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Impact parameter dependence of dilepton production: Wigner
function approach and the role of photon polarizations
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ul. Radzikowskiego 152, PL-31-342 Kraków, Poland

We revisit the Wigner function approach to the impact parameter dependent dilepton pair pro-
duction developed in [M. Klusek-Gawenda, WS, A. Szczurek Phys.Lett.B 814 (2021) 136114].
We study the distribution of the angle between difference and sum of lepton transverse mo-
menta, and show how it relates to the orbital angular momentum of leptons. The dependence
on impact paramter is discussed, and we also present the different components of the Wigner
function in the t-channel. A brief comparison to similar angular distributions in diffractive
quark pair production will be presented.
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1 Introduction

The uses of Weizsäcker-Williams (WW) photons in ultraperipheral collisions of heavy ions 1,2,3,4 need no
introduction at this conference. Here, we will concentrate on the role of WW-photons in peripheral to
semi-central processes, where nuclei overlap in impact parameter space and interact strongly. This can
include the production of quark-gluon plasma in the nuclear overlap region. For our purposes the addi-
tional strong interactions create an “underlying event” to the γγ-process induced by the WW-photons.
The possibility of extending the WW approach to such inelastic collisions has been realized already in the
1990s5, but has become topical after the measurements by the STAR collaboration at RHIC of J/ψ 6 and
dielectrons 7 at very low transverse momenta of the produced system. Below, we concentrate on lepton
pair production. In fact it is straightforward to write the relevant cross section in impact parameter
space, involving a convolution of the b–dependent photon fluxes:

dσll
dξd2b

=

∫
d2b1d

2b2 δ
(2)(b− b1 − b2)N(ω1, b1)N(ω2, b2)

dσ(γγ → l+l−; ŝ)

d(−t̂) , (1)

where the phase space element is dξ = dy+dy−dp
2
T with y±, pT and ml the single-lepton rapidities,

transverse momentum and mass, respectively, and

ω1 =

√
p2T +m2

l

2
(ey+ + ey−) , ω2 =

√
p2T +m2

l

2
(e−y+ + e−y−) , ŝ = 4ω1ω2 . (2)

It is then straightforward to evaluate the cross sections/yields for different centrality classes C, which are
slices in impact parameter space [bmin, bmax] that contain a fraction fC of the total inelastic cross section
σin
AA. For example

dNll[C]

dM
=

1

fC · σin
AA

∫ bmax

bmin

db

∫
dξ δ(M − 2

√
ω1ω2)

dσll
dξdb

∣∣∣
cuts

. (3)

Up to now we have treated WW photons as purely collinear partons of the ions, in particular the dilepton
pair is produced back–to–back with a delta-function distribution of the pair transverse momentum. An
excellent agreement with the invariant mass distributions of dileptons with PT < 150 MeV for the most
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Figure 1 – Left panel: PT spectra of the individual contributions in 3 different mass bins for 60-80% central
Au+Au collisions (

√
sNN=200GeV), compared to STAR data 7. Right panel: PT distribution of the pair against

old preliminary ALICE data 8.

peripheral STAR data is achieved in such an approach9. For more central collisions also thermal emissions
and the cocktail of hadronic Dalitz as described in Ref.10 decays plays a role.

The proof for the presence of the photon fusion mechanism however lies in the pair-transverse mo-
mentum distribution. One can easily obtain the transverse momentum dependent WW-flux of photons,
which reads

dN(ω, q)

d2q
=
Z2αem

π2

q2

[q2 + ω2

γ2 ]2
F 2
em(q2 +

ω2

γ2
). (4)

Here the electromagnetic formfactor of the nucleus restricts transverse momenta to q2 ∼< 6/R2
A, while the

maximum of the distribution is at q2 ∼ ω2/γ2, which takes smaller values with increasing Lorentz factor
γ. The dilepton cross section is then written as

dσll
d2P

=

∫
dω1

ω1

dω2

ω2
d2q1d

2q2

dN(ω1, q
2
1)

d2q1

dN(ω2, q
2
2)

d2q2

δ(2)(q1 + q2 − P )σ̂(γγ → l+l−)
∣∣∣
cuts

, (5)

so that the transverse momentum distribution of the dilepton pair is essentially obtained by a convolution
of WW-fluxes. This of course closely reminds the TMD (transverse momentum dependent) factorization
formulas used in inclusive hadronic processes. The similarity would be even more obvious by using
momentum fractions xi = 2ωi/

√
sNN instead of photon energies. A similar procedure is taken in the

Monte-Carlo code Starlight 11. In the left panel of Fig.1 we show the comparison of a calculation based
on eq.5 with STAR data. Closer inspection shows, that the peak however is predicted at smaller PT

than what data show. This disagreement becomes rather dramatic at LHC energies, see the right panel
of Fig.1. Here the blue dashed line reflects the ever smaller transverse momenta of photons at higher
energies.

2 Wigner function approach

2.1 Wigner function & factorization

As it turns out it is crucial to include simultaneously the dependence on centrality/impact parameter of
the collision and the pair transverse momentum 12.

Nij(ω, b, q) =

∫
d2Q

(2π)2
exp[−ibQ]Ei

(
ω, q +

Q

2

)
E∗

j

(
ω, q − Q

2

)
. (6)
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Figure 2 – Diagrammatic representation of the factorization formula for the cross section at fixed impact parameter
of the colliding particles. It is related to the cut of a non-forward elastic amplitude.
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Figure 3 – PT spectra for 60-80% central Au+Au collisions (
√
sNN=200GeV ) Calculations from Ref.12.

Above, we introduced the electric field strength vector

E(ω, q) ∝
qFem(q2 + ω2

γ2 )

q2 + ω2

γ2

. (7)

The Wigner function depends at the same time on impact parameter and transverse momentum, and will
reproduce the above mention WW fluxes in impact parameter and transverse momentum space after being
integrated over the respective other set of variables. It is also a density matrix in photon polarizations
– above indices i, j correspond to cartesian (linear) polarizations of WW photons. The relation to the
operator matrix element definition is shown in Ref.13. For earlier approaches to the impact parameter
dependence, see e.g. Ref.14 (which does not discuss the pair PT -spectrum and photon polarizations)
and Ref.15, which is based on a numerical Fourier transform of Feynman-diagram amplitudes. For an
equivalent approach to ours and a discussion of soft-photon resummation 16, see the presentation by
Ya-Jin Zhou at this workshop. For the analogous QCD Wigner function of gluons with applications to
mainly exclusive processes we refer to the recent review 17. The factorization formula differs from the
standard expressions in several aspects, the most important being the fact that here it is not the hard
cross section averaged over incoming parton polarizations that enters, but rather a mixture of incoming
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polarizations is prepared dependent on b.

dσ

d2bd2P
=

∫
d2b1d

2b2 δ
(2)(b− b1 + b2)

∫
dω1

ω1

dω2

ω2
d2q1d

2q2 δ
(2)(P − q1 − q2)

× Nij(ω1, b1, q1)Nkl(ω2, b2, q2)
1

2ŝ
MikM

†
jl dΦ(l+l−). (8)

For a diagrammatic representation, see Fig.2. For practical calculations it is useful to start from the more
explicit form

dσ

d2bd2P
=

∫
d2Q

(2π)2
exp[−ibQ]

∫
dω1

ω1

dω2

ω2

∫
d2q1

π

d2q2

π
δ(2)(P − q1 − q2)

× Ei

(
ω1, q1 +

Q

2

)
E∗

j

(
ω1, q1 −

Q

2

)
Ek

(
ω2, q2 −

Q

2

)
E∗

l

(
ω2, q2 +

Q

2

)
× 1

2ŝ

∑
λλ̄

Mλλ̄
ik M

λλ̄†
jl dΦ(l+l−).

with ∑
λλ̄

Mλλ̄
ik M

λλ̄†
jl = δikδjl

∑
λλ̄

∣∣∣M (0,+)

λλ̄

∣∣∣2 + ϵikϵjl
∑
λλ̄

∣∣∣M (0,−)

λλ̄

∣∣∣2
+ P

∥
ikP

∥
jl

∑
λλ̄

∣∣∣M (2,−)

λλ̄

∣∣∣2 + P⊥
ikP

⊥
jl

∑
λλ̄

∣∣∣M (2,+)

λλ̄

∣∣∣2 + interferences . (9)

Here, the mutually orthogonal O(2)-tensors

δik = x̂ix̂k + ŷiŷk, ϵik = x̂iŷk − ŷix̂k, P
∥
ik = x̂ix̂k − ŷiŷk, P

⊥
ik = x̂iŷk + ŷix̂k (10)

project the incoming (s-channel) photon polarization states into definite Jz = 0,±2 and parity. In Fig.3
we see that the inclusion of the impact parameter dependence within the Wigner function approach gives
an improved description of STAR data with no new parameters introduced. Other successes12 include a
good description of the evolution of azimuthal decaorrelation of dileptons with centrality, as measured
by the ATLAS Collaboration 18.

2.2 Positivity

The form of the cross section given in eq.9 also gives straightforward insight into positivity issues. Namely
the Wigner function is not necessarily a non-negative function. One may therefore doubt, whether our
cross section is manifestly positive, i.e. well-defined. To this end, we can introduce:

Gik(ω1, ω2,P ; b) ≡
∫
d2k

2π2
exp[−ibk]Ei(ω1,k)Ek(ω2,P − k) , (11)

so that our cross section takes the form

dσ

d2bd2P
=

∫
dω1

ω1

dω2

ω2
Gik(ω1, ω2,P ; b)G∗

jl(ω1, ω2,P ; b)
1

2ŝ

∑
λλ̄

Mλλ̄
ik M

λλ̄†
jl dΦ(l+l−) . (12)

from which we obtain the cross section as a sum of squares which is manifestly positive:

dσ

d2bd2P
=

∫
dω1

ω1

dω2

ω2

{
|Gxx +Gyy|2

∑
λλ̄

∣∣∣M (0,+)

λλ̄

∣∣∣2 + |Gxy −Gyx|2
∑
λλ̄

∣∣∣M (0,−)

λλ̄

∣∣∣2
+ |Gxx −Gyy|2

∑
λλ̄

∣∣∣M (2,+)

λλ̄

∣∣∣2 + |Gxy +Gyx|2
∑
λλ̄

∣∣∣M (2,−)

λλ̄

∣∣∣2}dΦ(l+l−)

2ŝ
. (13)

2.3 Fierz transformation & t-channel viewpoint

While positivity is easiest proven from the s-channel point of view, it is of interest to analyze which
components of the spin-density matrix of the beam/target nuclei are being probed by the “hard process”

4
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Figure 4 – Data from STAR 20,experimental cuts: 0.45 < M < 0.76 GeV, PT < 0.1 GeV.

under discussion. Here one often uses the generalized transverse momentum distribitions (GTMDs),
which are derived from the Wigner distributions by another Fourier transform (see the e.g. the review17):

Gij(x, q,Q) ∝
∫
d2b exp[ibQ]Nij(x, b, q) . (14)

While it would be perhaps most convenient to decompose the GTMD/density matrix in terms of the
orthogonal O(2) tensors given above, popular parametrizations (see e.g.19) use decompositions like

Gij(x, q,Q) = δijG1(x, q,Q) + (2qiqj − q2δij)G2(x, q,Q)

+ (2QiQj −Q2δij)G3(x, q,Q) + (qiQj −Qiqj)G4(x, q,Q), (15)

where in fact for small-x photons all the GTMDs are proportional to each other. In the forward limit
Q → 0, which corresponds to the integration over impact parameters in the Wigner function, we have the
TMD limits G1 → f1(x, q), G2 → h⊥1 (x, q), where f1 and h⊥1 are the TMD for unpolarized and linearly
polarized photons repsectively.. To convert the sums over polarizations in Eq.9, one may use a ”Fierz
transformation” which swaps contractions PikPjl to PijPkl:

I⊗ I
ε⊗ ε

P ∥ ⊗ P ∥

P⊥ ⊗ P⊥

∣∣∣s−channel

=
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




I⊗ I
ε⊗ ε

P ∥ ⊗ P ∥

P⊥ ⊗ P⊥

∣∣∣t−channel

(16)

2.4 Polarization structure & angular dependence

Before we come to the angular dependence of the cross section, let us briefly look at helicity amplitudes
of leptons in states of definite Jz and parity. As it turns out, all amplitudes with Jz = 0 vanish in the
limit of massless fermions. We work in terms of light-front momentum fractions z, 1 − z of one of the
photons carried by the (anti-)lepton and the relative transverse momentum

k = zp− − (1 − z)p+ . (17)

As the total angular momentum is decomposed into spin and orbital angular momentum Jz = Sz + Lz,
amplitudes will have dependences on the azimuthal angle ϕ of k which involve

exp(±iLzϕ) = exp(±i(Jz − Sz)ϕ). (18)

For example, the positive parity, Jz = 0, Sz = 1 amplitude has the form

M
(0,+)
↑↑ ∝ mk⊥e

−iϕ

k2⊥ +m2
, (19)
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while for Jz = 2, Sz = 0, P = +1, we have

M
(2,+)
↑↓ ∝ −k2⊥(zei2ϕ − (1 − z)e−i2ϕ)

k2⊥ +m2
, (20)

which does not vanish as m→ 0. Indeed, in the massless case only amplitudes for Jz = ±2, Sz = 0 with
Lz = ±2 contribute. The amplitudes in this case enter the cross section as∑

λλ̄

Mλλ̄
ik M

λλ̄†
jl =⇒ P

∥
ikP

∥
jl

∑
λ=−λ̄

∣∣∣M (2,−)

λλ̄

∣∣∣2 + P⊥
ikP

⊥
jl

∑
λ=−λ̄

∣∣∣M (2,+)

λλ̄

∣∣∣2
=

2

k2⊥

{z2 + (1 − z)2

z(1 − z)

(
P

∥
ikP

∥
jl + P⊥

ikP
⊥
jl

)
+ 2 cos(4ϕ)

(
P

∥
ikP

∥
jl − P⊥

ikP
⊥
jl

)}
We observe, that at the cross section level, the Lz = ±2 amplitudes give rise to a cos(4ϕ) modulation. It
gives rise to a difference between ∥ and ⊥ linear polarizations of “s-channel” photons. As the cross section
is the absorptive part of a forward amplitude, which in turn can be related to an index of refraction, one
can indeed relate this to a “birefringence” of the vacuum, see the discussion in Ref. 21. Furthermore,
from the Fierz transformation(

P ∥ ⊗ P ∥ + P⊥ ⊗ P⊥)∣∣∣
s−channel

=
(
I⊗ I− ε⊗ ε

)∣∣∣
t−channel(

P ∥ ⊗ P ∥ − P⊥ ⊗ P⊥)∣∣∣
s−channel

=
(
P ∥ ⊗ P ∥ − P⊥ ⊗ P⊥

)∣∣∣
t−channel

, (21)

one can derive, that in the b-integrated cross section, the cos(4ϕ) modulation stems from the linearly
polarized TMD h⊥1 (x, q2⊥) as previously shown in Ref.22. In the massive case, relevant to invariant masses
close to the threshold, interferences between Jz = 0 and Jz = ±2 amplitudes of equal parity can induce
a cos(2ϕ) modulation.∑

λλ̄

Mλλ̄
ik M

λλ̄†
jl ⊃ δikP

∥
jl

∑
λλ̄

M
(0,+)

λλ̄
M

(2,+)†
λλ̄

+ P
∥
ikδjl

∑
λλ̄

M
(2,+)

λλ̄
M

(0,+)†
λλ̄

+ ϵikP
⊥
jl

∑
λλ̄

M
(0,−)

λλ̄
M

(2,−)†
λλ̄

+ P⊥
ikϵjl

∑
λλ̄

M
(2,−)

λλ̄
M

(0,−)†
λλ̄

(22)

We can expect a different dependence on centrality the cos 2ϕ and cos 4ϕ contributions. In the b–
integrated cross section the cos 2ϕ stems from the product of unpolarized & linearly polarized TMD’s:
f1(x1, q

2
1⊥)h⊥1 (x2, q

2
2⊥) + (x1, q1⊥ ↔ x2, q2⊥), in agreement with the analysis in Ref.22.

2.5 Comparison with STAR data

√
sNN = 200 GeV Wigner Wigner STAR STAR

centrality A4

√
⟨P 2

T ⟩ MeV |A4|
√

⟨P 2
T ⟩ MeV

60-80 % -0.39 47.7 0.27 ± 6 50.9 ± 2.5

40-60 % -0.49 51.0 − −
20-40 % -0.62 54.8 - -

0-20% -0.77 59.6 - -

Table 1: Centrality dependence of angular coefficient and mean PT of e+e−-pair.

Let us now go to the comparison with experimental data. Here we define, event by event, the x-axis
in the transverse plane to be along P = p+ +p−, so that the internal orbital angular momenta of leptons
reflect themselves in a modulation in the angle:

cosϕ =
P · (p− − p+)

|P ||p− − p+|
≈ P · k

|P ||k| , . (23)
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Figure 5 – Feynman diagrams for the diffractive photoproduction of qq̄ pairs in nucleus-proton collisions, discussed
in the present paper.
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Figure 6 – Distributions in the azimuthal angle ϕ between P⃗⊥ and ∆⃗⊥ normalised to the total cross section for
0.01 < P⊥ < 10.0GeV on the left and for 5.0 < P⊥ < 10.0GeV on the right.

A comparison with STAR20 data in the 60− 80% centrality class, which show a sizable, negative cos(4ϕ)
modulation, is seen in Fig.4. The angular modulation clearly reflects the orbital angular momentum
Lz = ±2 of leptons. The agreement with data is good, we stress that no new parameters enter the
calculation. In Table 1 we show the A4 correlation coefficient in

dN

dϕ
∝ 1 +A2 cos 2ϕ+A4 cos 4ϕ+ . . . . (24)

In particular we predict its evolution with centrality: an increasing in size, and negative azimuthal
correlation A4.

3 Diffractive photoproduction of cc̄ pairs

Finally, let us return to the gluon Wigner distribution/GTMD. Here, also ultraperipheral collisions have
been proposed as a means to gain access to the latter 23,24. We briefly summarize the main results of
our recent paper25 regarding the azimuthal correlations of diffractively produced cc̄-pairs. Here we have
in mind UPC in proton-nucleus collisions, where the nucleus provides the photon flux and the diffractive
photoproduction process proceeds on the proton (see Fig.5). The photoproduction amplitude in the
dipole picture is expresed as

dσ(γp→ QQ̄p; sγp)

dzd2P d2∆
=

∑
λγ ,λ,λ̄

∣∣∣ ∫ d2bd2r

(2π)2
e−i∆·be−iP ·rN(Y, r, b) Ψ

λγ

λλ̄
(z, r)

∣∣∣2 . (25)

Now, one is interested in the azimuthal correlation in the angle

cosϕ =
P ·∆
P⊥∆⊥

(26)
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Indeed, a possible correlation between dipole size r and impact parameter b reflects itself in an angular
correlation in the GTMD (the so-called “elliptic GTMD”.

f
(
Y,

q

2
+ κ,

q

2
− κ

)
= f0(Y, κ⊥, q⊥) + 2 cos(2ϕqκ) f2(Y, κ⊥, q⊥) . (27)

Here Y is the rapidity gap between diffractive system and proton, and the gluon GTMD relates to the
dipole amplitude as

N(Y, r, b) =

∫
d2qd2κ f

(
Y,

q

2
+ κ,

q

2
− κ

)
exp[iq⃗⊥ · b⃗⊥]

×
{

exp
[
i
1

2
q · r

]
+ exp

[
− i

1

2
q · r

]
− exp[iκ · r] − exp[−iκ · r]

}
. (28)

In this case, the dominant correlation turns out to be cos 2ϕ, and it inded stems from the “elliptic glue”.
The size of the effect shown in Fig.6 however is much smaller than the one in photon-photon fusion
production for the dilepton.

4 Summary

We have reviewed our studies of low-PT dilepton production in ultrarelativistic heavy-ion collisions. We
first performed a comparison of dilepton production via thermal radiation and photon-photon fusion
within the coherent fields of the incoming nuclei. Coherent emission dominates for the two peripheral
samples, and is comparable to the cocktail and thermal radiation yields in semi-central collisions. The
impact-parameter dependent dilepton PT distribution is described by a Wigner function density matrix
generalization of the Weizsäcker-Williams fluxes. Here the Jz = 0,±2 channels of the γγ-system enter
with different b-dependent weights. For e+e− pairs the Jz = ±2 channels dominate. Comparison to
recent STAR data shows a good description of low-PT dilepton data in Au-Au(

√
sNN=200 GeV) collisions

in three centrality classes, for invariant masses from threshold to ∼4 GeV. Proper account for the b-
dependence turns out to be crucial at LHC energies. We obtain a very good description of ATLAS
azimuthal decorrelations, our predictions agree well with recent ALICE data.

Also the azimuthal cos 4ϕ correlation measured by STAR is well reproduced, and can be traced to
orbital angular momentum of leptons. Here the linear photon polarizations play an important role. The
angular coefficient rises for more central collisions.

In contrast, in diffractive heavy quark production, the parton-level cos 2ϕ azimuthal correlations
induced by the elliptic Wigner function are much smaller than the ones in the QED process.
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4. Wolfgang Schäfer. Photon induced processes: from ultraperipheral to semicentral heavy ion colli-
sions. Eur. Phys. J. A, 56(9):231, 2020.

5. N. Baron and G. Baur. Unraveling gamma gamma dileptons in central relativistic heavy ion
collisions. Z. Phys. C, 60:95–100, 1993.

6. Jaroslav Adam et al. Measurement of an excess in the yield of J/ψ at very low pT in Pb-Pb
collisions at

√
sNN = 2.76 TeV. Phys. Rev. Lett., 116(22):222301, 2016.

7. Jaroslav Adam et al. Low-pT e+e− pair production in Au+Au collisions at
√
sNN = 200 GeV and

U+U collisions at
√
sNN = 193 GeV at STAR. Phys. Rev. Lett., 121(13):132301, 2018.

8

https://journals.ku.edu/upc/


Phys. Proc. Ultra-Peripheral Collisions 1, 009 (2024) 9-9

8. Sebastian Lehner. Dielectron production at low transverse momentum in Pb-Pb collisions at√
sNN = 5.02 TeV with ALICE. PoS, LHCP2019:164, 2019.

9. Mariola K lusek-Gawenda, Ralf Rapp, Wolfgang Schäfer, and Antoni Szczurek. Dilepton Radiation
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