kirkendale,  zooxanthellae obligate
  2009
F. grasi Poorten, 2009 unknown unknown unknown
F. mundum (Reeve, 1845 in  Persselin, 1998;  zooxanthellae obligate
1844–1845) Kirkendale, 2009
F. aff. mundum (Reeve, 1845 Persselin, 1998;  zooxanthellae obligate
in 1844–1845) Kirkendale, 2009
F. nivale (Reeve, 1845 in Persselin, 1998 zooxanthellae obligate
1844–1845)
F. scruposum (Deshayes, 1855) Ohno, Katoh, & Yamasu, 1995;  zooxanthellae obligate
  Kirkendale, 2009

Continued on facing page.
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morphology (norton & Jones, 1992); 
distribution and phylogeography (deboer 
& others, 2008; KoChZius & nuryanto, 
2008; nuryanto & KoChZius, 2009; hueL-
sKen & others, 2013; hui & others, 2016); 
feeding (morton, 1978); behavior (todd, 
Lee, & Chou, 2009; neo & todd, 2011a, 
2011b); aquaculture (LuCas & others, 1989; 
KLumPP & LuCas, 1994; boGLio & LuCas, 
1997); physiology, symbiosis, and pale-
ontology (see references in later sections); 
and, increasingly, conservation (riChter & 
others, 2008). 

Just five years following the discovery of 
photosymbiosis in giant clams, KaWaGuti 
(1941) noted zooxanthellae in the much 
smaller Corculum cardissa (Linnaeus, 1758) 
(Cardiidae: Fraginae). Surveys of fragine 
species for zooxanthellae have shown that all 
examined species of Fragum rödinG, 1798; 
Lunulicardia Gray, 1853; and Corculum 
rödinG, 1798, possess them, whereas no 
examined species in other fragine genera do 
(Tables 1–2) (KaWaGuti, 1950, 1983; ohno, 
Katoh, & yamasu, 1995; PerssLein, 1998; 

morton, 2000; sChneider & Carter, 2001; 
KirKendaLe, 2009). In contrast to tridacnines, 
fragines display substantial morphological 
variation that is presumably related to different 
modes of exposing algae to light (KirKendaLe, 
2009; Fig. 5). Some species are little modi-
fied, appearing morphologically similar to 
non-photosymbiotic species in shell shape and 
size—e.g., Fragum erugatum (tate, 1889) and 
F. fragum (Linnaeus, 1758) (Fig. 5). Others 
exhibit putative adaptions for light capture, 
including mantle hypertrophy and exposure 
as in tridacnines and F. unedo (Linnaeus, 
1758), and varied alternative morphologies 
that facilitate light capture, such as micro-
structural translucencies, shell thinning, and 
shell flattening of the posterior shell surface in 
Lunulicardia and Corculum (Fig. 5). 

PHOTOSYMBIONT ACQUISITION 
AND PLACEMENT

Tridacnines and fragines both harbor 
symbiotic algae extracellularly in a finely 
ramified digestive tube system (mansour, 
1946; norton & others, 1992; Farmer, 

tabLe 1. Continued from facing page.
F. sueziense (Issel, 1869) Persselin 1998; Kirkendale, 2009 zooxanthellae obligate
F. unedo (Linnaeus, 1758) Umeshita & Yamasu, 1985;  zooxanthellae obligate
  Kirkendale, 2009
F. vanuatuense Poorten, 2015 Poorten, 2015 zooxanthellae unknown
F. whitleyi Iredale, 1929 Kirkendale 2009, as F. scruposum zooxanthellae obligate
Lunulicardia auricula  unknown unknown unknown
(Niebuhr, 1775)
L. hemicardium (Linnaeus, Kirkendale, 2009 zooxanthellae unknown
1758)
L. orlini Mienis, 2009 unknown unknown unknown
L. retusa auricula unknown unknown unknown
(Niebuhr, 1775)
Cardiidae, Clinocardiinae
Clinocardium nuttallii Hartman & Pratt, 1976;  zoochlorellae facultative
(Conrad, 1837) Jones & Jacobs, 1992

Trapezidae
Fluviolanatus subtortus Morton, 1982 zooxanthellae? unknown
(Dunker, 1857)
Pectinidae, Palliolinae
Placopecten magellanicus Naidu & South, 1970 zoochlorellae facultative
(Gmelin, 1791 in 1791–1793)
Unioniidae
Anodonta cygnea (Linnaeus, Pardy, 1980 zoochlorellae facultative
1758)
Unio pictorum (Linnaeus, 1758) Pardy, 1980 zoochlorellae facultative
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Fitt, & trenCh, 2011). Algae are packed 
in the lumen of thin, tertiary tubules, sepa-
rated from the surrounding haemocoel by 
the tubule’s epithelium (Farmer, Fitt, & 
trenCh, 2011). The zooxanthellal tube 
system of giant clams arises from one of the 
digestive diverticular ducts of the stomach 
and divides into right and left tubes above the 
digestive organs (Fig. 6). Secondary zooxan-
thellal tubes branch in the upper levels of 
the inner fold of the siphonal mantle, where 
they terminate in thin, convoluted, blind-
ending tertiary tubes. Primary, secondary, and 
tertiary tubes are histologically differentiated, 
with the more robust, ciliated, primary tubes 
giving rise to thin-walled, ciliated, secondary 
tubes and similarly thin-walled tertiary tubes 
that lack cilia. Tertiary zooxanthellal tubes 
atrophy following bleaching, suggesting that 
they may be ephemeral and possibly regenera-

tive following bleaching incidents (norton 
& others, 1992). Tubules develop only in the 
presence of zooxanthellae in juvenile clams 
(Fitt & trenCh, 1981; Fitt, Fisher, & 
trenCh, 1986). More research is needed to 
understand how this inducible tubular system 
functions and is maintained at the molecular 
and cellular levels.

Remarkably, given that fragines appear to 
have evolved photosymbiosis independently 
from giant clams, a similar, complex zooxan-
thellal tubular system has been found in 
Corculum; this system extends not only into 
the mantle, but also to the ctenidia and foot, 
harboring zooxanthellae throughout (Farmer, 
Fitt, & trenCh, 2001; KirKendaLe, 2009; 
Fig. 7). Early work by KaWaGuti (1983) and 
TEM images by KemPF (in Farmer, Fitt, & 
trenCh, 2001) have also revealed evidence 
for a comparable tubular system in Fragum 

tabLe 2. Photosymbiotic status of extant Fraginae; presence of photosymbionts is based on 
previously published studies (1) or microscopic examination of live (2), formalin-fixed (3), or 

ethanol-fixed (4 ) animals (adapted from Kirkendale, 2009; nomenclature updated).
 Species Number of Presence of 
  specimens photosymbionts 

Americardia biangulata (Broderip & Sowerby, 1829) 2 absent2

A. media (Linnaeus, 1758) 3 absent2

Apiocardia obovalis (Sowerby, 1833)  absent4

Corculum cardissa (Linnaeus, 1758) 3 present1

Ctenocardia fornicata (Sowerby, 1841)  absent1

C. gustavi Vidal & Kirkendale, 2007 1 absent3

Fragum sp. (Persselin, 1998) 11 present1

F. carinatum (Lynge, 1909) 13 present3

F. fragum (Linnaeus, 1758) 50 present2

F. loochoanum Kira, 1959 20 present2

F. mundum (Reeve, 1845 in 1844–1845) 3 present3

F. aff. mundum (Reeve, 1845 in 1844–1845) 3 present3

F. nivale (Reeve, 1845 in 1844–1845)  present1

F. scruposum (Deshayes, 1855) 20 present2

F. sueziense (Issel, 1869) 6 present2

F. unedo (Linnaeus, 1758) 5 present2

Freneixicardia victor (Angas, 1872)  absent1

Lunulicardia sp. (Persselin, 1998) 1 present3

L. hemicardium (Linnaeus, 1758) 2 present1

L. retusa (Linnaeus, 1767 in 1766–1768)  present3

Microfragum erugatum (Tate, 1889) 20 present3

M. festivum (Deshayes, 1855) 10 absent3

M. subfestivum (Vidal & Kirkendale, 2007) 3 absent3

Papillicardium papillosum (Poli, 1791) 8 absent2

Parvicardium exiguum (Gmelin, 1791 in 1791–1792)  absent4

P. scriptum (Bucquoy, Dautzenberg, & Dollfus, 1892 in 1887–1898) 10 absent2

P. vroomi van Aartsen, Menkhorst, & Gittenberger, 1984 10 absent2

Trigoniocardia granifera (Broderip & Sowerby, 1829) 10 absent2
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fragum. The broad distribution of zooxan-
thellae through the body may be a conse-
quence of the relatively small body size of 
fragines, permitting much broader transmit-
tance of light (i.e, irradiance) across the body 
than in giant clams. Whereas Farmer, Fitt, & 
trenCh (2001) stated that tubule extensions 
of the digestive system likely typify photo-
symbiosis across molluscs, Clinocardium does 
not appear to have such a system (Fig. 4; 
hartman & Pratt, 1976). No aposymbiotic 
(non-photosymbiotic) bivalves have been 
reported with a comparable, digestive, tubular 
system (Farmer, Fitt, & trenCh, 2001). 

Oocytes and embryos of giant clams 
do not possess zooxanthellae; giant clams 
acquire zooxanthellae in veliger and juvenile 
stages through ingestion (Labarbera, 1974; 
Jameson, 1976; Fitt & trenCh, 1981; 
norton & others, 1992; Farmer, Fitt, & 
trenCh, 2001; hirose, iWai, & maruyama, 
2006). Juvenile giant clams develop the 
zooxanthellal tubular network that elon-
gates from stomach to mantle, several days 
following metamorphosis, triggered by 
the presence of zooxanthellae (norton & 
others, 1992; hirose, iWai, & maruyama, 

2006). The appearance of a line of zooxan-
thellae indicates the development of the 
tubule system, and is the first conspicuous 
sign of the establishment of symbiosis in 
giant clams (Fig. 8). Zooxanthellae prolif-
erate by cell division within the tubular 
system as well as through ingestion of algae 
from the environment (hirose, iWai, & 
maruyama, 2006).

ORIGIN OF PHOTOSYMBIOSIS IN 
CARDIIDS 

Photosymbiosis appears to have a diphy-
letic origin in the Cardiidae, arising sepa-
rately in the Tridacninae and Fraginae. The 
relationship of Fraginae and Tridacninae is as 
yet unresolved (sChneider, 1998; herrera 
& others, 2015). However, photosymbiosis 
is restricted to one clade within the Fraginae 
(KirKendaLe, 2009; Fig. 9), suggesting 
either independent origin in Tridacninae 
and Fragum-Lunulicarida-Corculum, or loss 
of photosymbiosis in at least the Ctenocardia-
complex of genera and potentially in addi-
tional clades, depending on the relationship 
of Fraginae and Tridacninae. The greatest 
challenge to the diphyletic hypothesis is the 

FiG. 5. Photosymbiotic lifestyle in extant Cardiidae; from left to right: Tridacna squamosa LamarCK, 1819 in 
1818–1822, Fragum fragum (Linnaeus, 1758), Lunulicardia hemicardium (Linnaeus, 1758), and Corculum cardissa 

(Linnaeus, 1758) (new).



10 Treatise Online, number 89

presence of remarkably similar and complex 
tubule systems to house zooxanthellae in 
both subfamilies (norton & others, 1992; 
Farmer, Fitt, & trenCh, 2001). Either 
this tubule system evolved convergently or 
photosymbiosis was lost in multiple lineages 
between tridacnines and the Fragum-Lunuli-
cardia-Corculum clade. The former hypoth-
esis gains support from the general asso-
ciation of zooxanthellae with the digestive 
system, especially the digestive gland, in many 
mollusks (berner, WishKovsKy, & dubinsKy, 
1986; banasZaK, GarCía ramos, & GouLet, 
2013). An especially illuminating example is 
the cooption of digestive diverticula, which 
pervade ceratal extensions, to farm chloro-
plasts acquired by kleptoplasty in sacoglossans 
(Jensen, 1997). Other evidence consistent 
with dual origin is that the tubular system is 
a dynamic entity, able to spontaneously form 
in response to presence of zooxanthellae early 

in ontogeny (hirose, iWai, & maruyama, 
2006) and to regrow following bleaching 
(Norton & others, 1995). A monophyletic 
origin of photosymbiosis would gain support 
if fragines and tridacnines were found to be 
sister lineages (herrera, 2013) and an early 
acquisition of photosymbiosis in a suitable 
ancestor was supported.  

ADAPTATIONS 
FOR PHOTOSYMBIOTIC 

LIFESTYLE: FUNCTIONAL 
MORPHOLOGY 

BACKGROUND

No photosymbiotic metazoans are known 
that rely entirely on symbiont-derived nutri-
tion (i.e., are autotrophic). In contrast, 
sole reliance on symbiont-derived nutri-
tion is prevalent among chemosymbiotic 
metazoans and internal parasites. Although 
some chemosymbiotic bivalves (reid & 
bernard, 1980) and worms (Jones, 1981) 
have lost a functional gut, internal parasites 
can degenerate so far as to lose most organ 
systems (including the nervous system), as 
in dicyemid mesozoans, a phylum of highly 
derived parasitic lophotrochozoans (suZuKi 

Fig. 6. Diagram of the path followed by zooxanthellal 
tube through a giant clam. 1, Medial view of a bisected 
clam; 2, dorsal view of a bisected clam; am, adductor 
muscle; bof, byssal organ (foot); ctn, ctenidia; k, kid-
ney; p, pericardium; pzt, primary zooxanthellal tube; s, 
stomach; sm, siphonal muscle; szt, secondary zooxan-
thellal tube; tzt, tertiary zooxanthellal tube (Norton 
& others, 1992; fig. 1 from Norton & others, 1992, 
Biol. Bull. 183:503–506, reprinted with permission 
from the Marine Biological Laboratory, Woods Hole, 

Massachusetts). 

FiG. 7. TEM photograph showing proximity of tertiary 
tubule of zooxanthellae to blood cell in the gill of Corcu-
lum cardissa (Linnaeus, 1758), scale bar, 1 µm; bc, blood 
cell; Sc, Symbiodinium corculorum (photosymbiont); t, 
tertiary tubule (adapted from Norton & others, 1992; 
fig.3 from Biol. Bull. 200:336–343, reprinted with 
permission from the Marine Biological Laboratory, 

Woods Hole, Massachusetts). 
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& others, 2010), or in myxozoans, a group 
of highly degenerate cnidarians that have 
been misclassified as protists in the past 
(evans & others, 2010).  

ANATOMICAL MODIFICATIONS 
INCLUDING SOFT PARTS, 
BEHAVIOR AND STORAGE

Photosymbiotic animals retain a full 
complement of functional organ systems, 
including a well-developed gut, and are 
mixotrophic. sChneider (1993) commented 
on several anatomical simplifications 
observed in fragine stomachs and suggested 
these might be related to photosymbi-
osis. However, aposymbiotic fragines also 
have simplified stomachs (e.g., type IV 
sensu PurChon, 1987, in Plagiocardium), 
suggesting that other selective forces, perhaps 
paedomorphosis, are involved. Indeed, 
fragines show other evidence for juveniliza-
tion, including small size and lack of mantle 
suture around the incurrent siphon.   

Important modifications of the body plan 
of the host are related to (1) light acquisition, 
(2) housing the symbionts (the tubule system 
discussed above), and (3) material exchange 
between host and symbiont. Light obviously 
limits photosymbioses to shallow to moderate 
depths in relatively clear waters. Light, as well 
as competitive advantage against both auto-
trophs and heterotrophs, give photosymbiotic 
mixotrophs an advantage in oligotrophic 
waters (haLLoCK & sChLaGer, 1986). 

Light acquisition imposes limits on life 
styles. Infaunal, endolithic, or cryptic habits, 
which limit access to light, are pervasive 
among bivalves because of the protection 
they provide against predation. Access to light 
and protection from predators are generally 
opposing selective forces for bivalves. An 
exposed, epifaunal mode of life would seem 
necessary for a photosymbiotic existence and 

FiG. 8. Juvenile Tridacna bruGuiére in bruGuiére, & 
others, 1791–1827, showing appearance of zooxanthel-
lae in tubular system of clams. 1, T. crocea LamarCK, 
1819 in 1818–1822; 2–3, T. squamosa LamarCK, 1819 
in 1818–1822; arrowheads, zooaxonthellal tubes; arrows, 
zooxanthellae lined along mantle edge; st, stomach; scale 
bar, 50 µm (adapted from Hirose, Iwai, & Maruyama, 
2006; Springer & Marine Biology 148(2006), p. 551–558, 
Continued on adjacent column.
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FiG. 8. Continued from adjacent column.
Hirose, Iwai, & Maruyama, Establishment of the photo-
symbiosis in the early ontogeny of three giant clams, fig. 
3, ©Springer-Verlag 2005, reprinted with kind permission 

from Springer Science+Business Media B.V.). 
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FiG. 9. Origin of photosymbiosis in the Fraginae (adapted from Kirkendale, 2009).

is the mode of life of tridacnines, Corculum, 
and some Fragum species, including F. 
mundum (reeve, 1845 in 1844–1845) and 
F. erugatum. Jones and JaCobs (1992) demon-

strated that algae are acquired by the cardiid 
Clinocardium nuttallii only when the clams 
change from an infaunal to an epifaunal habit 
during ontogeny. However other photosym-
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biotic cardiids (most Fragum and Lunulicardia 
species) are infaunal, but shallowly buried. 
The intense sunlight in shallow, tropical, reef 
habitats clearly reaches a modest distance into 
the sediment, allowing these animals to be 
photosymbiotic. A preadaptation of cardiids 
to photosymbiosis is their relatively simple, 
short siphons that limit depth of burial, 
keeping the animal near the better-lit sedi-
ment surface. All three lineages of cardiids 
with photosymbionts have moved from an 
infaunal to an epifaunal life style, supporting 
the hypothesis that the benefits of photo-
symbiosis have selected them to abandon the 
safety of infaunal existence (seiLaCher, 1984; 
Jones & JaCobs, 1992).  

Epibiotic and shallowly infaunal habits 
pose high predation risk, which extant 
photosymbiotic bivalves often minimize 
through escape to safe places, crypsis, 
or gigantism. Thus, fragines are abun-
dant in places that are difficult for preda-
tors to access, such as exposed, intertidal 
reef flats and reef crests, and hypersaline 
waters. The epifaunal Fragum mundum 

and small-bodied species of Corculum 
may be so locally abundant in some atolls 
of the Tuamotu Archipelago that they 
constitute a large fraction of the beach 
sediment behind shallow, exposed outer 
reef flats (Gustav Paulay, personal observa-
tion). Fragum erugatum similarly thrives 
in the hypersaline portions of Australia’s 
Shark Bay, reaching densities of 4000/m2 
(hiCKman, 2003; Fig. 10). Fragum fragum 
is among the last bivalves to thrive in the 
drying, detached lagoonal ponds on the 
mildly emergent Kiritimati atoll (PauLay, 
1991), and it is also a dominant species 
in some closed lagoons of the Tuamotu 
Archipelago, as Tridacna maxima (rödinG, 
1798) is in others (riChard, 1985). In less 
extreme marine habitats, photosymbiotic 
fragines typically have much lower popu-
lation densities and are often challenging 
to find alive. Crypsis, through encrus-
tation of the upper surface (posterior 
slope) of fragines that live epifaunally, 
also provides protection. The complex 
mantle color patterns in tridacnines may 

FiG. 10. Mucus-bound mat of living photosymbiotic bivalve Fragum erugatum (tate, 1889), Nanga Station, Shark 
Bay, Western Australia (Hickman, 2003; reproduced with permission). 
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also aid in crypsis and lead to reduced 
rates of predation (oZoG, 2009; todd, 
Lee, & Chou, 2009). Tridacnines escape 
predation through gigantism, with smaller 
species gaining further protection through 
extremely strong byssal attachment and, in 
some instances, a fully endolithic habit. 
The attached, endolithic giant clams 
Tridacna crocea LamarCK, 1819 in 1818–
1822, and to a lesser extent T. maxima can 
form very dense populations, especially on 
the intertidal tops of patch reefs (hamner 
& Jones, 1976; riChard, 1985; sirenKo, 
1991). 

Symbionts can be exposed to l ight 
when tissue is exposed through shell gape, 
mantle extension, or reorganization or 
reduction of the shell. Gape is an effective 
method for exposing symbionts to light 
and can be associated with hypertrophy 
of mantle tissue, as in tridacnines (yonGe, 
1936), fragines (ohno, Katoh, & yamasu, 
1995), and Clinocardium nuttallii (Jones 
& JaCobs, 1992). Tridacnine evolution 
has focused on increasing the amount of 
mantle surface that can be exposed by (1) 
habitually opening the valves broadly, (2) 
extending the mantle laterally beyond the 
valve margin (in Tridacna), (3) length-
ening the commissure by large marginal 
folds in the shell,  and (4) substantial 
reorganization of the body. The initially 
small, posterior siphonal area has become 
greatly expanded and positioned on the 
upper surface of the animal that remains 
attached by ventral byssus (Fig. 5). Fragum 
species also show a l imited extension 
of the mantle beyond the shell margin 
(ohno, Katoh, & yamasu, 1995). Mantle 
extension over the shell (as evidenced 
by inductural deposits) has been used as 
potential evidence for photosymbiosis in 
fossil Protocardia (Pachycardium) stantoni 
(Wade ,  1926) (sChneider & Carter, 
2001). However, the extension of the 
mantle over the shell is not, in itself, 
sufficient evidence for photosymbiosis, 
as it is prevalent in some aposymbiotic 
lineages. For example, many species of the 

diverse galeommatoid bivalves have exten-
sive, reflected mantles, often combined 
with shells that are reduced in size and 
thickness, yet none have been observed 
(or suggested) to possess algal symbionts. 
Light capture is thought to be further 
enhanced by abundant light-scattering 
iridophores situated in the mantle of 
tridacnines (GriFFiths, Winsor, & Luon-
Gvan, 1992). 

SHELL AND SHELL 
MICROSTRUCTURAL ADAPTATIONS 

FOR PHOTOSYMBIOSIS 

Light can also pass through the shell and 
be captured by zooxanthellae in internal 
tissues, a path taken by members of the 
Fraginae. Fragines expose symbionts by 
gaping and through shell translucency, 
with the former more important in basal 
members of the family and the latter more 
prevalent in apomorphic Fragum; Lunuli-
cardia; and Corculum. The capacity for 
gaping is reduced in light-transmissive 
shells, especially in Corculum. Light pene-
tration through the shell is facilitated by (1) 
small sizes, (2) thin shells, (3) a reduction 
in shell pigmentation, and (4) the develop-
ment of the window and condensing-lens 
microstructure; all of these are apparent in 
fragines. Several species have adult sizes of 
about 5 mm, with commensurately thin 
shells, but lack other apparent adaptations 
to light capture, suggesting that paedomor-
phosis might have facilitated the evolution 
of photosymbiosis (KirKendaLe, 2009). 
Moreover, small animals live closer to the 
sediment surface, further enhancing light 
availability in infaunal bivalves. Corculum, 
the genus most specialized for through-
the-shell illumination of zooxanthellae, is 
characterized by especially thin shells. Shell 
transparency can vary substantially with 
(Carter & sChneider, 1997) or without 
obvious gross correlates in microstructure. 
Windows, or more transparent shell areas, 
resulting solely from low pigmentation are 
apparent in some species, such as Fragum 
fragum. The incursion of the fibrous, pris-
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matic microstructure of the outer-shell 
layer in patches within the shell can make 
the windows more transparent, as demon-
strated in Corculum (Watson & siGnor, 
1986); this can be coupled with changes 
to the inner-shell surface shape to form 
small light-condensing lenses (Carter 
& sChneider, 1997). Shell thinness and 
transparency are also common in aposym-
biotic bivalves (e.g., Limaria LinK, 1807 
in 1806–1808), many galeommatoids, 
pectinids, anomiids, and several lineages 
of small bivalves in reef caves (hayami & 
Kase, 1996), so caution is needed when 
using these features as sole evidence of 
photosymbiosis in fossils. 

Increasing the surface area of the shell is 
another adaptation seen in lineages relying 
on shell transparency for light capture. In 
this adaptation the posterior slope of the 
shell is flattened so that it lies parallel to 
the sediment surface and is substantially 
widened to serve as a kind of solar panel. 
Although significant widening of the poste-
rior slope and corresponding antero-poste-
rior foreshortening of the shell is unique to 
Corculum, other fragines display limited flat-
tening and slight elongation of the posterior 
slope, but such shapes are also encountered 
in aposymbiotic relatives as Ctenocardia 
adams & adams, 1857 in 1853–1858, and 
Americardia steWart, 1930. 

An interesting twist to the relevance of shell 
transparency was the recent discovery that 
numerous large, thick-shelled gastropods also 
harbor healthy zooxanthellae in their digestive 
system. These algae, however, may rely on fixed 
carbon from the host, rather than contributing 
it (berner, WishKovsKy, & dubinsKy, 1986; 
banasZaK, GarCía ramos, & GouLet, 2013). 

EVIDENCE FOR 
PHOTOSYMBIOSIS IN 

EXTINCT TAXA 
THE CHALLENGE OF INFERENCE 

Photosymbios i s  has  been infer red 
for numerous extinct lineages based on 
morphological, paleoecological, and isotopic 

evidence (e.g., CoWen, 1983; seiLaCher, 
1990; Jones & JaCobs, 1992; vermeiJ, 
2013). Such inferences, however, are ques-
tionable because virtually none of the attri-
butes used as evidence are unique to photo-
symbiotic bivalves—they are present or 
even common in extant aposymbiotic taxa. 
Furthermore, a large proportion of the 
living photosymbiotic bivalves (unionids, 
Clinocardium, and most Fragum) lack any 
evidence of photosymbiosis in their hard 
parts and, thus, would not be suspected to 
be photosymbiotic as fossils. 

Specialized morphologies that enhance 
surface area for light capture are seen in 
extant tridacnines and Corculum (Fig. 11), 
and have been used as evidence to infer 
photosymbiosis in fossils. The proposed 
morphologies include hinges that permit 
a broad gape, undulating shell margins, 
mantles extended over the shells (indi-
cated by inductural deposits), thin shells, 
and microstructures conducive to light 
penetration (seiLaCher, 1990; vermeiJ, 
2013). Inferring photosymbiosis from these 
morphologies is problematic, however, 
because most of these features are not diag-
nostic of photosymbiosis, as is apparent 
from consideration of extant aposymbiotic 
bivalves. Examples include the broad gape 
in Limaria; undulating shell margin in 
Hyotissa stenZeL, 1971; reflected mantles in 
Scintilla deshayes, 1856; thin, translucent 
shells in Placuna LiGhtFoot, 1786; and 
thin, transparent shells with thick, prismatic 
microstructure in Streptopinna martens, 
1880. The only putative adaptive feature 
currently known to occur only in photosym-
biotic bivalves is the localized shell-window 
microstructure and associated convex lenses 
on the inner shell surface in Corculum; 
however, similar features have not yet been 
encountered in fossil taxa.  

Rapid shell mineralization, rapid growth 
rates, and gigantism have been used to infer 
photosymbiosis in fossil taxa, based on 
enhanced growth rates from mixotrophic 
nutrition and the potential facilitation of 
calcification by algal symbionts seen in 



16 Treatise Online, number 89

tridacnines (seiLaCher, 1990; vermeiJ, 
2013). However, other living photosymbi-
otic and chemosymbiotic bivalves are not 
larger than their aposymbiotic counterparts, 
and aposymbiotic species commonly have 
large, heavily calcified shells, comparable 

to those of small to medium-sized tridac-
nines (e.g., Hyotissa; Empressostrea huber & 
LorenZ, 2007; Spondylus Linnaeus, 1758; 
Mercenaria sChumaCher, 1817).  

An exposed habit in shallow, clear, tropical 
waters is typical for most photosymbioses, a 

FiG. 11. Corculum cardissa (Linnaeus, 1758), illustrating condensing lens (1) and posterior shell translucencies 
(2–3) in the Fraginae; BCL, branched cross-lamellar; DCP, dissected cross-prismatic; FP, fibrous prismatic (adapted 

from Carter & Schneider, 1997). 
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mode of life best developed today in tropical 
coral reefs. Photosymbioses are competi-
tively advantageous in oligotrophic waters 
because of the nutrient recycling offered by 
mixotrophy (haLLoCK & sChLaGer, 1986). 
The restriction to shallow, well-lit waters is 
necessary for and suggestive of, but again not 
unique to, photosymbioses. Hyotissa; Isog-
nomon LiGhtFoot, 1786; Malleus LamarCK, 
1799; Spondylus; Chama Linnaeus, 1758; 
several ostreids; pteriids; and pinnids also 
form large, exposed populations on (and 
often limited to) shallow, reef-associated 
habitats. Indeed, these taxa are commonly 
more conspicuous and abundant than tridac-
nines and fragines on Indo-Pacific reefs.  

Bivalve lineages that move from infaunal 
to epifaunal habits have been regarded as 
“primary suspects because photosym-
biosis appears as the only feasible trade-off 
that could have lured a bivalve out of a 
more protected life within the sediment” 
(seiLaCher, 1990, p. 294). Tridacnines, 
fragines, and Clinocardium nuttallii show 
this transition and, when combined with 
other lines of evidence (e.g., restriction to 
well-lit waters, suggestive morphology), 
this transition provides strong evidence for 
photosymbiosis. Again, though, aposymbi-
otic counterexamples are not uncommon, 
as exemplified by the nestling pinnid 
Streptopinna saccata (Linnaeus, 1758) and 
the venerid Periglypta reticulata (Linnaeus, 
1758) on reefs.  

Jones, WiLLiams, and romaneK (1986) 
proposed that depleted C13:C12 ratios were 
indicative of photosymbiosis. However, 
more thorough sampling demonstrated 
substantial variation and complete overlap 
between photosymbiotic and aposymbiotic 
bivalves (Jones, WiLLiams, & sPero, 1988; 
romaneK & Grossman, 1989; Jones & 
JaCobs, 1992).

The difficulty of inferring photosym-
biosis in fossils is also demonstrated in 
extant taxa. For example, based on living 
habits, habitat, and morphology, seiLaCher 
(1990) predicted that the pectinid Pedum 
bruGuière, 1792 in bruGuière, LamarCK, & 

others, 1791–1827, and the pinnid Strepto-
pinna would be found to host zooxanthellae, 
but both taxa are aposymbiotic (Kirkendale, 
personal observation). Similarly, sChneider 
(1993) predicted that all fragines would be 
found to be photosymbiotic, based on their 
simplified stomachs, and we also expected 
the fragines Ctenocardia and Americardia 
would be photosymbiotic, based on their 
marked keels and broad, flat posterior slopes. 
However, as noted above, photosymbiosis in 
fragines is restricted to the Fragum-Lunuli-
cardia-Corculum clade. 

FOSSIL TRIDACNINES

Both main clades of living photosymbi-
otic cardiids have a fossil record and repre-
sent the only definitively photosymbiotic 
fossil bivalves. The fossil record of photo-
symbiotic fragines (Fragum, Lunulicardia, 
and Corculum) is limited, extending only to 
the Miocene (sChneider, 1998).

The living tridacnines Tridacna and 
Hippopus are preceded by a series of fossil 
genera that well illustrate the transfor-
mation from typical cardiid to tridac-
nine body plan (sChneider, 1998; Fig. 
12). Three early genera differentiated 
rapidly and are represented in the Lutetian 
(sChneider, 1993). Goniocardium vasseur, 
1880, resembles ancestral cockles, except 
for the reduction of the anterior hinge 
and almost complete loss of lateral hinge 
teeth. The anterior adductor muscle is 
then greatly reduced in Avicularium Gray, 
1853; it is lost in Byssocardium munier-
ChaLmas in tournouër, 1882, and in the 
related Omanidacna harZhauser & others, 
2008, while the posterior adductor muscle 
migrates to a central position. The anterior 
hinge is similarly reduced with the loss of an 
anterior, lateral tooth remnant and reduc-
tion and loss of the anterior cardinal teeth 
(sChneider, 1998). As the anterior region 
of the shell and body are reduced, the 
posterior region is correspondingly enlarged 
(staseK, 1962). A byssal gape is lacking in 
the presumably infaunal Goniocardium, 
slightly developed in Avicularium, and 
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well developed in Byssocardium, marking 
the transition to an epibenthic mode of 
life. These morphological transformations 
are recapitulated in the ontogeny of giant 
clams, wherein anterior lateral and cardinal 
teeth and adductor muscles are present in 
early ontogeny but lost in subsequent devel-
opment (Labarbera, 1974; roseWater, 
1981; sChneider, 1998; Fig. 13).   

SUGGESTED FOSSIL 
PHOTOSYMBIOTIC BIVALVES 

Although several extinct bivalve clades 
were proposed to have been photosymbiotic 
based on the types of evidence reviewed 
above, the evidence is equivocal. Rudists 
are the most frequently cited likely photo-
symbiotic clades, as they exhibit epifaunal 
habits and paleoecological and morpho-
logical attributes suggestive of photosym-

biosis (e.g., KauFFman & sohL, 1974; 
voGeL, 1975; sKeLton & WriGht, 1987; 
KauFFman & Johnson, 1988; seiLaCher, 
1990, 1998). As such, they are large, abun-
dant, sessile or epibenthic recliners with 
thick shells and rapid growth rates that 
indicate high rates of calcification, and they 
are restricted to low latitudes and mostly 
shallow waters (sKeLton, 1978; KauFFman 
& Johnson, 1988; LeWy, 1995; steuber, 
2000). Rudist bioherms largely displaced 
tropical coral reefs through the middle and 
late Cretaceous, further suggesting ecological 
equivalency, although this replacement was 
possibly facilitated or driven by the super-
heated, hypersaline waters of the equatorial 
Supertethys being inimical to reef coral 
growth (KauFFman & Johnson, 1988).  

Comparisons with living bivalves reveal 
numerous aposymbiotic clades that share 

Fig. 12. Evolution of tridacnine body plan from that of a typical cockle, exemplified by Cerastoderma edule (Lin-
naeus, 1758) (1), to extinct Goniocardium vasseur, 1880 (2), fossil Avicularium Gray, 1853 (3), fossil Byssocardium 
munier-ChaLmas in tournouër, 1882 (4 ), and extant Tridacna bruGuière, 1797 in bruGuière, LamarCK, & 
others, 1791–1827 (5 ); ac, anterior cardinal; acs, anterior cardinal socket; als, anterior lateral socket; pc, posterior 
cardinal tooth; pls, posterior lateral socket; u, umbo; scale bars, 10 mm (1–3, 5) and 15 mm (4 ) (Schneider, 1998).
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these attributes with rudists. The common-
ness of epibenthic and sessile habits and large 
size in aposymbiotic bivalves on the shallow 
reef (and other habitats) was discussed 
above. The rapid growth rate and miner-
alization of rudists is not greater than that 
of present mussel or oyster beds (steuber, 
2000). Chamids are frequently considered 
modern analogs of rudists; their morphology 
and life habits are quite similar to such basal 
rudists as diceratids. Both chamids and the 
ecologically similar spondylids are large, 
heavily mineralized, sessile, mostly cemented 
bivalves that are restricted to warm, shallow 
waters, and both are abundant on coral reefs. 
None are known to harbor zooxanthellae, 
based on hundreds of specimens of dozens of 
species in both groups that have been exam-
ined and that lacked macroscopic evidence 
of algal symbionts (bright white indicating 
lack of substantial chlorophyll in tissues).  

Morphological evidence suggesting 
photosymbiosis in rudists includes mantle 
exposure or upper valves that are likely 
translucent (voGeL, 1975; seiLaCher, 
1990, 1998; vermeiJ, 2013). Tissues may 
have been exposed to light (1) around the 
periphery of the upper valve, as in Torreites 
PaLmer, 1933 (sKeLton & WriGht, 1987) 
and Durania douviLLé, 1908 (seiLaCher, 
1990); (2) through a porous upper valve, 
as in Osculigera (voGeL, 1970); or (3) by 
elaboration in a canal system and overlap 
of mantle onto the upper valve, as in 
Vaccinites FisCher, 1887 in 1880–1887 
(sChumann, 2010). Figure 14 illustrates 
the upper part of the shell with thick 
extensions of mantle margin projecting 
out between the valve rims, in the manner 
of the living giant clam Tridacna. It may 
be surmised that, as in the latter, these 
mantle extensions were vividly and vari-
ably colored (sKeLton & WriGht, 1987). 
However,  these special izations,  some 
lacking modern counterparts, have also 
been interpreted as adaptations for food 
entrapment (sKeLton, 1978; sChumann, 
2010) or respiration (voGeL, 1970), as 

well as photosymbiosis (voGeL, 1975; 
seiLaCher, 1990, 1998; vermeiJ, 2013). 

The weight of evidence from morphology, 
ecology, and domination of reef-like habi-
tats for rudists is highly suggestive that at 
least some lineages were photosymbiotic. 
Photosymbiosis has also been proposed for 

FiG. 13. Morphological transformation observed in 
giant clam ontogeny closely mirrors evolution of 
tridacnine body plan (see Fig. 12) (Rosewater, 1981; 
reproduced with permission of Bulletin of the American 

Malacological Union). 
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their ancestors, the megalodontids (véGh-
neubrandt, 1982; KauFmann & Johnson, 
1988; vermeiJ, 2013), albeit with more-
limited evidence. Suggestive evidence includes 
their massive, heavily calcified shells, evolu-
tionary transition from infaunal to epifaunal 
habit, proposed wide gape, and occurrence in 
shallow, well-lit, tropical waters. 

The Upper Triassic megalodontoids 
Dicerocard ium  s to P Pa n i ,  1857,  and 
Wallowaconcha yanCey & stanLey, 1999, 
have similarly been suspected of being 
photosymbiotic (seiLaCher, 1990; yanCey 
& stanLey, 1999; vermeiJ, 2013). These 
reclining, epibenthic clams expanded their 
valves laterally around a sharp keel, in a 

FiG. 14. 1, Reconstruction of Torreites sanchezi milovanovici GrubiC, 1980, as it appeared in life, showing upper part 
of shell with mantle margin projecting out between valve rims; 2, upper surface of upper valve in Vaccinites vesiculosus 
WoodWard, 1855 (Schumann, 2010; reprinted with permission of TÜBİTAK, Turkish Journal of Earth Sciences).  

FiG. 15. Putative photosymbiotic fossil bivalves. 1a–c, Fossil analogs of extant Corculum, highlighting repeated evolution 
of similar forms Tanchintongia oZaKi, 1968; Opisoma stoLiCZKa, 1871 in 1870–1871; and Dicerocardium stoPPani, 1857 
(adapted from Seilacher, 1990; reproduced with permission, Historical Biology, Taylor & Francis Ltd.); 2, Wallowaconcha 
raylenea yanCey & stanLey, 1999, block diagram of ecological grouping on seafloor (left) and views of fossil specimen (right) 
(adapted from Yancey & Stanley, 1999; reproduced with permission, Palaeontology, John Wiley and Sons, Publisher); 3, fossil 
Trichites Lhuyd, 1760 (adapted from Seilacher, 1990; reproduced with permission, Historical Biology, Taylor & Francis Ltd.).

1 2

1a  Tanchintongia 1b  Opisoma 1c  Dicerocardium

3  Trichites2  Wallowaconcha
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broad, Corculum-like manner suggestive 
of a solar-panel function (Fig. 15). Such a 
shell form works well only if light can pass 
through the shell, as the shell morphology 
limits gaping. That both were large animals 
with fairly thick shells challenges a hypoth-
esis of photosymbiosis (yanCey & stanLey, 
1999). A similar reclining, broad, solar-panel 
morphology developed in other tropical, 
shallow-water bivalve groups, including 
three lineages of pteriomorphians (Permian 
alatoconchids and Tanchintongia oZaKi, 
1968, as well as Triassic ramonalinids) and 
the Jurassic astartid Opisoma stoLiCZKa, 
1871 in 1870–1871(Fig. 15.1). All of these 
groups have been suggested to have been 

photosymbiotic based on their morphology, 
life habit, and occurrence in shallow, tropical 
settings (seiLaCher, 1990; isoZaKi, 2006; 
yanCey, WiLson, & mione, 2009; vermeiJ, 
2013). Although alatoconchids were also 
very large animals, their outer prismatic shell 
layer has been proposed to have been poten-
tially fairly transparent to light; they thrived 
in shallow, tropical environments, in associa-
tion with presumably photosymbiotic rugose 
corals and fusulinid forams (isoZaKi, 2006).

seiLaCher (1990) and vermeiJ (2013) also 
proposed photosymbiosis for the Jurassic 
and Cretaceous pinnids Trichites Lhuyd, 
1760 (Fig. 15.3) and Stegoconcha böhm, 
1907. As with the megalodontoids and 

FiG. 16. Habit, zonation, and morphology of putative photosymbiotic fossil bivalves. 1–2, Habit and zonation (1) 
and morphology (2) of Gervilleioperna sp. KrumbeCK, 1923; Mytilioperna sp. iherinG, 1903; Lithioperna scutata 
(dubar, 1948); Lithiotis problematica GümbeL, 1871; and Cochlearites loppianus (tausCh, 1890); 3, Pachyperna 
laverdana oPPenheim, 1900, habit through ontogeny; juvenile (a), epibyssate (b) stages as hard-bottom dwellers; c, 

adult, edgewise recliners, likely soft-bottom dwellers (adapted from Fraser, Bottjer, & Fischer, 2004).

1

2 3
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pteriomorphians just discussed, they are 
epibenthic recliners, but not so laterally 
expanded; however, they possess a trans-
lucent shell microstructure of especially 
long prisms. Fraser, bottJer, and FisCher 
(2004, p. 64) proposed possible photo-
symbiotic life styles for the reef-building 
Jurassic pterioids Lithiotis GümbeL, 1871, 
and Cochlearites reis, 1903, because of 
“their growth habit, extensive calcification, 
presumed oligotrophic environment, 
and pseudocoloniality” (Fig. 16.1–16.2). 
Posenato (1994, 1995) proposed that the 
Eocene isognomonid Pachyperna oPPenheim, 
1900, may have been photosymbiotic, 
based on its large size, heavy skeleton, and 
reclining habit (Fig. 16.3). In all these 
aspects this species is similar to the related 
Malleus malleus (Linnaeus, 1758), a large, 
aposymbiotic recliner common on the 
shallow reefs of the Palau islands. 

Finally, several extinct cardiid lineages 
have been proposed to have harbored photo-
symbionts. The Late Cretaceous Protocardia 
(Pachycardium) stantoni is characterized by 
extensive inductural deposits, indicating the 
extension of the mantle over the shell that 
is suggestive of exposing algal symbionts 
(sChneider & Carter, 2001). vermeiJ 
(2013) proposed potential photosymbiosis 
in ‘Cardium’ cedrelarum Cox, 1941, and 
Sawkinsia, two large, epibenthic cardiids 
from shallow, tropical, late Eocene lime-
stones in Jamaica (Fig. 17).

SUMMARY AND A LOOK TO 
THE FUTURE

Cardiids are the only extant bivalves 
known to be involved in obligate photosym-
biosis. Tridacnines have locked into a special-
ized body plan and show limited variation 

FiG. 17. Geological ages with climate change through Phanerozoic (line is long-term average, based on veiZer 
& others, 1999), mass extinctions (black triangles), and major episodes of coral reef building (denoted by cor-
als; veron, 2008); occurrence and/or duration of paleophotosymbiotic bivalves and extant photosymbiotic 
bivalves are plotted; note that early Eocene appearance of Symbiodinium FreudenthaL, 1962, has been proposed 

(vermeiJ, 2013) (new).



23Photosymbiosis in Bivalvia

among species in adaptations for photosym-
biosis. In contrast, photosymbiotic fragines 
show a range of intermediate strategies for 
light capture. Photosymbiotic relationships 
reported outside cardiids are uncommon, 
facultative, and poorly understood. That 
algal symbionts may be parasitic, rather 
than beneficial to their host, has recently 
been suggested in plankton (deCeLLe, 2013) 
and gastropod (banasZaK, GarCía ramos, 
& GouLet, 2013) symbioses. New analyt-
ical tools, such as nano-scale secondary ion 
mass spectrometry (NanoSIMS), that enable 
quantification of small amounts of nutrient 
exchange between partners will be instru-
mental in understanding these photosym-
bioses. However, additional basic research 
such as identifying photosymbiont lineages in 
bivalves beyond giant clams is also required. 

Convincing evidence for photosymbiosis 
in extinct bivalves is limited. Window-shell 
microstructure underlain by convexities, the 
only character restricted to extant photo-
symbiotic bivalves, is the best character for 
identifying extinct photosymbiosis. To date, 
no fossil bivalves have been found with this 
feature. Other lines of evidence for inferring 
photosymbiosis in fossils are equivocal, as 
demonstrated by living aposymbiotic clades 
that possess them. Moreover, the fact that the 
majority of clades with the most suggestive 
morphologies and distributions are deep and 
highly specialized lineages with no modern 
analogs makes inferences challenging.  

Photosymbiotic associations shape past 
and present coral reef biodiversity. Although 
these associations are more fragile than 
aposymbiotic partnerships, research has 
indicated that they are potentially more 
dynamic and responsive to climate change 
than previously assumed (buddemeier & 
Fautin, 1993). The evolution of new forms 
and strategies for photosymbiosis in the 
Bivalvia will undoubtedly persist, as life 
finds a way.   
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