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INTRODUCTION
Rudist bivalves were variously adapted as 

level-bottom sediment dwellers, their diverse 
shell growth forms closely correlated with 
the nature of the substrate, allowing them 
to occupy a wide range of environments 
from areas with net sediment accumulation 
to areas where sediment bypassing predomi-
nated over accumulation (Skelton & Gili, 
2002).

Most rudists were highly gregarious and 
formed vast congregations on the shallow 
tops and gently sloping flanks of carbonate 
platforms. In slightly deeper or more open 
settings, diverse assemblages of corals, stro-
matoporoids, calcareous sponges, and algae 
were often associated with rudist congrega-
tions within tabular bedded units, even 
forming dense associations (Scott, 1988).

In this section, we review the paleoecology 
of rudist bivalves, considering their auteco-
logical attributes and the depositional fabrics 
of rudist assemblages, including associ-
ated biota, with special attention to corals. 
Finally, we survey the general biofacies 
architecture of rudist-dominated carbonate 
platforms.

AUTECOLOGICAL 
ATTRIBUTES OF RUDISTS

PALEOECOLOGICAL MORPHOTYPES

The principal functional requirements 
of rudist shell growth included (1) optimal 
presentation of the feeding apparatus to 

feeding and respiratory water currents, 
and (2) stabilization of the shell so that the 
optimal feeding posture could be main-
tained. The paleoecological morphotypes 
resulting from these functional constraints 
were defined by Skelton and Gili (2002) as 
elevators, clingers, and recumbents (Fig. 1).

Elevators

In this morphotype, the entire commis-
sure of the attached valve (AV) was involved 
in upward growth. The mean angle of eleva-
tion (E), based on the maximum (α) and 
minimum (β) inclination with respect to 
the horizontal of the AV outer rim, tended 
toward 90° in life (see Fig. 1). Shells that 
accidentally toppled and subsequently 
showed geniculate recovery growth, shells 
in which upward growth was obstructed, or 
those that had an initially inclined position 
might show lower values of E (Steuber, 
1999b). Nevertheless, the limit for rudist 
elevators is arbitrarily defined as E>45°. 
Stabilization was passively achieved through 
implantation of the AV in accumulating 
sediment, sometimes reinforced by lateral 
attachment to neighbors. This morpho-
type is therefore most often associated with 
muddy (wackestone to packstone) substrates 
in areas of net positive sediment accumula-
tion, perhaps only occasionally swept by 
storm traction currents. The regular, weakly 
conical to cylindrical shell forms typical of 
this morphotype were well suited for aggre-
gative life (Fig. 2). However, some elevator 
taxa tended to be solitary (Fig. 3).
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Clingers 
In clingers, part or all of the AV margin 

overgrew the substrate, forming a broad basal 
area of frictional or adherent contact. The E 
angle was generally low (less than 45°) in life 
position, because the attached part of the 
shell wall was usually more or less horizontal 
(Fig. 1). This morphotype achieved stability 
on relatively firm or hard substrates by 
maximizing the basal area of direct contact 
(A) with the substrate. In consequence, A 
equals A' the virtual area of support, defined 
as the entire area of the convex polygon 
mapped onto the substrate by the shell’s 
base. This growth mode required areas with 
stable sediment or hard surfaces (e.g., other 
shells, hardgrounds) with little or no sedi-
ment accumulation. Many clingers, however, 
tolerated sporadic influx of sediment (storm-
driven sands) through upward-stepping 
growth of the basal surface. Interdigita-
tion of foliaceous outgrowths from the AV 

and the surrounding sediment can provide 
evidence of this ascending growth. Growth 
geometries of this morphotype are quite 
diverse. The more plesiomorphic rudists 
(diceratids, epidiceratids, and requieniids) 
were spiraling clingers (the basal area formed 
by the spirally grown anterior face) that lived 
either attached—perhaps to other shells (e.g., 
Toucasia Munier-Chalmas, 1873), or merely 
in frictional contact with the substrate (e.g., 
Requienia Matheron, 1842–1843), or even 
partially embedded in the sediment (e.g., 
Diceras Lamarck, 1805). Uncoiled rudists 
developed prone or expanded conical shells, 
depending on whether the AV margin over-
grew the substrate laterally or radially. In the 
latter case, the entire outer margin of the AV 
spread out over the surrounding substratum 
all around (Fig. 4).

Recumbents 
The recumbent mode of basal stabiliza-

tion also involved part of the AV margin 

Fig. 1. Rudist ecological morphotypes. Shells are shown in vertical section and, for clinger and recumbent, in plan 
view. Double diagonal ornament, for recumbent, shows A (surface area of basal contact), and single diagonal orna-
ment, A' (virtual area of support). In elevators, the mean angle of elevation (E) tended towards 90° (maximum [α] 
and minimum [β] inclination). In clingers and recumbents, E<45° (adapted from Skelton & Gili, 2002, fig. 5).

E approaches 90º 
(passively implanted)

— E up to 45º — 
ELEVATOR CLINGER RECUMBENT

A/A' « 1A/A' ~ 1 
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Fig. 2. Examples of clustered elevator rudists. 1, Glossomyophorus costatus Masse, Skelton, & Slišković, 1984 
(monopleurid, internal molds) from lowermost Aptian of Sarone, Friuli, northeastern Italy, with pencil for scale 
(Cestari & Sartorio, 1995; photo by Dario Sartorio); 2a–b, tubular attached valves of the radiolitid Tampsia bishopi 
Stephenson, 1938, USNM 32499, from Upper Cretaceous of Mendez shale at Las Flores hacienda, State of Tam-
aulipas, Mexico; 2a, view down into the cluster; 2b, side view with radial bands (new; photos, Peter W. Skelton); 
3, bouquet of Hippurites socialis Douvillé, 1890 (hippuritid), PUAB 27836, from the Santonian Collades Member 

of Abella Formation, in the southern Central Pyrenees (Gili & Skelton, 1994).

in contact with the substrate throughout 
growth, with an E value of less than 45°. 
In contrast to clingers, however, such shells 
were not attached, and the area of contact 
with the substrate (A) played only a minor 
role in stabilization. Broadly arcuate forms 
produced an expanded virtual area of 
support (A') with broad effective diameters 
(Fig. 1). The ratio A/A' was therefore consid-
erably lower than 1, and is defined as <0.75. 
Shells of this shape resisted overturning by 
currents, and they reduced the possibility of 
sediment washout and subsequent burial. 

Recumbents were especially associated with 
unstable, current-swept substrates, such as 
carbonate sands and loose shell gravels, where 
sediment bypassing predominated over accu-
mulation. The size dependence of this growth 
strategy fostered the evolution of rapid early 
growth to large adult size, yielding some of 
the largest known bivalves (e.g., Titanosarco-
lites Trechmann, 1924) (Fig. 5).

Thus, these three morphotypes represent 
modes of growth appropriate for different 
kinds of substrates. However, combina-
tions of growth forms are not uncommon 

1
Glossomyophorus
costatus

2a Tampsia bishopi

2b Tampsia bishopi

3
Hippurites
socialis

0 cm 10 cm
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because short-term or localized differences in  
environmental conditions (e.g., protected 
habitats within a high-energy setting) 
allowed distinct morphotypes to settle 
in close temporal or lateral proximity. 
Morphotypes could also vary opportu-
nistically within some species and during 
ontogeny. All juveniles formed a spirogy-
rally coiled encrusting AV on initial settle-
ment, so were invariably attached clingers 
(Fig. 6). Clinging strategy was also used 

by some elevators (e.g., large cylindrical 
forms such as Vaccinites Fischer, 1887) in 
their earlier, expanding adult growth stages  
(Fig. 7). Notwithstanding these compli-
cations, the determination of rudist life 
strategy is useful for identifying paleoenvi-
ronmental conditions.

Rudist Taphonomy 

Elevator rudists are commonly preserved 
in life position because of their original, 

Fig. 3. Examples of solitary elevator rudists, arranged as in life position. 1, Oedomyophorus shaybahensis Skelton, 
2004 (caprinuloideid, see Skelton, 2004, 2013), articulated shell, anterior aspect, paratype, NHM PI MB LL42058, 
from Lower Aptian Shu’aiba Formation of eastern Saudi Arabia (Skelton, 2004); 2, Sauvagesia? hilli Stephenson, 
1941 (radiolitid), postero-ventral flank of right, attached valve with radial bands, holotype USNM 76575 (note 
encrusting oysters); 3–4, attached valves of large hippuritids (Vaccinites sp. Fischer, 1887) from the Santonian Col-
lades Member of Abella Formation, in the southern Central Pyrenees, hammer shaft is 36 cm long, large cylindrical 
specimen (3) and geniculate specimen (4 ); centimeter scale at right for 1–2 (2–4, new, photos by Peter W. Skelton).

1  Oedomyophorus shaybahensis

2  Sauvagesia? hilli

10 cm

 0 cm 

3  Vaccinites sp. 4  Vaccinites sp.
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swept settings, are rarely found in situ and 
are more often associated with grainstone 
to packstone deposits (see Gili, Masse, & 
Skelton, 1995 for literature references).

FEEDING HABITS 

Like most other bivalves, rudists were 
suspension feeders. However, most if not all 
uncoiled rudists probably used expanded 
mantle margins as well as their ctenidia 

more or less, embedded growth in relatively 
quiet environments. Recumbents and most 
clingers (e.g., diceratids, epidiceratids, and 
requieniids) are less frequently preserved 
in life position because their shells were 
more exposed, both in life and postmortem. 
Clinger-dominated examples are usually 
parautochthonous—that is, their shells are 
more or less locally displaced. Recumbents, 
because they frequently thrived in current-

Fig. 5. Examples of recumbent rudists arranged as in life position—recumbents have an arcuate form and include 
caprinuloideids (1) and antillocaprinids (2). 1, articulated shell of Kimbleia albrittoni (Perkins, 1960) from the 
Upper Albian of Texas, locality unknown (USNMNH Cretaceous Stratigraphy collection, no. CS2; field collec-
tion no. 1941); 2, Titanosarcolites giganteus (Whitfield, 1897) from the Maastrichtian of Bruce Hall, Great River, 
Marchmont Inlier, Jamaica, articulated specimen (Department of Geography and Geology Museum, The University 
of the West Indies, Mona Campus, Kingston, Jamaica); scale, two members of the organization committee for the 
9th International Congress on Rudists, held at UWI in 2011, left to right, Gavin Gunter and Simon Mitchell (new, 

photos, Peter W. Skelton).

1 Kimbleia albrittoni 2 Titanosarcolites giganteus

0 cm 10 cm

Fig. 4. Examples of clinger rudists, arranged as in life position. 1, spiraling clinger Toucasia patagiata (White, 1884) 
(requieniid), articulated shell showing basal anterior face of attached (left) valve, “cotype,” USNMNH 12363; 2–3, 
articulated shells of uncoiled clingers; 2, Radiolites vallispetrosae Astre, 1954 (radiolitid), with radially expanded 
conical attached valve, PUAB 3959; 3, Praeradiolites plicatus (Lajard, Négrel, & Toulouzan, 1821 in Lajard, 
Toulouzan, & Négrel, 1821) (radiolitid), PUAB 3746, note the broad base to the shell formed by the flattened 
anterior face of the attached valve, from the Santonian Collades Member of Abella Formation, southern Central 

Pyrenees (1, new, photo by Peter W. Skelton; 2–3, personal archives).

1  Toucasia patagiata 2  Radiolites vallispetrosae 3  Praeradiolites plicatus

0 cm 10 cm
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Fig. 6. For explanation, see facing page.
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to capture food particles (Skelton, 1976, 
1979a). Rudists most likely fed on phyto-
plankton and other suspended particu-
late material (bacteria, organic detritus) 
filtered from feeding currents. Experimental 
evidence for elongated hippuritids suggested 
that individuals with inclined growth habits, 
in particular, could sample water from both 
the mainstream flow and the sediment-
water interface (Gili & LaBarbera, 1998). 
Some field and laboratory studies suggest 
beneficial effects of sediment resuspension 
as a bivalve food supplement (e.g., Grant, 
Enright, & Griswold, 1990).

The ability to form large shells from 
comparatively small bodies has led some 
authors to hypothesize that rudists possessed 
symbiotic zooxanthellae. This hypothesis, 
most explicitly advocated by Kauffman and 
Johnson (1988), was critically examined 
by Ross and Skelton (1993) and Gili, 
Masse, and Skelton (1995). The latter 
authors considered the configuration of the 
expanded mantle margins to be a plausible 
indication of farming of zooxanthellae in 
certain rudist taxa, e.g., in Torreites Palmer, 
1933, which had the mantle margins exposed 
(Skelton & Wright, 1987) and in Oscu-
ligera Kühn, 1933 where they were only 
covered by a thin rim of the free valve 
(Vogel, 1975). For most rudists, however, 

Fig. 6. Rudist settlement. 1–2, Coralliochama White, 1885, from Upper Cretaceous Rosario Formation, Punta 
Banda Cap, Baja California, Mexico. 1a, settling juvenile in section attached to a cobblestone; 1b, magnifica-
tion of the spirogyrally coiled apex of the attached valve; 2a, attached valve of Coralliochama; 2b, magnification 
of the anterior face of the apex, showing the first spirogyrate growth phase; 3–4, Coralliochama gboehmi Böse, 
1906, from upper Maastrichtian Cardenas Formation in central Mexico; 3a–b, different view of same sample; 
3a, posterior face of a young specimen attached to the attached valve of an adult, radiolitid (R ), coral (C ) ; 3b, 
left to right, posterior face of another young specimen and attached valve of the young specimen in 3a; 4, apex 
of a specimen attached to the underside of a projecting shell fragment, and then with growth proceeding away 
from the observer; 5, young specimens of Polyconites hadriani Skelton & others, 2010 (P )  attached to a Tou-
casia Munier-Chalmas, 1873 (Touc) fragment from uppermost Lower Aptian part of Villarroya de los Pinares 
Formation, western Maestrat Basin, eastern Spain; 6a–b, thin section photomicrographs from an assemblage of 
Hippuritella vasseuri (Douvillé, 1894) from the Turonian–Coniacian of the Northern Alpine Gosau Group of 
Brandenberg, Austria, in horizontal view; 6a, two juveniles attached to the shell wall of adult specimens, showing 
early ontogenetic hinge system; 6b, settling juvenile attached to adult showing two weakly developed pillars and 
a barely developed ligamentary ridge, but with calcitic outer shell layer already well developed; 7a–d, transversal 
(7a–c) and longitudinal (7d )  thin sections from a Alencasterites mooretownensis (Trechmann, 1924) (=Biradiolites 
mooretownensis Trechmann, 1924; Hennhöfer, Götz, & Mitchell, 2012) assemblage from Rio Grande Limestone 
(Titanosarcolites Limestone, upper Campanian) in the Blue Mountain Inlier of Jamaica; 7a, small settler attached 
to an adult shell, showing primary inner and outer shell material in the attached valve (white lines at the bottom); 
7b, settlers attached to adult specimens; 7c, juveniles at an early ontogenetic stage previous to the addition of the 
calcitic outer shell layer; 7d, juvenile settling and growing attached to the attached valve of an adult specimen 
(white arrow); scale bars are 1 cm where not specified (1–5, 6a, new, photos by Stefan Götz; 6b, adapted from 

Götz, 2007, fig. 16,G; 7a–d, Hennhöfer, Götz, & Mitchell, 2012, fig. 1,C–D, F–G) .  

there is no evidence for direct exposure 
of mantle tissue to the light. Gili, Masse, 
and Skelton (1995) further stated that 
“the frequently repeated claim that the 
right valve margin of Durania was freely 
exposed in life ... is an incorrect interpreta-
tion based upon incomplete specimens. In 
fact, the right valve rim was entirely covered 
by a thin flange of the outer (calcitic) shell 
layer of the left valve ...Whether or not the 
flange was sufficiently translucent to have 
allowed photosynthesis (as postulated by 
Vogel, 1975, for Osculigera) remains to be 
demonstrated.” 

More recently, Seilacher (1998) suggested 
that the pore and canal system of hippuritids 
was related to symbiosis with zooxanthellae. 

Fig. 7. Early adult stage of Vaccinites giganteus major 
Toucas, 1904, PUAB 28189, from the Santonian 
Collades Member of Abella Formation in the southern 

Central Pyrenees (Gili & Skelton, 1994). 

Vaccinites giganteus major

0 cm 10 cm
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He considered the possibility that the canals 
gave way for extensions of mantle tissue 
housing the algae. However, the system 
of pores and canals in hippuritid rudists 
has been demonstrated to have been well 
adapted for filtering (Skelton ,  1976; 
Schumann, 2010). If correct, this makes 
additional speculation on the role of the pore 
and canal system redundant. Besides, hippu-
ritids frequently grew in muddy deposits 
(Philip, 1970; Freytet, 1973; Floquet, 
1982; Grosheny & Philip, 1989; Skelton 
& others, 1995; Steuber, Yilmaz, & Löser, 
1998; Götz & Mitchell, 2009) associated 
with turbid, nutrient-rich water. These 
mesotrophic environmental conditions 
are generally not favored by photosymbi-
ontic organisms (Hallock, 1981). Among 
recent bivalves, many thin-shelled taxa (e.g., 
Corculum Röding, 1798, Fragum Röding, 
1798, Clinocardium Keen, 1936) bear symbi-
otic zooxanthellae (Kawaguti, 1950, 1983; 
Jones & Jacobs, 1992; Schneider, 1998) and 
some taxa with massive and rapidly growing 
shells (e.g., oysters) do not. Symbiosis with 
zooxanthellae is primarily related to nutri-
tion (Muscatine & Porter, 1977). High 
shell-secretion rates should therefore not be 
taken a priori as evidence for endosymbiosis 
(Jones & Jacobs, 1992). Unfortunately, δ13C 
isotope measurements of expected vital effects 
caused by photosynthesis are difficult to inter-
pret in fossil mollusks (Jones, Williams, & 
Romanek, 1986; Romanek & Grossmann, 
1989; McConnaughey & others, 1997) 
and have so far failed to answer this ques-
tion, because isotopic signals are obscured by 
variable metabolic rates, kinetic effects, and 
diagenesis (Jones & Jacobs, 1992).

GROWTH RATES AND  
CARBONATE DEPOSITION 

Inferred annual growth increments of 
rudists have been measured based on 
seasonality documented by oxygen-stable 
isotope sclerochronology (Steuber, 1996, 
1999a, 2000; Steuber, Yilmaz, & Löser, 
1998; Steuber & others, 2005) and based 
on tidal cycles preserved in growth micro-

rhythms (Masse & Philip, 1972; Amico, 
1978; Schumann, 1995; Regidor-Higuera, 
García-Garmilla, & Skelton, 2007). Indi-
rect estimates have been drawn from the 
spacing of dark, organic-rich bands in the 
shell (e.g., Steuber & others, 2005, supple-
mentary figure), the spacing of zones with 
thinned growth laminae (Schumann, 1995; 
Regidor-Higuera, García-Garmilla, & 
Skelton, 2007) or from the development 
of salient growth rugae in some radiolitids 
(Cestari & Pons, 2007). All such zones 
mark decelerated growth or even cessation, 
and may be the result of extreme temper-
atures during the warm or cold season 
(Steuber, 1996), or indicate annual periods 
of spawning that may be linked to a specific 
season, and may not always have occurred in 
summer (Fig. 8).

Depending on taxonomy and paleoenvi-
ronmental constraints, inferred annual rudist 
growth increments vary between 0.3 cm, 
e.g., in Praeradiolites ciryi Floquet, 1991 
(Regidor-Higuera, García-Garmilla, & 
Skelton, 2007) and 7 cm, e.g., in Toucasia 
carinata (Matheron, 1842–1843) (Steuber 
& others, 2005). Most common values range 
between 1–2 cm. The fastest growth rates are 
reported from requieniids—7 cm in Toucasia 
carinata (Steuber & others, 2005) and 
hippuritids—4–6 cm in Vaccinites ultimus 
(Milovanović, 1935) (Steuber, Yilmaz, 
& Löser, 1998). Radiolitids show a broad 
range, between 0.3 and several centimeters 
(Regidor-Higuera, García-Garmilla, & 
Skelton, 2007). Reliable data on other rudist 
families are presently unavailable.

Vertical growth rates were not correlated 
with commissural diameter. Small taxa 
(around 1 cm commissural diameter), such 
as Hippuritella Douvillé, 1908 and Bira-
diolites d’Orbigny, 1850, also grew in this 
range—e.g., 1.6 cm in Hippuritella vasseuri 
(Douvillé, 1894) and 1.4 cm in Alencast-
erites mooretownensis (Trechmann, 1924) 
(=Biradiolites mooretownensis Trechmann, 
1924; Hennhöfer, Götz, & Mitchell, 
2012) (Hennhöfer, Götz, & Mitchell, 
2012). This was true as well with large 
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taxa with more than 50 cm commissural 
diameter, for example, 1–4 cm in Durania 
Douvillé, 1908 (Schumann, 1995).

Individual growth rates in rudists varied 
ontogenetically. Fastest shell deposition is 
observed during the first one or two years 
of growth (Steuber, 1999a), often accompa-
nied by salient ribs and rapid increase of the 
commissural diameter in hippuritids (Götz, 
2003b). Adult growth was slower by 10% to 
50%, but unlike most other bivalves, growth 
rates in rudists remained stable throughout 
adult life (Steuber, 1999a). Before natural 
death, individual growth rates decreased 
again to less than half of the adult rates; this 
was often accompanied by a reduction of 
ornamentation and a thinning of the outer 
shell layer (Zapfe, 1937; Götz, 2003b).

Community carbonate deposition rates 
depended on annual growth incrementation, 
shell thickness, shell density, and animal 
congregation density (Steuber, 2000). In 
dense congregations where rudists covered 
the substrate 80% to 90% (Götz & Stinnes-
b e c k ,  2003; Gö t z ,  2007),  maximum 

carbonate-deposition rates ranged between 
10 kg and 30 kg per square meter per year. 
These are exceptionally high values compared 
to recent carbonate-producing ecosystems. 
Coral reefs produce between 1 kg (Rees & 
others, 2005) and 4 kg CaCO3 

per square 
meter per year (Kinsey, 1983), but in most 
settings, production is less than 2 kg (Heiss, 
1995). In Crassostrea virginica (Gmelin, 
1791) congregations, annual carbonate 
production has been estimated to reach 0.5 
kg per square meter (Dame, 1976). However, 
when carbonate production by rudists is 
averaged over stratigraphical time scales, 
calculated net vertical accumulation rates 
drop by orders of magnitude (19–50 kg 
per square meter per 1,000 years) (Masse 
& Fenerci-Masse, 2006). This reduction 
is the result of limited accommodation in 
shallow settings. Reworking of rudists by 
storms usually redistributed much of the 
shell carbonate to neighboring environ-
ments (as bioclastic sediment) and resulted 
in rudist congregations as laterally extended 
but relatively thin (meter scale) lenticular 

Fig. 8. Growth rates. The oxygen-isotope curve on the left of the figure is the result of uniform growth rates 
throughout the year. The photographs of longitudinal sections of rudist specimens shown on the right (a–b), show 
evidence of seasonal growth deceleration—dark, organic-rich bands in hippuritids (a), and thinned growth lamel-
lae in radiolitids (b). Macroscopically, these zones are expressed by growth rugae in hippuritids and radiolitids (c); 

scale bars,1 cm (oxygen-isotope curve adapted from Steuber, 1999a, fig. 10; a–c, new, photos by Stefan Götz).
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Fig. 9. For explanation, see facing page.

1  Alencasterites mooretownensis 2  Biradiolites lombricalis

5  Vaccinites sulcatus

4  Hippuritella vasseuri

6  Durania cornupastoris

3  Mathesia darderi
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Fig. 9. Cross-section views (1–5) of various elevator rudist congregations to show examples of different coverage in 
dense paucispecific associations. 1, Alencasterites mooretownensis (Trechmann, 1924) (=Biradiolites mooretownensis 
Trechmann, 1924; Hennhöfer, Götz, & Mitchell, 2012), from Rio Grande Limestone (Titanosarcolites Limestone, 
upper Campanian) in the Blue Mountain Inlier of Jamaica (see Hennhöfer, Götz, & Mitchell, 2012 for details); 2, 
Biradiolites lombricalis (d'Orbigny, 1842) (=?Radiolites sp. in Götz, 2007), from the Santonian of Punta Mrlera, 
southern Istria, Croatia (see Götz, 2007 for details); 3, Mathesia darderi (Astre, 1933) from the Upper Aptian in the 
Basque-Cantabrian Basin, northern Spain; 4, Hippuritella vasseuri (Douvillé, 1894) from the Turonian–Coniacian of 
the Northern Alpine Gosau Group of Brandenberg, Austria (see Götz & Stinnesbeck, 2003 for details); 5, Vaccinites 
sulcatus (Defrance, 1821) from the Turonian–Coniacian of the southern Central Pyrenees; 6, Durania cornupastoris 
(Des Moulins, 1826), USNM 442109, general view of bouquet, with attached valves in adapical view, from the 
Turonian Greenhorn Limestone in Colorado (see Cobban, Skelton, & Kennedy, 1991 for details); scale bars, 1 
cm (1, new, photo by Dominik Hennhöfer; 2–5, new, photos by Stefan Götz; 6, new, photo by Peter W. Skelton).

bodies separated by truncation surfaces or 
barren intervals. 

PALEOBIOLOGY OF DENSE  
RUDIST CONGREGATIONS

Serial sectioning through in situ elevator 
rudist congregations has provided insights 
on their internal growth dynamics (Gili & 
Skelton, 2000; Götz & Stinnesbeck, 2003; 
Vilardell & Gili, 2003; Korbar, 2007). 
High-resolution grinding tomography data-
sets have added further information on 
both reproduction and mortality patterns 
and population dynamics (Götz, 2007; 
Hennhöfer, Götz, & Mitchell, 2012; 
Hennhöfer & others, 2014).

Dense, monospecific rudist associations 
growing under favorable ecological condi-
tions are characterized by stable optimum 
coverage (up to 80% to 90%) of available 
space through time and a continuous over-
turn of generations. These high-coverage 
values appear in different families (Fig. 9) 
and can be observed in Monopleura Math-
eron, 1842–1943, Mathesia Mainelli, 
1996, Biradiolites, Durania, Hippurites 
Lamarck, 1801, Vaccinites, Hippuritella, and 
Coralliochama White, 1885 associations. 
Other paucispecific congregations reached 
maximum coverage rates of only 50% to 
60%, e.g., in Hippurites praecessor Douvillé, 
1895 (Vilardell & Gili, 2003) and in 
Alencasterites mooretownensis (Hennhöfer, 
Götz, & Mitchell, 2012), suggesting either 
taxonomic variability or environmental 
control. Stable coverage rates throughout 
lithosome development and continuous 
overturn of generations are also evident in 
these congregations (Gili & Skelton, 2000; 

Vilardell & Gili, 2003). Whether this was 
controlled genetically or by the environment 
(e.g., through high-particle resuspension 
rates) remains to be tested. 

Decrease of rudist coverage was accom-
panied by increased spat/early juvenile 
mortality and/or reduction of new recruits.

Rudist reproduction in some dense asso-
ciations had an annual cyclic pattern. This is 
marked by equidistant peaks of larval recruit-
ment, as observed in bouquets of Hippuritella 
vasseuri (Götz & Stinnesbeck, 2003; Götz, 
2007), Alencasterites mooretownensis, and 
Biradiolites lombricalis (Hennhöfer, Götz, 
& Mitchell, 2012).

Inside dense congregations, rudist spat 
settled almost exclusively on attached adult 
shells near the commissural plane and only 
occasionally on shell debris (Gili & Skelton, 
2000; Götz, 2003b; Hennhöfer, Götz, 
& Mitchell, 2012; Hennhöfer & others, 
2014). The maximum spat density observed 
is 8 per square decimeter (giving an extrapo-
lated density of 800/m2), comparable to 
recent spat densities in oyster beds (Mac-
Kenzie, 1981). Most new settlers, however, 
died early, and less than 30% of juveniles 
reached adulthood (Götz & Stinnesbeck, 
2003; Götz, 2007; Hennhöfer, Götz, & 
Mitchell, 2012) (Fig. 10).

The mortality of juveniles in these 
dense rudist lithosomes seems to have been 
controlled by the amount of coeval competi-
tors (Götz & Stinnesbeck, 2003; Götz, 
2007) and by the space available for settling 
and its subsequent change during juve-
nile growth. This pattern is even visible in 
less densely packed congregations (Gili & 
Skelton, 2000; Korbar, 2007). Hippuritids 
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seem to have been unaffected by settling 
space at the time of larval attachment but 
reacted sensitively to subsequent decreases. 
In dense radiolitid associations, however, 

the initial space seems to have been crucial 
for survival, but subsequent decrease after 
settling caused no additional mortality. 
This probably reflects a phase of vulner-
ability during the spirogyrate, earliest 
growth stages, but also a higher ecopheno-
typic flexibility of radiolitids compared to  
hippuritids (Götz, 2007; Hennhöfer, 
Götz, & Mitchell, 2012).

RUDIST REPRODUCTION 
STRATEGIES 

Most bivalves, whether planktotrophic or 
brooding, reproduce in a cyclic pattern with 
reproduction frequency varying according to 
taxonomy and environmental factors (Giese & 
Pearse, 1974). The earliest, larval aragonitic 
growth stages of Hippuritella and Biradiolites 
are about 300 μm in maximum dimen-
sion (Götz, 2003b; Hennhöfer, Götz, & 
Mitchell, 2012). This is comparable with 
the larger size of partly or completely leci-
thotrophic bivalves with only a short (if any) 
planktic stage (Kasyanov, 2001), but these 
are only maximum estimates based on already 
attached spat. Most Hippuritella species, such 
as Hl. vasseuri, Hl. resecta (Defrance, 1821),  
and Hl. lapeirousei (Goldfuss, 1840), show 
a preference for gregarious growth in spatially 
constricted bouquets, compared to other 
hippuritid lithosomes (Philip, 1972; Skelton, 
1979b; Vicens, 1994; Götz, 2001; Götz 
& Stinnesbeck, 2003), suggesting genetic 
rather than environmental control. Regarding 
radiolitids, Breton (1996) reported a cluster 
of juveniles in the pallial chamber of Durania 
blayaci (Toucas, 1909) and interpreted this 
as evidence for brooding. However, the wide 
paleogeographic distribution of many species 
of Durania in the Boreal realm (Römer, 
1865; Kühn, 1949; Reitner, 1991) is best 
explained by long distance drift of plankto-
trophic larvae.

Nevertheless, there is circumstantial 
evidence for planktotrophic reproduc-
tion among hippuritids in the form of the 
stratigraphically synchronous pan-Tethyan 
dispersion of the first hippuritids at the 
start of the Turonian (e.g., Philip, 1978; 

Fig. 10. Population dynamics of Hippuritella vasseuri 
(Douvillé, 1894), Biradiolites lombricalis (d’Orbigny, 
1842) (= ?Radiolites sp. in Götz, 2007), and Alencaster-
ites mooretownensis (Trechmann, 1924) (=Biradiolites 
mooretownensis Trechmann, 1924; Hennhöfer, Götz, & 
Mitchell, 2012). Number of specimens plotted against 
their shell height (proxy for relative age) in mm. The 
majority of spat died shortly after settlement, and less 
than 30% of juveniles reached adult sizes (chart new, 
adapted from: 1, Götz & Stinnesbeck, 2003, fig. 5; 2, 
Götz, 2007, fig. 9; 3, Hennhöfer, Götz, & Mitchell, 

2012, fig. 6).
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Philip, Borgomano, & Al-Maskiry, 1995; 
Aguilera-Franco, 2003), and probable east-
west migration across the Pacific suggested 
for Torreites (see Skelton & Wright, 1987).

DEPOSITIONAL FABRICS OF 
RUDIST ASSEMBLAGES 

Cretaceous carbonate platforms are char-
acterized by the presence of extensive litho-
logical units dominated by rudist bivalves 
with or without associated corals. In this 
review, these are termed rudist lithosomes, or 
coral-rudist lithosomes. The term lithosome is 
a generic epithet with no compositional, size, 
or shape connotations. It carries no inter-
pretative implications and is not connected 
to any particular type of deposition; as its 
etymology suggests, it simply means “rock 
body.”

RUDIST LITHOSOMES 

Three kinds of general rudist lithosomes 
can be identified based on the predominant 
rudist morphotype.

Elevator Rudist Lithosomes 

Elevator rudists, especially hippuritids 
and radiolitids, formed the most prom-
inent members of elevator rudist litho-
somes. Their elongate, conical to cylindrical 
shapes, and growth habits were well suited 
for clustering with mutual contact. Paleo-
ecological and sedimentological analyses 
of hippuritid and radiolitid lithosomes are 
numerous (e.g., Philip, 1972; Freytet, 1973; 
Bein, 1976; Höfling, 1985; Grosheny 
& Philip, 1989; Gili, 1992; Carannante, 
Cherchi, & Simone, 1995; Skelton & 
others, 1995; Moro, 1997; Steuber, Yilmaz, 
& Löser, 1998; Schumann, 2000; Stössel 
& Bernoulli, 2000; and Simone & others, 
2003). Less numerous are analyses of elevator 
caprinid, monopleurid, and other rudist 
congregations, though some examples have 
been described in detail (e.g., Perkins, 1974; 
Masse, 1976; Scott, 1981, 1990; Harts-
horne, 1989; and Hughes, 2000).

The aggregative habit of elevator rudists 
is manifested to different degrees: from 

two or three individuals attached together 
and forming a small bouquet, to millions 
of clustered shells forming laterally exten-
sive congregations, where individuals were 
closely packed or formed a dispersed fabric 
with individuals rarely entering into point 
contact. Most commonly, however, elevator 
rudists were in close proximity with no 
more than three or four individuals attached 
together (Fig. 11). Neighboring elevators 
grew implanted in the sediment that accu-
mulated around and between them, forming 
upright to somewhat-inclined growth fabrics. 
The bulk of the congregation was thus 

Fig. 11. Plan view of an elevator rudist lithosome in 
Santonian Sant Pere de Vilanoveta Member of Sant 
Corneli Formation in the southern Central Pyrenees, 
showing hippuritid shells in mutually attached clusters; 
scale, 2 euro coin, 25 mm diameter; see Skelton & oth-
ers, 1995 for details (new, photo by Peter W. Skelton).

Fig. 12. Vertical section of an inclined cluster of hip-
puritids in Santonian Sant Pere de Vilanoveta Member 
of Sant Corneli Formation in the southern Central 
Pyrenees, showing bed-parallel tabulae; lens cap (at 
bottom of photo) is 5.5 cm across; see Skelton & oth-
ers, 1995 for details (new, photo by Peter W. Skelton).



14 Treatise Online, number 103

more or less embedded in the sediment, 
with the growing ends of the slender shells 
projecting only centimeters (about 10 cm for 
large Vaccinites shells; Skelton & others, 1995) 
from the sea floor. Occasionally, young indi-
viduals attached to the older shells. The upward 
growth of the rudist congregation was probably 
related to sediment accumulation, since the 
sediment matrix was largely produced in situ 
by postmortem disintegration of shells, previ-
ously weakened by bioeroders, and supple-
mented by faeces and pseudofaeces. This 
mode of growth was described as constratal 
by Gili, Masse, and Skelton (1995), in 
contrast to the superstratral growth exhibited 
by frameworks projecting significantly (at 
meter scale) above the sediment surface (e.g., 
modern coral-algal reefs). 

Frequently, hippuritids in the elevator 
congregations show a persistent inclined 
posture, with their porous upper valves 
facing toward the inferred main downstream 
direction (Gili, 1992; Skelton & others, 
1995; Vilardell & Gili, 2003). This orien-
tation seems to be primary and the result of 

active growth, since the tabulae observed in 
the attached valves are consistently parallel 
to the bed (Fig. 12), unlike those in clearly 
toppled shells. An experimental study on the 
hydrodynamic behaviour of hippuritid shells 
by Gili and LaBarbera (1998) led to the 
conclusion that individuals in an inclined 
downstream position would have filtered 
a mixture of water from both the main 
stream flow and that eddying up from the 
sediment-water interface. The latter would 
probably have been enriched with bacteria 
and detrital organic particles derived from 
the sediment. These findings suggest that 
the downstream-inclined posture could 
have been advantageous under conditions of 
reduced or fluctuating nutrient levels. 

Elevator rudist congregations are typically 
paucispecific (sometimes almost monospe-
cific), and associated benthic biota are very 
rare. The low diversity and species domi-
nance of these rudist assemblages suggest 
marginal conditions for potential competi-
tors (Gili & others, 1995). Rapid growth of 
rudist populations led to situations in which 

Fig. 13. View of an elevator hippuritid lithosome in Santonian Sant Pere de Vilanoveta Member of Sant Corneli 
Formation in the southern Central Pyrenees; overlying the hippuritid lithosome is a massive bioclastic bed, with 

geologist nearby for scale (for details see Vilardell & Gili, 2003; adapted from Vilardell & Gili, 2003, fig. 3).
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most available space was occupied (Gili & 
Skelton, 2000).

Lithosomes of elevator congregations 
are characteristically thin and lenticular, or 
effectively tabular in those cases in which the 
lateral spreading of congregations and their 
debris was sustained, showing little or no 
evidence of original topographic relief (Fig. 
13), although some examples of dominantly 
micritic mounds with a relief of a few meters 
have been reported (Perkins, 1974; Camoin, 
Bernet-Rollande, & Philip, 1988). Elevator 
lithosomes usually developed in areas of the 
carbonate platform protected from strong 
waves and traction currents. 

Clinger Rudist Lithosomes 
Clinger rudist lithosomes were consti-

tuted by congregations of clinger rudists, 
especially requieniids (e.g., Perkins, 1974; 
Masse, 1976; Scott, 1981; Malchus, Pons, 

Fig. 14. Autochthonous cluster of clinger requieniids 
(Toucasia Munier-Chalmas, 1873), viewed from above, 
with loose specimen at right turned over to show basal 
anterior face of attached (left) valve (with centimeter 
ruler for scale), in uppermost Lower Aptian part of 
Villarroya de los Pinares Formation, western Maestrat 
Basin, eastern Spain (Skelton & Gili, 2012, fig. 8,C ). 

Fig. 15. In situ autochthonous clinger requieniids (Toucasia Munier-Chalmas, 1873) cemented to a hardground 
surface, viewed obliquely from above, in the Lower Aptian of Sao Juliao coastal section near Ericeira, southern 

Lusitanian Basin, Portugal; hammer head is 15 cm (new, photo by Peter W. Skelton). 
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& Salas, 1996; Fenerci-Masse, Masse, & 
Pernarcic, 2005; Gili & others, 2016). In 
general, these lithosomes comprise a vari-
able mixture of rudist shells and muddy 
(packstone to wackestone) sediment. Indi-
viduals grew directly on the sediment surface 
(Fig. 14), were attached to other shells, or 
less frequently, cemented to hardground 
surfaces (Fig. 15). After death, shells often 
remained in place, but not necessarily in 
life position. Most commonly observed 
biofabrics consist of closely spaced to densely 
packed parautochthonous to autochthonous 
shells. Individuals rarely formed interlocking 
fabrics. Only occasionally, small clusters 
show several shells locally cemented together. 
Clinger congregations prospered in quiet 
to moderately agitated water, with low net 
sediment accumulation rate.

Rudist species diversity was very low and 
associated macrofauna was usually rare. 

Clinger congregations, like elevator congre-
gations, probably thrived in environmentally 
marginal settings in which other invertebrate 
species were excluded. Good examples of 
requieniid congregations extending well into 
inner platform settings have been described 
in the Albian of Texas, Arizona, and Mexico 
(Scott, 1990), and in the Aptian of Spain 
(Gili & others, 2016).

Clinger rudist lithosomes are the product 
of successive episodes of rudists growing on 
the sedimentary substrate. They usually have 
tabular shapes with meter-scale thicknesses 
and variable lateral extensions. They can be 
found in platform top areas where accom-
modation was limited.

Recumbent Rudist Lithosomes 

Unlike lithosomes formed by elevators 
and clingers, recumbent rudist lithosomes 
with well-preserved shells are rare. The 

Fig. 16. Recumbent caprinuloideid Kimbleia albrittoni (Perkins, 1960) lithosome viewed from above, showing 
autochthonous curved valves in longitudinal section, from the Upper Albian Georgetown Formation in Painted 

Canyon, Pecos River, western Texas; ruler in photo is 9 cm (new, photo by Peter W. Skelton).
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recumbents lived mostly exposed on the 
sea floor as a consequence of their prone 
(horizontal) growth habit and tendency to 
thrive in current-swept settings. Conse-
quently, they were infrequently preserved 
in life position, and more or less transported 
shell associations are more common. Some 
examples of preserved life positions have 
been documented in the literature (e.g., 
Kauffman & Sohl, 1974; Collins, 1988; 
Cestari & Sirna, 1989; Skelton, Nolan, 
& Scott, 1990; Laviano & Skelton, 1992; 
Skelton & Masse, 1998; Mitchell, 2002; 
Bauer & others, 2004).

Recumbent rudist lithosomes usually 
consist of accumulations of parautoch-
thonous to allochthonous shells and shell 
fragments in a sandy to muddy matrix. 
Complete specimens of recumbents in life 
position may also be found in marls, forming 
moderately dense congregations, but not 
in contact with each other (Gili, Masse, 
& Skelton, 1995). In these cases, as in the 
clinger lithosomes, the rudist shells float in 
the sediment, and no biogenic frameworks 
have been observed (Fig. 16).

Lithosomes consisting of coarse rudist 
rubble have been observed in intrashelf and 
platform margin settings exposed to strong 
waves and traction currents (Korbar & 
others, 2001), whereas in situ recumbent 
rudist lithosomes are found in less extreme 
areas of the platform top (Hughes, Siddiqui, 
& Sadler, 2003).

CORAL-RUDIST LITHOSOMES

Coral-rudist lithosomes include a variety 
of mixed associations of corals and rudists, 
with an abundance of corals. Detailed 
descriptions of coral-rudist lithosomes 
include Masse and Philip (1981); Camoin, 
Bernet-Rollande, and Philip (1988); Gili 
and others (1995); Sanders and Baron-
Szabo (1997); Skelton and others (1997); 
Immenhauser and others (2001); Götz 
(2003a); Schafhauser and others (2003); 
Bover-Arnal and others (2012, 2015); and 
Moro and others (2016). These articles 
document the diversity of these associations 

as well as their similarities. We presently 
focus only on their similarities.

The number of described Lower Creta-
ceous coral-rudist lithosomes is very limited, 
but a fine example is documented from 
the Albian of Arizona, where recumbent 
caprinids sit between corals at the margin 
of the platform (Scott, 1981). Similarly, 
Masse and Philip (1981) mentioned that, 
in the Cenomanian of France, caprinids 
and corals occur together on the outer part 
of the platform.

In post-Cenomanian examples, the domi-
nant organisms in coral-rudist lithosomes are 
colonial, platy to domal corals and hippu-
ritids (Fig. 17. 1–2). Among the hippuritids, 
Vaccinites and/or Pironaea Meneghini, 1868 
in Pirona (with contribution by Meneghini), 
1868 are the most conspicuous and recurrent 
genera, but other more slender hippuritids, 
either solitary or forming small bouquets 
or clusters, may be locally important. Less 
frequent are radiolitid, plagioptychid, small 
hippuritid, and requieniid rudists. Other 
colonial (flabello-meandroid, columnar, 
branching) and solitary corals may add to 
the coral assemblage. Associated macro-
faunal elements also include occasional 
encrusting and rare branching chaetetid 
sponges, brachiopods, echinoids, gastropods, 
non-rudist bivalves, calcareous algae, and 
benthic foraminifers. The sediment matrix 
is variable, ranging from fine bioclastic 
wackestones to medium-grained bioclastic 
packstones.

Most macrofaunal components are 
preserved in life position, though displaced 
and broken specimens are occasionally 
present. Some shells show thin algal crusts 
and microborings. The organisms may 
be sparsely dispersed or relatively densely 
packed. In some places, corals and rudists 
clump together in mutual overgrowth. 
However, in vivo contacts between corals and 
rudists are rarely observed. This was prob-
ably due to the different life spans of corals 
and rudists and different morphologies that 
made in vivo contact rare (Götz, 2003a). 
Even in dense associations, coral-rudist 
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Fig. 17. Coral-rudist lithosomes. 1, View of coral-rudist lithosome in Santonian Sant Pere de Vilanoveta Member of 
Sant Corneli Formation in the southern Central Pyrenees, hammer shaft is 36 cm long; 2–6, photographic views and 
accompanying drawings from a coral-rudist lithosome in the Campanian of the Sierra de la Murta near Tabernes de 
Valldigna, in southeastern Spain; 2, detail of the coral-rudist lithosome, Pironaea milovanovici Kühn, 1935 covered 
by the coral Actinacis sp. d'Orbigny, 1849, with hammer for scale; 3a, 4a, 5a, 6a, photomicrographs of coral-rudist 
contact areas (longitudinal sections), note changed angle of growth-lamellae towards the coral surfaces; 3a, Vaccinites 
sp. Fischer, 1887 (right side) in contact with the coral Agathelia asperella Reuss, 1854 (left side) (red rectangle 
in 3b), note the balcony-like thickening of the outer shell layer, produced through an elongation of the growth 
laminae, Vaccinites suffered strong bioerosion and leaching, especially of the aragonitic shell layers; 4a, Hippurites 
sp. Lamarck, 1801 (right side) in contact with the coral Microsolena sp. Lamouroux, 1821(left side) (red rectangle 
in 4b), smaller balcony was produced; 5a, Hippurites sp. (right side) in contact with Microsolena sp. (left side) (red 
rectangle in 5b), note that a similar defense balcony is present; 6a, P. milovanovici (upper part) in contact with the 
coral Actinacis martiniana d'Orbigny, 1850 (red rectangle in 6b), the balcony was partially bioeroded by a clionid 
sponge; 3b, 4b, 5b, 6b, drawings of the specimens, dotted, sediment; black, calcitic outer layer of rudist shells; thick 
laminae, original aragonitic inner layer (now recrystallized) of rudist shells (mostly leached); thin laminae, growth 
stages of corals; photos (3a–6a), scale bars, 1 mm, drawings (3b–6b), scale bars,1 cm; see Götz, 2003a for details of 
2–6 (1, new, photo by Peter W. Skelton; 2, adapted from Götz, 2003a, pl. 2,1; photos 3a–6a, adapted from Götz, 

2003a, pl.3,1–3, 5; drawings (3b–6b) adapted from Götz, 2003a, fig. 4).

rudist
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contact must have been short term and then 
expressed by localized shell thickening of 
rudists (Götz, 2003a) (Fig 17. 3–6). Most 
rudists in coral-dominated lithosomes 
reached adult ages. This suggests mutual 
benefit through stabilization (encrustation) 
of rudist elevators in low sedimentation 
areas and increased availability of coral 
settlement area on living or dead rudist 
shells. 

High diversities of corals and rudists, 
the variety of accompanying biota, and 
usual preservation in growth orientation are 
indicative of relatively quiet settings with 
good water circulation. Most studies on 
coral and rudist lithosomes associate them 

with platform margin environments more 
downslope than rudist-dominated associa-
tions (e.g., Masse & Philip, 1981; Camoin, 
Bernet-Rollande, & Philip, 1988; Skelton 
& others, 1997).

RUDIST CARBONATE 
PLATFORMS 

Carbonate platforms in which rudists 
formed a major, if not dominant, biotic 
component developed over vast shallow 
areas at low latitudes in the Tethyan/Atlantic 
oceanic realm. Their development during 
the Cretaceous was episodic, with long 
periods of widespread platform growth 
punctuated by global demises. The first 

Fig. 18. Summary history of Tithonian and Cretaceous carbonate platform development in the New World and 
the Old World, with timings of major crises in the growth of platforms (bold horizontal lines) and oceanic anoxic 

events (OAEs) (Skelton & Gili, 2012, adapted from Skelton, 2003, fig. 5,1). 
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three major crises (mid-Valanginian, mid-
early- to middle-Aptian, and at the end of 
the Cenomanian) coincided with oceanic 
anoxic events (Simo, Scott, & Masse, 1993; 
Skelton, 2003; Skelton & Gili, 2012) (Fig 
18). No major oceanographic perturbations 
prior to the Cretaceous-Paleogene boundary 
(K/Pg) event accompanied the Maastrich-
tian decline, though climatic cooling may 
then have caused some contraction of plat-
forms (Gale, 2000). However, lowering of 
temperature was apparently associated with 
the catastrophic impact recorded at the  
K/Pg boundary (Steuber, 2002; Steuber & 
others, 2002).

During the Cretaceous, prolific sediment 
production by rapidly growing, short-lived, 
benthic shelly biota caused rapid growth 
and expansion of platforms. The most abun-
dant contributors were rudists, especially 

in the Late Cretaceous. Other contributors 
included calcareous algae, benthic fora-
minifers (some centimeter-scale), highly 
gregarious non-rudist bivalves, such as chon-
drodontids, gastropods (e.g., nerineids, 
acteonids), corals, and sponges.

The Cretaceous platforms typically show 
a tabular stratal architecture, with minor 
shoaling cycles (parasequences) predom-
inating (Fig. 19) (see Gili, 1993; Hunt 
& Tu c k e r ,  1993; Sk e lto n  & others, 
1995; Buchem & others, 1996; Ruberti, 
1997; Sanders & Pons, 1999; Stössel & 
Bernoulli, 2000; Pomar & others, 2005; 
Bover-Arnal & others, 2010; Gili & others, 
2016; among many others). Usually, meter-
scale, low-energy platform top deposits 
grade laterally into thicker, platform margin 
cycles, including high-energy deposits (Fig. 
20). Distally, the platform margin deposits 

Fig. 19. Santonian carbonate platform succession forming part of Sant Corneli Formation in the southern Central 
Pyrenees, showing repeated minor shallowing units (predominantly <10 m thick) of remarkably tabular form, char-
acteristic of such Cretaceous successions; see Skelton and Gili, 2005 for details (new, photo by Peter W. Skelton). 
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may grade into low-angle slope deposits, 
although tectonically induced steepening 
sometimes produced a sharper transition.

The platform top areas were often char-
acterized by very active rudist growth, and 
usually consisted of lenticular to tabular 
lithosomes of pauci- to monospecific rudist 
congregations and their debris. Rarely more 
than a few meters thick, these lithosomes 
often extended laterally for hundreds of 
meters,  even kilometers.  In the early 
Cretaceous, these lithosomes were largely 
comprised of requieniid clingers, sometimes 
accompanied by clusters of primitive elevators 
(e.g., monopleurids and slender caprinids) 
(see Clinger Rudist Lithosomes, p. 15). In late 
Cretaceous platforms, such lithosomes were 
produced by vast congregations of elevators, 
mainly radiolitids and (in post-Cenomanian 
examples) hippuritids (see Elevator Rudist 
Lithosomes, p. 13). The latter lithosomes are 
frequently capped by floatstones generated 
by the destruction of the last congregation 
and/or blankets of bioclastic packstone to 
grainstone swept in from neighboring and 
usually more open marine areas (e.g., Skelton 
& others, 1995) (Fig. 21).

Extensive paucispecific lithosomes formed 
in platform tops were often replaced seaward 
by mixed associations of corals and rudists 

accompanied by open marine biota (see 
Coral-Rudist Lithosomes, p. 17). These 
coral and rudist lithosomes evidently devel-
oped in relatively deep, open marine waters, 
although they may be absent in platforms 
that formed in enclosed basins, such as the 
Aptian Shu’aiba Formation of the Bab Basin 
in Abu Dhabi (Hughes, 1997). Occasion-
ally, associations of laminar to tabular corals 
with rare rudists also carpeted the seafloor 
in slightly deeper, poorly illuminated zones 
(Skelton & others, 1997). Hence, corals and 
rudists largely occupied different biotopes 
during the Cretaceous (Skelton & others, 
1997), with little or no competition between 
them. Even in mixed assemblages, there 
is no evidence for competition between 
neighbors. This is contrary to the sugges-
tion by Kauffman and Johnson (1988) that 
rudists outcompeted hermatypic corals. An 
alternative view to explain the dominance 
of rudist congregations over coral reefs in 
Cretaceous carbonate platforms, is that 
the various (sediment-dwelling) rudist and 
coral associations were optimally adapted 
to the characteristic profiles and geometries 
of greenhouse platforms, in contrast to the 
predominance of superstratal reef growth on 
antecedent promontories typical of icehouse 
conditions (Gili, Masse, & Skelton,1995).

Fig. 20. Generalized transect model of Cretaceous carbonate platform showing typical cyclic deposits containing rud-
ist lithosomes from outer platform margin and inner platform top, respectively. Expanded logs show idealized cycles. 
Clinger rudists may be found variously in all parts (Skelton & Gili, 2012, adapted from Skelton, 2003, fig. 5,4) . 
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Fig. 21. View of a shallowing cycle from a platform top sequence in Santonian Sant Pere de Vilanoveta Member of 
Sant Corneli Formation in the southern Central Pyrenees, showing mixed coral and large elevator rudist (Vaccinites 
Fischer, 1887) lithosome at the base (1), followed by a lithosome of clustered slender hippuritids in the middle 
(2), and bioclastic deposits in its upper part (3); with hammer for scale (shaft is 36 cm long); see Gili & others, 

1995 for details (photo by Peter W. Skelton).
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Episodically, diverse recumbent rudists 
occupied high-energy platform margins, 
lying prone in relatively current-swept areas 
with predominant sediment bypassing. 
Though their broken shells and debris were 
usually washed into neighboring areas, 
autochthonous shells may be found over 
the tops of bioclastic banks, capping outer 
platform cycles (see Recumbent Rudist 
Lithosomes, p. 16).

The depositional geometry of Cretaceous 
carbonate platforms reflects the nature of 
Cretaceous climate, as Simo, Scott, and 
Masse (1993) and Skelton (2003) have 
pointed out. They suggested that the small 
increments of accommodation typical of 
Cretaceous greenhouse-type oscillations 
of sea level, combined with high rates of 
carbonate production, promoted rapid 
shoaling, with overproduction and extensive 
lateral redistribution of bioclastic sediment 
during times of continuously decreasing 
accommodation. Drowning and backstep-
ping occurred during times of increasing 
accommodation. Consequently, platforms 
usually assumed flat-topped profiles (Fig. 22) 
with broad outer zones. Bioclastic debris was 
swept both inwards across the platform top 
and down the flanking clinoforms.
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