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INTRODUCTION

Statoliths are the small, hard, arago-
nitic stones that lie, pair-wise, in the 
fluid-filled cavities, or statocysts, within 
the cartilaginous head capsules (cephalic 
cartilage) of all  l iving—and probably 
al l  fossi l—members of the Coleoidea 
(Clarke, 1978) (see Treatise Online, Part 
M, Chapters 4, 13). The usefulness of 
these balance organs in taxonomy, system-
atics, and evolution has been explored by 
Clarke and Maddock (1988a, 1988b); 
Dommergues, Niege, and von Boletzky 
(2000); Neige and Dommergues (2002), 
and Ne i g e (2006),  among others .  In 
particular, they have become important 
in the study of growth: fine layers in their 
structure have been shown to mark daily 
growth in several species (Spratt, 1978; 
Martins, 1982; Arkhipkin, 1988, 2004, 
2005; Lipinski ,  1993, 2001; Jackson , 
1994, 2004). Many statoliths have been 
found in Cenozoic (Clarke & Fitch , 
1975 ,  1979 ;  C l a r k e ,  M a d d o c k ,  & 
Steurbaut, 1980; Lehmann, 2010) and 
Mesozoic (Clarke, 2003; Hart & others, 
2010, 2013, 2015, 2016; Klug & others, 
2016) sediments in North America and 
Europe. Many of these Jurassic records 
refer to the important Christian Malford 
Lagerstätte (Callovian, Jurassic) in Wilt-
shire, UK, where abundant statoliths and 
hooks are associated with soft-bodied 
preservation of the potential host animals.

STATOLITHS IN RECENT 
COLEOIDS

Statolith shape in the Octopoda (Incir-
rata, Cirrata) and Vampyromorpha differs 
markedly from that of the Decabrachia. 
Statoliths of the Vampyroteuthidae consist 
of loosely adhering, dumbbell-shaped crys-
tals arranged to form a limpet shape. The 
Octopoda have statoliths varying from the 
limpet-shaped form of the largely inshore 
Octopodidae (e.g., Eledone Leach, 1817) 
to the bar shape of the oceanic Bolitaenidae 
Chun, 1911 (e.g., Eledonella Verril, 1884: 
Fig. 1). While fossil octopod statoliths have 
not yet been described, the hard, aragonitic 
nature of those from living forms suggests 
they may well be found in the future.

Decabrachian statoliths are quite vari-
able in shape but have several parts that can 
generally be identified (Fig. 2). The four 
principal parts are the lateral dome, the 
dorsal dome, the rostrum, and the wing, 
which cups an area of randomly arranged, 
opaque crystals to which the soft tissues of 
the animal are attached in life. Most of the 
statolith consists of fairly transparent crystals 
radiating from one or two centers within 
the domes. The domes may have secondary 
lobes and are sometimes not separated from 
one another externally. On the lateral side of 
the attachment area, the lateral dome has an 
extension or spur. Viewed from the rostral 
or ventral end, the rostrum is seen to be oval 
in outline and is often at an angle to the 
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Fig. 1. Various statoliths; 1–5, Eledone cirrhosa (Lamarck, 1798), anteriolateral (1), posterior (2), ventral (3), medial 
(4 ), and dorsal (5 ) views, length 1.74 mm; 6, Eledonella pygmaea (Verrill, 1884), view uncertain, length 0.42 mm; 

7, Benthoctopus sp., lateral view, length 0.31 mm (adapted from Clarke, 1978).

main axis of the lateral dome (Fig. 3). Varia-
tion in shape between the statoliths of nine 
living genera within six families is shown 
in Figure 4. Although some of the features 

described above are missing in some species 
or in some fossilized squid statoliths, there 
is usually no doubt that fossils are statoliths. 
Their aragonitic composition often leads to 
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Fig. 2. Diagrams of a generalized teuthoid right statolith, showing dimensions and terms used in descriptions; view 
of anterior (1), posterior (2), lateral (3), and anterior (4 ) sides (adapted from Clarke, 1978).

their co-occurrence with fish otoliths, which 
have the same composition. Indeed, some 
papers on fish otoliths include descriptions 
of cephalopod statoliths, without recognizing 
their real identity (Frost, 1926, fig. 13–14; 
Neth & Weiler, 1953, pl. 8,8; Martin & 
Weiler, 1954, pl. 3,116; Rundle, 1967, fig. 
4; Engeser, 1990, p. 155), and Lehmann 

(2010, pl. 1,1,7 ) identified some specimens 
as statoliths, although they are probably 
otoliths. The largest statoliths are about 3 
mm in length, but fossil examples of less 
than 0.1 mm have been recognized. All fossil 
statoliths found so far are from continental-
shelf, neritic, shallow-water deposits. It 
is, therefore, useful to review the extant 
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coleoids that occur in shallow-water environ-
ments, since relatives of these are the most 
likely to be found in the more-recent fossil 
deposits. They are principally from the orders 
Octopoda (family Octopodidae Orbigny, 
1840 in Férrusac & Orbigny, 1835–1848), 
Sepiida (families Sepiidae Leach, 1817, 
and Sepiadariidae Fischer, 1882 in 1880–
1887), Sepiolida (families Sepiolidae Leach, 
1817, and Idiosepiidae Appellöf, 1898), and 
Loliginida (=Myopsida). A few species of the 
order Oegopsida (families Ommastrephidae 
Steenstrup, 1857; Onychoteuthidae Gray, 
1849; and Gonatidae Hoyle, 1886) move 
onto the continental shelf to feed at some 
stage in their lives (Brierley, Clarke, & 
Thorpe, 1996). 

From the distribution of living species, one 
might expect the most common Cenozoic 
statoliths to belong to the families Octopo-
didae, Sepiidae, Sepiolidae, and Loliginidae 
Lesueur, 1821. That only the Loliginidae 
has been described so far is probably due to 
the early stage of the investigations. Interme-
diate forms between belemnoids, teuthoids, 
and spirulids have been described from the 
late Cretaceous of Canada, Greenland, and 
Chile (Jeletzky, 1966; Fuchs & others, 
2012, 2013). The relationships of Cenozoic 
spirulids such as Belemnosella Naef, 1922; 
Spirulirostra Orbigny, 1842; and Belopterina 
Munier-Chalmas, 1872—all apparently 
intermediate between late Cretaceous forms 
and living Spirula—could be clarified were 
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Fig. 3. Right statolith of Loligo forbesii Steenstrup, 1856; view of anterior (1), posterior (2), medial (3), dorsal (4 ), 
ventral (5), and lateral (6 ) sides, length 2.0 mm (adapted from Clarke, 1978).
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statoliths to be found in the same strata. There 
is little doubt that more rigorous searching 
will eventually bring to light fossil statoliths of 
members of the Octopodidae, Sepiolidae, and 

Sepiidae in European and North American 
(Octopodidae and Sepiolidae only) rocks. 
This optimism is confirmed by recent records 
from the Eocene of France (Neige, LaPierre, 
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Fig. 4. Anterior (upper) and lateral (lower) views of statoliths of nine teuthoids; 1, Ommastrephes bartramii (Lesueur, 
1821), length 1.37 mm; 2, Mastigoteuthis sp., length 0.63 mm; 3, Teuthowenia megalops (Prosch, 1847), length 0.72 
mm; 4, Nototodarus sloanii (Gray, 1849), length 1.26 mm; 5, Todarodes sagittatus (Lamarck, 1798), length 1.82 
mm; 6, Pyroteuthis margaritifera Rüppell, 1844, length 0.58 mm; 7, Histioteuthis bonnellii Férussac, 1834, length 
0.97 mm; 8, Abraliopsis sp., length 0.48 mm; 9, Helicocranchia pfefferi Massy, 1907, length 0.75 mm (adapted 

from Clarke, 1978).
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& Merle, 2016). The limpet shape of the 
octopodid statolith (Fig. 1), the globular form 
of the lateral dome in the sepiid (Fig. 5) and 
sepiolid, and the triangular or pointed form 
of the lateral dome in the loliginids make 
their identification to family level relatively 
straightforward (Fig. 3).

The oegopsids that regularly come onto 
the continental shelf of Europe are the 
ommastrephids, including Todarodes sagit-
tatus (Lamarck, 1798), Todaropsis eblanae 
(Ball, 1841), and Illex coindeti (Verany, 
1939). Fossil statoliths of these have not 
yet been found. In North America, the only 
oegopsid coming onto the shelf regularly 

on the east coast is the ommastrephid Illex 
illecebrosus (Lesueur, 1821) and, on the 
west coast, the ommastrephid Dosidicus gigas 
(Orbigny, 1835 in 1834–1847) and the 
onychoteuthid Moroteuthis robusta (Verrill, 
1876). While fossil statoliths of the extant 
genus Illex Steenstrup, 1880, have not yet 
been recorded, fossil statoliths similar in 
form to those of D. gigas and M. robusta have 
been described and are considered to belong 
in the same genera (Clarke & Fitch, 1979).  

The gonatid squid Berryteuthis magister 
(Berry, 1913) moves onto the North Amer-
ican continental shelf seasonally but is found 
farther north, as indeed are a few of the fish 

1 21 2

Fig. 5. Anterior (upper) and lateral (lower) views of statoliths; 1, Sepia elegans Blainville, 1827, length 1.46 mm; 
2, Spirula spirula Linnaeus, 1758, length 0.92 mm (adapted from Clarke, 1978).
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from the same deposit. A number of the 
fossils are certainly congeneric with this 
species but are not the same species. Berry-
teuthis anonychus Pearcy & Voss, 1963, is 
found off California today, but its stato-
liths have not become available for study. 
The ommastrephid Sthenoteuthis (formerly 
Symplectoteuthis) oualaniensis (Lesson, 1830) 
is normally entirely oceanic and does not 
stray onto the continental slope. It was, 
therefore, surprising to find a close relative 
of the same genus in the same fossil deposit 
as a species of Loligo Lamarck, 1798. Some 
fish in this deposit, however, were also meso-
pelagic and bathypelagic.

CENOZOIC STATOLITHS
NORTH AMERICA

Twelve of over thirty sedimentary succes-
sions in North America sampled by John 
Fitch have yielded fossil statoliths (Clarke 
& Fitch, 1975, 1979), and these comprised 
samples from mid-Eocene to early Pleisto-
cene age. The great effort needed to make 
this collection can be imagined from the 
fact that more than 4500 kg of sediment 
were sieved to provide 467 statoliths: only 
~0.1 statoliths per kg. The same samples, 
however, yielded more than 164,000 fish 
otoliths, which is a ratio of 352 otoliths to 
every statolith. This raises the question of 
whether these samples reflect a true numer-
ical relationship between teleost fish and 
teuthoids in the seas around North America 
during the time intervals sampled. Two 
factors are probably involved in lowering 
the numbers of statoliths in the samples. 
Firstly, the finest sieve used to remove 
biological samples from the fossiliferous 
matrix had a mesh size of 0.5 mm, and 
there is little doubt that many statoliths 
would have passed through this sieve. Most 
of those collected had a width in excess of 
0.5 mm and are probably at the larger end 
of the size spectrum. Secondly, living cole-
oids on the continental shelves often form 
large aggregations during spawning, which 
is followed by death; thus, unless a deposit 
encompassed such an area, the number of 

mature-sized cephalopods might well seem 
sparse compared to fish. If spawning areas 
come to light in fossil deposits, far more 
statoliths than otoliths should be found. 
The sediments of the Christian Malford 
Lagerstätte described by Hart and others 
(2010, 2015, 2016) contain many more 
statoliths than otoliths and may represent 
such an environment.

FAMILY LOLIGINIDAE

The loliginid statoliths of the collec-
tions assembled by John Fitch are well 
differentiated back to the mid-Eocene and 
have all been included in the genus Loligo. 
Loligo applegatei Clarke & Fitch, 1979, 
from the Ypresian (Eocene) has an unusu-
ally large lateral dome (Fig. 6), which may 
have evolved into the Oligocene Loligo 
mississippiensis Clarke & Fitch, 1979, by 
becoming flattened on its inferior side. 
It may also have evolved into later Loligo 
sp. B, Loligo sp. D, and Loligo valeriae 
Clarke & Fitch, 1979, all of which are 
very similar in shape, by becoming much 
reduced and less pointed (Fig. 6–7). The 
inferior side of the lateral dome of L. 
valeriae is enlarged in a manner similar 
to the living Doryteuthis pealei (Lesueur, 
1821) and D. plei (Blainville, 1823). The 
other living, east-coast loliginid, Lolli-
guncula brevis (Blainville, 1823), differs 
from Loligo statoliths in having a rounded 
lateral dome with no suggestion of a point 
at the superior end. On the west coast of 
North America, Loligo sp. A is completely 
different from the east coast L. applegatei, 
in having a more normally proportioned 
and less-pointed lateral dome. The lateral 
dome’s inferior side is rather flat, as in 
some of the specimens of Loligo barkeri 
Clarke & Fitch, 1979, to which it may 
have given rise by becoming thicker and 
its rostrum becoming longer (Fig. 7–9). 
Loligo stillmani Clarke & Fitch, 1979, 
and the l iv ing Doryteuthi s  opale scens 
(Berry, 1911a) possibly developed from 
L. barkeri by extension of the dorsal dome, 
although L. stillmani has a more pointed 
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lateral dome than D. opalescens  and is 
probably on a separate line of evolution. 
Loligo sp. C is distinct in having a very 
thick lateral dome and a large inferior lobe 
and may have developed on a different line 
from L. barkeri. Statoliths from the early 
Pleistocene are not distinguishable from 
the statoliths of living D. opalescens.

EUROPE

Based on the visual comparison of their 
shape, six similar Loligo statoliths from the 
early Miocene (Clarke & others, 1980) 
could not be separated from the two living 
species of Loligo in Europe: L. forbesii Steen-
strup, 1856, and L. vulgaris Lamarck, 1798 

(Fig. 10). Lehmann (2010) reported on 
possible Eocene statoliths from the Paris 
Basin in France that had, for a long time, 
been confused with fish otoliths (“Neobythi-
tinarum” regularis).

When compared with the North Amer-
ican statoliths, the European fossils appear 
to be closest to L. mississippiensis, which 
extended from the early-middle Oligocene 
into the early Miocene. They differ in having 
a less sharply pointed lateral dome, which is 
more rounded anteriorly and ventrolaterally 
and has a deeper medial fissure.

To investigate these relationships more 
closely, tracings of the five outlines shown 
in Figure 11 were drawn using a camera 
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Fig. 6. Right statoliths of three fossil Loligo species. 1–5, Loligo applegatei Clarke & Fitch, 1979, Eocene, Nanjemoy 
Formation, Hanover County, Virgina, USA, length 1.45 mm; anterior (1), posterior (2), lateral (3), medial (4 ), and 
ventral (5) views. 6–10, L. mississippiensis Clarke & Fitch, 1979, Miocene, Chipola Formation, Calhoun County, 
Florida, USA, length 1.32 mm; anterior (6 ), posterior (7 ), lateral (8), medial (9 ), and ventral (10) views. 11–15, L. 
valeriae Clarke & Fitch, 1979, ?Miocene, Bowden Formation, Jamaica, 1.19 length mm; anterior (11), posterior 

(12), lateral (13), medial (14 ), and ventral (15 ) views (all adapted from Clarke & Fitch, 1979).
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lucida and stereoscopic microscope and then 
traced onto a digitizing tablet (Clarke & 
Maddock, 1988a). Multiple discriminant 
analysis of the twenty-four resulting ratios 
was then computed, and the results are 

shown in Figure 12. All but two of the Loligo 
species are positive on axis 3, while all of the 
species of the other loliginid genera—Allo-
teuthis Wülker, 1920; Lolliguncula Steen-
strup, 1881; and Doryteuthis Naef, 1912—

Fig. 7. Statoliths of four species of fossil Loligo Lamarck, 1798. 1–4, Loligo sp. A, right statolith, length 0.84 mm; an-
terior (1), posterior (2), lateral (3), and ventral (4 ) views. 5–8, Loligo sp. B, left statolith, length 1.19 mm, anterior (5), 
posterior (6 ), lateral (7 ), and ventral (8) views. 9–16, Loligo sp. D, right and left statolith, length 1.13 mm, anterior (9, 

13), posterior (10, 14 ), lateral (11, 15 ), and ventral (12, 16 ) views (adapted from Clarke & Fitch, 1979).
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are negative on that axis (as indicated by the 
dashed line). The exceptions are D. plei and 
L. forbesii, which are distinguished from all 
species except L. vulgaris. The European 
early Miocene Loligo lies between the North 
American fossil species and the living Euro-
pean Loligo species. It appears to be closest 
to L. stillmani, and it is interesting that this 
is from the west coast. L. stillmani, however, 
lived later, and there is the possibility that 
both species evolved from L. mississippiensis. 
Figure 12 shows the weightings, by the 
length of line, of the twenty-four respective 
measurements on the first two axes: a dashed 
line indicates a negative value on axis 3. The 
most important factors causing separation 
are the dome perimeter and length, which 
spread the groups to left and right; the 
rostral area and whole statolith width, which 
spread the groups diagonally from bottom 
left to top right; and the ventral statolith 
perimeter combined with the dome length, 
which spread the groups diagonally from 
bottom right to top left.

Some confidence can be attached to 
this analysis because of the grouping of 

congeneric species. All but two of the Loligo 
species are positive, and the members of the 
other genera are all negative. The European 
and the North American species are separate 
from one another and are separated from 
the fossils. On the other hand, species of 
Alloteuthis, Lolliguncula, and Doryteuthis are 
all negative, and each species forms groups. 
The value of such an analysis of such compli-
cated shapes is shown by the fact that the 
standard deviation ellipses reflect a very big 
and overlapping variation in form, but the 
analysis still indicates rational relationships 
in conformity to what is known from the 
living species. Comparison with a similar 
analysis of linear measurements taken with 
a microscope (Clarke & Maddock, 1988a) 
clearly showed that to use a computer’s anal-
ysis of area, perimeter, and other morpho-
logical features gave much better separation.   

FAMILY GONATIDAE

In their detailed study of the statoliths 
of members of the Gonatidae, Clarke and 
others (1980) showed that the Pliocene 
Berryteuthis (Berry, 1913) statoliths are 

1 3 52 4

6 8 107 9
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6 7 8 9 10

Fig. 8. Right statoliths. 1–5, Loligo barkeri Clarke & Fitch, 1979; anterior (1), posterior (2), lateral (3), medial 
(4 ), ventral (5 ) views, length 1.3 mm. 6–10, L. stillmani Clarke & Fitch, 1979, holotype; anterior (6 ), posterior 

(7 ), lateral (8), medial (9), ventral (10) views, length 1.42 mm (adapted from Clarke & Maddock, 1988a). 
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certainly a different species from B. magister, 
but the Pliocene species was not named 
because of the existence of another species, 
B. anonychus, from which statoliths had not 
been examined. In view of the age of the 
fossils, at about two million years, and the 
fact that three other oegopsids from the same 
deposits had proved to be congeneric with 
living forms (albeit new species), it seemed 
reasonable and less confusing to name them 
even if they later turn out to belong to B. 
anonychus. Unfortunately, in their 1979 
publication, Clarke and Fitch inadvertently 
left the manuscript name (“Statiloteuthis enig-
maticus n. sp.” ) in the caption of their figure 
10, instead of Berryteuthis sp., which should 
have been substituted for it before publica-
tion: the new name lacked formal definition 
and description and was, therefore, invalid. 

To correct this taxonomic error, Malcolm 
Clarke had selected a holotype and a number 
of paratypes from a collection of 118 statoliths 
from Newport Mesa, Fernando Formation (7 

statoliths) and the Lomita Marl Formation of 
California (26 statoliths). Although Clarke 
and Fitch (1979) regarded the sediments as 
uppermost Pliocene in age, they are currently 
viewed as lowermost Pleistocene. The stato-
liths are very similar in form (Fig. 13) to those 
of living Berryteuthis magister, but they differ 
in a number of ways, some of which may have 
been the result of their preservation. 

A multiple discriminant analysis of linear 
measurements was done comparing the Berry-
teuthis fossil statoliths from the Plio-Pleisto-
cene of California with four living species of 
the family collected from the northern North 
Pacific and North Atlantic (Clarke & others, 
1980). This showed clearly that the fossil 
Berryteuthis sp. is a different species from the 

Fig. 9. The possible evolution of Cenozoic loliginids 
on the western (W ) and eastern (E ) sides of North 
America; dashed lines indicate very tentative lineages; 
solid lines indicate less tentative lineages; a, Loligo sp. 
A; ap, Loligo applegatei Clarke & Fitch, 1979; b, Lo-
ligo sp. B; br, Lolliguncula brevis (Blainville, 1823); c, 
Loligo sp. C; d, Loligo sp. D; m, Loligo mississippiensis 
Clarke & Fitch, 1979; o, Doryteuthis opalescens (Berry, 
1911a); p, D. pealeii Lesueur, 1821; pl, Doryteuthis plei  
(Blainville, 1823); s, Loligo stillmani Clarke & Fitch, 
1979; v, Loligo valeriae Clarke & Fitch, 1979 (adapted 

from Clarke & Maddock, 1988a).    
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Fig. 10. Anterior views of Loligo statoliths. 1–4, L. 
vulgaris Lamarck, 1798; 5–8, Miocene fossils from Eu-
rope (Natural History Museum, London, UK, BMNH 
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living B. magister (Fig. 14–15). A taxonomic 
note on these differences is in preparation.

FAMILIES OMMASTREPHIDAE  
AND ONYCHOTEUTHIDAE

Statoliths of Dosidicus lomita Clarke & 
Fitch, 1979, and Sthenoteuthis pedroensis 
(Clarke & Fitch, 1979), both members of the 
Ommastrephidae, are illustrated in Figure 16. 
A statolith of Moroteuthis addicotti Clarke & 
Fitch, 1979, belonging to the family Onycoteu-
thidae, is illustrated in Figure 17.

MESOZOIC STATOLITHS
The detailed description of several thou-

sand statoliths from Jurassic successions 
across the Wessex Basin of southern England, 
compiled by Malcolm Clarke, has not yet 
been published, except for a brief compar-
ison (Clarke & Maddock, 1988a) of a 
typical example with the statolith of a living 

myopsid, Loligo forbesii. This comparison, 
shown in Figure 18, demonstrates that the 
fossil is very different in shape from the stato-
lith of L. forbesii, but it has the same compo-
nent parts and it is much closer to that than 
to any fish otolith or to octopod or sepiid 
statoliths. The fossil possesses a very narrow, 
elongated spur; a rostrum that is shaped 
similarly to that of Loligo, particularly in its 
ventral view (compare Fig. 18.4 with Fig. 
18.12); and a lateral dome. It differs in being 
thinner (compare Fig. 18.10 with Fig. 18.7) 
and having a ventrally curving edge where the 
dorsal dome (Fig. 18.4) is developed in many 
living teuthids. Jurassic statoliths presently 
group into at least four or five morphotypes 
(Hart & others, 2015), using generic criteria 
established for living species. Clarke assigned 
these Jurassic taxa to the paraphyletic order 
Teuthida because their shapes are much more 
like extant teuthoids than extant Sepiida. 
Although fragments of Belemnotheutidina 
are found in the same deposits as the stato-
liths, this phragmocone-bearing group is 
physiologically much closer to Sepiida than 
to gladius-bearing teuthoids that rely on other 
methods for buoyancy (Clarke, 1988). Shape 
analysis (Clarke & Maddock, 1988a; Fig. 
18) and work on the physiological function of 
living statoliths (Arkhipkin & Bizikov, 1998, 
2000) show that some aspects of statolith 
shape are related to methods of swimming 
and buoyancy. If these statoliths are indeed 
from teuthoid squids, they are clearly particu-
larly significant for the study of the evolution 
of cephalopods; see Engeser (1990) for an 
account of possible coleoid phylogeny. Any 
statoliths from the Cretaceous and Paleocene 
could record the changes from the Jurassic 
species to the Eocene species when, present-
day, living families appeared.

The Jurassic material studied by Clarke 
(2003) was provided by amateur fossil collec-
tors who had processed many kilograms of 
sediment (mainly clays) from a number of 
Jurassic (Hettangian to Kimmeridgian) locali-
ties in the Wessex Basin, UK (Hart & others, 
2015, fig. 1); at the time, this was one of the 
largest collections of fossil statoliths. Clarke 
(2003) preliminarily identified three new 

Fig. 11. Left statolith of a Loligo species; 1–3, photo-
graphs of anterior (1), lateral (2), and ventral (3) views; 
4–8, tracings of anterior (4, 7 ), ventral (6 ), and lateral 
(5, 8–9) views used in digitizer analysis; arrows indicate 
the points at which tracings were started (adapted from 

Clarke & Maddock, 1988a).
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species (Jurassic sp. A, B, and C), and he was 
preparing a paper in which these taxa were to 
be formally designated. This work, unfortu-
nately, was never published and remains in 
manuscript form. Just before his untimely 
death in 2013, Clarke was made aware of new 
information on Jurassic statoliths being gener-
ated by Hart and others (2009, 2010). This 
material also came from a range of locations 
in the Wessex Basin, but most of the statoliths 
were from the Phaeinum Subchronozone sedi-
ments of the Oxford Clay Formation (upper 
Callovian) of the Christian Malford Lagerstätte 
(Wilby & others, 2008), which had long 
been famous for their preservation of soft-
bodied fossils of both coleoids and belemnoids 
(Pearce, 1841; Owen, 1844; Mantell, 1848; 
Donovan, 1983; Allison, 1988; Martill 
& Hudson, 1991; Page & Doyle, 1991; 
Donovan & Crane, 1992; Tang, 2002; Wilby 

& others, 2004, 2008). In this material, Hart 
and others (2010, 2015) found large numbers 
of Clarke’s (2003) Jurassic sp. A (~95% of the 
assemblage) and Jurassic sp. C (~5% of the 
assemblage) (Fig. 19). There are three impor-
tant factors to be noted: (1) the exceptionally 
large numbers of statoliths generally outnum-
bered the otoliths quite significantly; (2) the 
statoliths were associated with the soft-bodied 
remains of potential host animals (see Wilby 
& others, 2004 and references therein); and (3) 
the statoliths are associated with thousands of 
belemnoid hooks (see Treatise Online, Part M, 
Chapter 10), many of which could be identi-
fied by reference to Kulicki and Szaniawski 
(1972), Wind, Dinkelman, and Wise (1977), 
Engeser (1987), Engeser and Clarke (1988), 
and Klug and others (2010). This combina-
tion of soft-bodied preservation of potential 
host animals, statoliths and hooks makes the 

Fig. 12. Results of a multiple discriminant analysis of digitized dimensions of loliginid statoliths (see Fig. 11). 
The specimens were plotted on the first two axes in units of mean group standard deviation and each group was 
positioned at its centroid, and its standard deviation on each axis was used to plot an ellipse. An indication of the 
position on the third axis is given by the overlap of the ellipses, which are viewed as if from the positive side of 
axis 3, with a dashed outline signifying a negative score. The length of line indicates the weightings of the twenty-
four respective measurements on the first two axes: dashed line indicates a negative value on axis 3. Am, Alloteuthis 
media (Linnaeus, 1758): 6 specimens used; As, Alloteuthis subulata (Lamarck, 1798): 61; Db, Doryteuthis bleekeri 
(Keferstein, 1866 in 1862–1866): 3; Lb, Lolliguncula brevis (Blainville, 1823): 12; Lba, Loligo barkeri Clarke & 
Fitch, 1979: 30; Le, Loligo sp., European fossil: 6; Lf, Loligo forbesii Steenstrup, 1881: 77; Do, Doryteuthis opalescens 
(Berry, 1911a): 14; Dp, D. plei (Blainville, 1823): 4; Lpa, Lolliguncla panamensis Berry, 1911b: 3; Dpe, D. pealeii 
(Lesueur, 1821): 45; Lv, Loligo vulgaris Lamarck, 1798: 52; Ls, Loligo stillmani Clarke & Fitch, 1979: 18; Lm, 

Loligo mississippiensis Clarke & Fitch, 1979 (adapted from Clarke & Maddock, 1988a).
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Fig. 13. Right statoliths of Berryteuthis (Berry, 1913). 1–2, Berryteuthis sp., lowermost Pleistocene, California, 
USA, length 2.88 mm; 1, posterior (left) to anterior (right) views; 2, anterior, posterior, lateral, ventral views (left 
to right). 3–4, Berryteuthis magister (Berry, 1913), length 2.44 mm; 3, posterior (left) to anterior (right) views; 4, 
anterior, posterior, lateral, ventral, and dorsal views (left to right); stereopairs in 1 and 3 can be viewed by copying 

and placing 63 mm apart (adapted from Clarke & others, 1980, fig. 5).  
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Fig. 14. Multiple discriminant analysis of five groups of 
Berryteuthis (Berry, 1913): Berryteuthis sp., righthand 
group with half-filled circles; B. magister (Berry, 1913), 
four remaining groups; axes are in arbitrary units; scores 
of individuals are plotted on first two axes and enclosed 
by a freehand line, with centroids indicated by larger 

symbol (adapted from Clarke & others, 1980).   

Fig. 15. Multiple discriminant analysis of eleven groups of 
four genera in the family Gonatidae; axes are in arbitrary 
units; scores of individuals are plotted on first two axes and 
enclosed by a freehand line, with centroids indicated by an 
enlarged symbol (adapted from Clarke & others, 1980).
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Christian Malford Lagerstätte a significant 
location for the study of coleoid evolution 
(Hart & others, 2016).

In their account of Jurassic statoliths, Hart 
and others (2015) confirmed the occurrence of 
Clarke’s (2003) Jurassic sp. B in the Hettan-
gian (Fig. 20). This probably came from the 
same part of the Lias Group on the Dorset 
Coast, east of Charmouth, which is well 
known for the preservation of such belem-
noids as Phragmoteuthis huxleyi (Donovan, 
2006) and Clarkeiteuthis (formerly Phragmo-
teuthis) montefiorei (Buckman, 1880). This 
location may also provide a link between 
a statolith and the host animal (see discus-
sion in Hart & Hutchinson, 2017). In 
the Lower Jurassic (Toarcian) of southern 
Germany, a different form of statolith has been 
confirmed (W. Riegraf, personal communica-
tion, 2013–2015), which might be associated 
with Clarkeiteuthis conocauda (Quenstedt, 
1849 in 1845–1849). Similar statoliths to 
those described by Riegraf have been illus-
trated from the Toarcian and Aalenian by 
Schwarzhans (2018, fig. 8). In the lower part 
of the Middle Jurassic, Hart and others (2009) 
described a different statolith in the Bathonian 
(Fig. 20). Work on linking all these taxa to the 
host animals is ongoing. 

Despite intensive studies of Cretaceous 
marine successions (e.g., Speeton Clay and 
Gault Clay formations) by Hart and his 
graduate students, no statoliths have been 
recorded. Both the Speeton Clay and the 
Gault Clay formations are well known for 
their assemblages of belemnites (Swin-
nerton, 1936, 1937, 1948, 1952, 1955; 
Mitchell & Underwood, 1999). The 
Chalk Group in northwestern Europe 
(including the UK), though containing 
well-known belemnite assemblages, does not 
allow for the preservation of aragonite fossils 
and, therefore, no statoliths have ever been 
recorded. This gap in the statolith record 
may well be problematic!

Although statoliths were probably dissolved, 
the oldest evidence of statocysts has been 

detected by Fuchs and Larson (2011, fig. 4,6 ) 
in a gladius-bearing octobrachiate from the 
Cenomanian Plattenkalks of Hâkel, Lebanon. 
By contrast, Klug and others (2016) have 
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Fig. 16. Statoliths of two species of fossil ommastrephid squids. 1–5, Dosidicus lomita Clarke & Fitch, 1979, length 
2.52 mm; posterior (1), anterior (2), lateral (3–4), ventral (5) views; 6–10, Sthenoteuthis pedroensis (Clarke & Fitch, 
1979), length 2.26 mm; posterior (6 ), anterior (7 ), lateral (8–9), ventral (10) views (adapted from Clarke & Fitch, 1979).   

recently found statocysts including statoliths in 
the head capsule of a belemnotheutid from the 
Tithonian Plattenkalks of Solnhofen, southern 
Germany. However, a detailed comparison 
with other statolith morphologies is not 
possible due to poor preservation.

BIOLOGICAL CONCLUSIONS 
FROM FOSSIL STATOLITHS

NUMBERS RELATIVE TO FISH

As discussed above, the relative numbers of 
statoliths and otoliths in the North American 
Cenozoic deposits could suggest that there were 
far fewer teuthids in the sea than teleost fish 
(with a mean statolith-otolith ratio of 1:279 
and a range of 1:20 to 1:1,300). However, this 
is more likely to be a reflection of the smallest 
sieve used and the loliginid habit of assembling 
to spawn and die, which would greatly reduce 
the adults from all deposits except in places 
where spawning took place.

The relative numbers of statoliths in 
Jurassic beds compared with fish otoliths 

might be biased by their smaller size and less-
robust nature, but they generally outnumber 
the fish otoliths (with a mean statolith-otolith 
ratio in six sites of 8:1 and a range of 1:2 to 
45:1). This could reflect a change since the 
Jurassic from the numerical dominance of 
cephalopods to the dominance of teleost fish 
in the continental shelf seas. Although the 
Jurassic beds contained numerous cephalopod 
hooks, they contained fewer belemnitid 
rostra than the number of statoliths leads 
one to expect if the statoliths came from 
belemnoids. Belemnoid shells, however, were 
buoyant and may have floated in surface 
currents to other localities (particularly those 
of belemnotheutids), while the more-dense 
statoliths would have fallen straight to the 
sea bottom when the flesh disintegrated 
after death. Although Kear, Briggs, and 
Donovan (1995) suggested that statoliths 
would not survive the decay process, on the 
basis of experimental work, the fossil record 
of Jurassic statoliths indicates that they are 
often preserved in good condition.   
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GROWTH

Statoliths of many living decabrachians lay 
down regular rings during growth, averaging 
one ring per day in several species (Spratt, 
1978; Martins, 1982; Arkhipkin, 2005 and 
references therein). Such daily rings have not 
yet been demonstrated in Cenozoic statoliths, 
although they are expected to be present. The 
Jurassic statoliths, however, easily break along 
a central fracture of the lateral dome (Fig. 
18.7); the exposed surface is crossed by a series 
of minute growth ridges that run parallel to 
the lateral and dorsomedial rims of the lateral 
dome and the curved edge, where there is a 
dorsal dome in living species. These ridges seem 
to be analogous to the growth rings of living 
teuthoids. The largest fossil statoliths from the 
Jurassic sediments of the Wessex Basin have 
about 100 or more ridges, which would suggest 
a much-faster growth rate than is found in living 
squids of the same size, unless each ridge repre-
sents three to four days of growth.  

SIZE OF TEUTHOIDS

In living cephalopods, the size of the stato-
lith is often correlated with length and weight 
(Guerra & Sánchez, 1985). For example, 
the total lengths of loliginid statoliths are 
positively correlated with the dorsal mantle 
lengths (M. R. Clarke, unpublished data), 
and it is therefore likely that the Loligo indi-
viduals providing the fossil statoliths exam-
ined so far had mantle lengths of 8–16 cm 
compared with the living L. forbesii, which 
can have mantle lengths exceeding 80 cm 
(Martins, 1982). Similarly, the statolith 
length of Berryteuthis magister is correlated 
with dorsal mantle length (Clarke & others, 
1980), and this suggests that the adults of 
the fossil Berryteuthis were larger than adults 
of B. magister. The fossils had a mean length 
of 2.8 mm (representing a mantle length of 
300 mm) and a maximum length of 3.3 mm 
(representing a mantle of 370 mm), while the 
samples of B. magister had peak lengths of 
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Fig. 17. Statoliths; 1–5, Moroteuthis addicotti Clarke & Fitch, 1979; posterior (1), anterior (2), lateral (3–4 ), 
ventral (5 ) views; length 1.48 mm. 6–10, Berryteuthis sp.; posterior (6 ), anterior (7 ), lateral (8–9), ventral (10) 

views; length, 2.77 mm (adapted from Clarke & Fitch, 1979). 
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2.4–2.65 mm (representing a dorsal mantle 
lengths of 160–220 mm) and a maximum 
length of 3.0 mm (representing a dorsal 
mantle length of 305 mm).

Although the size of statoliths within genera 
can be roughly related to the size of the animal, 
it varies markedly between genera and families. 
Members of the Cranchiidae Prosch, 1847, 
for instance, have very small statoliths, while 
pterygioteuthids have large statoliths for their 
size. Thus, it is not possible to estimate the 
size of the Jurassic coleoids from the statoliths, 
but only to say that the statoliths are much the 
same size as those from living species.

BUOYANCY

All the Cenozoic statoliths examined so far, 
except for Berryteuthis sp., are from teuthoid 

squids having negative buoyancy and, there-
fore, needing to swim to stay in midwater 
(Clarke, 1988). The neutral buoyancy of 
Berryteuthis is probably provided by special oils 
(Clarke, Denton, & Gilpin-Brown, 1979), as 
in Gonatus fabricii (Lichtenstein, 1818). The 
living species of coleoids with gas-filled shells 
(Sepia Linnaeus, 1758, and Spirula Lamarck, 
1799) have globular lateral domes; large, 
broad spurs; and long rostra (Fig. 5). This may 
suggest that the fossil Jurassic statoliths do not 
come from animals with gas-filled shells like 
the belemnoids but are more likely to be from 
early teuthids or Mesozoic gladius-bearing 
octobrachians with a squid-like appearance 
and lifestyle. This assumption is made more 
complicated by the similarity between Berry-
teuthis and Sepia, which was shown by both 
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Fig. 18. Right statolith of a Jurassic species (1–9) compared with a right statolith from the extant Loligo forbesii Steenstrup, 
1856 (10–13); anterior (1, 5, 11), posterior view (2), medial (3), and ventral (4, 12) views; 6–10, 13, cross section views 

of the points indicated by arrows, no scale information available (adapted from Clarke & Maddock, 1988a).    
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multiple discriminant analysis and principle 
component analysis (Clarke & Maddock, 
1988b). The similarity cannot be put down to 
neutral buoyancy since very different statolith 
shapes are present in other neutrally buoyant 
forms, including other members of the Gona-
tidae. As Berryteuthis is only very distantly 
related to Sepia, whether there is some feature 
in its way of life or behavior that suggests a 
cause for this similarity needs to be investi-
gated. At present, it can only be observed that 
it has a similar lifestyle in living close to the 
bottom and on the continental shelf for some 
of its life, which may involve similar body 
movements to Sepia.

ENVIRONMENTS

From the deposits in which they occur, the 
fossil Loligo from Europe came from shallow 

seas with temperatures similar to those off 
the coast of Morocco today. Living species of 
Loligo mainly inhabit shelf seas less than 200 
m in depth, but they also migrate down the 
slope to 500 m. Berryteuthis, Dosidicus, and 
Moroteuthis species seasonally move onto the 
upper slope and continental shelf along the 
western coast of North America, although 
they are predominantly oceanic genera. 
Sthenoteuthis Verrill, 1880, is oceanic and 
occurs in deep seas off California.

DISCUSSION
Study of fossil statoliths is likely to prove 

to be a very valuable means of improving our 
knowledge of the evolution of the Coleoidea. 
So far, there are hints from studies of the 
complicated shape of statoliths that some 
features may be related to body form, way 

Fig. 19. Morphospecies of Jurassic statoliths. 1–2, Jurassic sp. A, from the Oxford Clay Formation, Somerset, UK; 
morphospecies characterized by its large size, curved rostrum, and crenulated margin. 3–4, Jurassic sp. B from the 
Lias Group mudstones, Dorset coast east of Charmouth, UK; morphospecies characterized by the distinctly hooked 
rostrum and wide, rounded, margin with no sign of any crenulation. 5–6, Jurassic sp. C, from the Oxford Clay 
Formation, Somerset, UK; morphospecies characterized by the smooth outline, with no crenulations on the margin 
and markings that look like the veins of a leaf; the structure of these features, and their purpose, is completely 
unknown as they have not been seen in any of the other morphospecies; 7, Jurassic sp. D, from the Wattonensis 
Beds, Frome Clay Formation, upper Bathonian, Rodden Hive Point section, UK (see Hart & others, 2009). Scale 

bar, 1 mm (adapted from Hart & others, 2015).
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of life, or behavior of the animals. If this can 
be established in detail for living species, it is 
possible that we may be able to reconstruct 
the likely shapes, movement, and perhaps 
way of life of some species of the Jurassic 
and perhaps the Cretaceous, of which we 
are never likely to collect more than a few 
remains, other than statoliths. Notwith-
standing these possible developments, there 
is no doubt that many features of the stato-
liths are not related solely to their function 
and may show evolutionary relationships.
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