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Azimuthal angular correlations in lepton pair production in
ultra-peripheral heavy ion collisions

Ya-jin Zhou
Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and

Interdisciplinary Science, Shandong University, QingDao, China

The coherent photons induced by relativistic heavy ions are highly linearly polarized, in close
analogy to the linear polarization of gluons in a large nucleus. We proposed to measure the
photon polarization through azimuthal asymmetries in dilepton production in ultra-peripheral
collisions. Our prediction for the asymmetries were soon confirmed by the STAR experiment
with high precision. We refined our analysis recently by including the final state soft photon
radiation effect beyond the double leading logarithm approximation. The azimuthal asymme-
tries and acoplanarity at relatively high transverse momentum provide unique opportunities
to test the resummation formalism thanks to the extremely high photon flux in UPCs. Our
results clearly show the feasibility to access the sub-leading resummation effects in UPCs at
the RHIC and LHC.
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1 Linearly polarized gluons and photons

In high-energy hadron colliders, the partons carry longitudinal momenta as well as transverse momenta,
as shown in the left panel of Fig.1, which made it necessary to describe the parton distributions in
the framework of transverse momentum dependent (TMD) factorization. Take the gluon TMD as an

TMD
Z e

photon

� �

��

TMD
hadron

parton

� �

��

Figure 1 – Illustration diagrams of the longitudinal and transverse momenta of a parton from a hadron (left) and
a photon from a heavy ion (right).

example, the leading twist gluon correlator of an unpolarzied hadron can be defined and be parametrized
in terms of leading twist TMDs 1:∫

2dy−d2y⊥
xP+(2π)3

eik·y⟨P |F i
+(0)U[0,y]F

j
+(y)U ′

[y,0]|P ⟩
∣∣
y+=0

= δij⊥f1(x,k2
⊥) +

(
2ki⊥k

j
⊥

k2
⊥

− δij⊥

)
h⊥
1 (x,k2

⊥), (1)

where f1(x,k2
⊥) and h⊥

1 (x,k2
⊥) are the unpolarized and linearly polarized gluon TMDs, respectively, and

the Wilson lines U[0,y] and U ′
[y,0] guarantee color gauge invariance. For a hadron moves relativistically

along P+ direction, A+ component dominant the gauge potential components due to the Lorentz boost
effect, so the field tensor reads F i

+ = ∂+A
i − ∂iA+. For a gluon with momentum k, the field tensor

F i
+ ∝ k+A

i − kiA+. Usually the transverse momentum of the photon k⊥ is much smaller than its
longitudinal momentum k+ = xP+, so it’s hard to tell which component is more important in the field
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tensor. But at small-x limit ki⊥A
+ is obviously dominant, so F i

+ ∝ ki⊥A
+ approximately. Compare both

sides of Eq.(1), one can conclude that f1(x,k2
⊥) = h⊥

1 (x,k2
⊥), which means that the gluons are totally

linearly polarized 2.

On the other hand, it’s well known that relativistically moving ions will introduce electromagnetic
field, which can be described by equivalent photon approximation (EPA) developed by Fermi3, Weizäscker
and Williams 4,5. These EPA photons will also carry transverse momenta, as shown in the right panel
of Fig.1, and analogy to gluons, they can also be formulated in the context of TMD factorization using
Eq.(1). The only difference is that the Wilson lines guaranteeing gauge invariance in the QCD case
are not necessary here, since photons carry no charge and are gauge invariant by themselves. In the
typical kinematic region of the heavy-ion colliders, e.g., RHIC and LHC, the EPA photons carry small
longitudinal momentum fraction x, so based on the analysis in the previous paragraph, it is natural to
conclude that the EPA photons are also highly linearly polarized 6.

Linearly polarized gluons can be probed through azimuthal asymmetry effects, so as the linearly
polarized photons. Due to the huge QCD background in the central collision area on heavy ion colliders,
ultra-peripheral collision (UPC) physics where two heavy ions pass by each other has attracted great
interest in recent years. One of the most interesting QED processes in UPCs is γγ → l+l−, which has
been extensively studied for unpolarized photons theoretically and experimentally, and is also an ideal
process to probe linearly polarized photon through cos 4ϕ or cos 2ϕ azimuthal asymmetries 6,7, as well as
a unique way to test the resummation formalism through the all-order resummation of the soft photon
radiation effect 8,9.

2 Probing the linear polarization of photons

The di-lepton production process via photon-photon fusion at the lowest order QED can be written as

γ1(x1P + k̃1⊥) + γ2(x2P̄ + k̃2⊥) → l+(p1) + l−(p2), (2)

where P , P̄ , p1 and p2 represent the four momenta of the two nucleons and the leptons in the final
state, respectively. The transverse momenta of the photons are represented by k1⊥ and k2⊥, with
k̃1⊥ = (0, 0,k1⊥) and k̃2⊥ = (0, 0,k2⊥). The leptons are produced in a nearly back-to-back configuration
in azimuth with q⊥ = |q⊥| ≪ P⊥ = |P⊥|, with the total transverse momentum q⊥ ≡ p1⊥ + p2⊥ =
k1⊥ + k2⊥ and P⊥ = (p1⊥ − p2⊥)/2.

The impact-parameter-integrated cross section is written as

dσ

d2p1⊥d2p2⊥dy1dy2
=

2α2
e

Q4
[A + B cos 2ϕ + C cos 4ϕ] (3)

where ϕ is the angle between transverse momenta q⊥ and P⊥, as shown in the left panel of Fig.2. y1 and
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Figure 2 – Azimuthal angle definitions in the transverse plane.

y2 are lepton rapidities, respectively. Q is the invariant mass of the lepton pair. The coefficients A, B
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and C contain convolutions of photon TMDs,

A =
(Q2 − 2m2)m2 + (Q2 − 2P 2

⊥)P 2
⊥

(m2 + P 2
⊥)2

x1x2

∫
d2k1⊥d

2k2⊥δ
2(q⊥ − k1⊥ − k2⊥)fγ

1 (x1,k
2
1⊥)fγ

1 (x2,k
2
2⊥)

+
m4

(m2 + P 2
⊥)2

x1x2

∫
d2k1⊥d

2k2⊥δ
2(q⊥− k1⊥− k2⊥)

[
2(k̂1⊥ · k̂2⊥)2− 1

]
h⊥γ
1 (x1,k

2
1⊥)h⊥γ

1 (x2,k
2
2⊥),

(4)

B =
4m2P 2

⊥
(m2 + P 2

⊥)2
x1x2

∫
d2k1⊥d

2k2⊥δ
2(q⊥− k1⊥− k2⊥)

×
{[

2(k̂2⊥ · q̂⊥)2− 1
]
fγ
1(x1,k

2
1⊥)h⊥γ

1 (x2,k
2
2⊥) +

[
2(k̂1⊥ · q̂⊥)2− 1

]
h⊥γ
1 (x1,k

2
1⊥)fγ

1(x2,k
2
2⊥)
}
, (5)

C =
−2P 4

⊥
(m2 + P 2

⊥)2
x1x2

∫
d2k1⊥d

2k2⊥δ
2(q⊥− k1⊥− k2⊥)

×
[
2
(
2(k̂2⊥ · q̂⊥)(k̂1⊥ · q̂⊥) − k̂1⊥ ·k̂2⊥

)2
− 1

]
h⊥γ
1 (x1,k

2
1⊥)h⊥γ

1 (x2,k
2
2⊥), (6)

where a vector with a hat on it means a unit vector, and fγ
1 (x,k2

⊥) and h⊥γ
1 (x,k2

⊥) represent the unpolar-
ized and linearly polarized photon TMDs, respectively. One can clearly see that the process has unique
angular correlations induced by linearly polarized photons. The longitudinal momentum fractions of the
leptons are fixed according to x1 ≃

√
(P 2

⊥ + m2)/s (ey1 + ey2), x2 ≃
√

(P 2
⊥ + m2)/s (e−y1 + e−y2), with

s, m being the center of mass energy and the lepton mass, respectively.
To sort out the UPC events, we must include the dependence of the impact parameters in the cross-

section, and then integrate b⊥ from 2RWS to ∞, where b⊥ is the impact parameter between the two
colliding nuclei and RWS is the nuclear radius. Once b⊥ is introduced, the incident coherent photon is no
longer in the eigenstate of the transverse momentum, and accordingly the photon transverse momenta
appearing in the amplitude and conjugate amplitude are no longer the same. We use k1⊥, k2⊥ and
k′
1⊥, k′

2⊥ to denote the transverse momenta in the amplitude and in the conjugate amplitude with the
constraint k′

1⊥ + k′
2⊥ ≡ q⊥. The calculation of the impact parameter dependent cross-section was first

developed in Ref. 10, and we extended this calculation to the azimuthally dependent situation 7. The
joint b⊥ and q⊥ dependent di-lepton production cross section at the lowest order of QED can be written
as,

dσ0

d2p1⊥p2⊥dy1dy2d2b⊥
=

2α2
e

(2π)2Q4
[A + B cos 2ϕ + C cos 4ϕ] (7)

with

A =

∫
[dK⊥]

1

(P 2
⊥ + m2)

2

[
−2m4 cos

(
ϕk1⊥ + ϕk′

1⊥
− ϕk2⊥ − ϕk′

2⊥

)
+ m2

(
Q2 − 2m2

)
× cos

(
ϕk1⊥ − ϕk′

1⊥
− ϕk2⊥ + ϕk′

2⊥

)
+ P 2

⊥
(
Q2 − 2P 2

⊥
)

cos
(
ϕk1⊥ − ϕk′

1⊥
+ ϕk2⊥ − ϕk′

2⊥

)]
, (8)

B =

∫
[dK⊥]

8m2P 2
⊥

(P 2
⊥ + m2)

2 cos (ϕk1⊥ − ϕk2⊥) cos
(
ϕk′

1⊥
+ ϕk′

2⊥
− 2ϕ

)
, (9)

C =

∫
[dK⊥]

−2P 4
⊥

(P 2
⊥ + m2)

2 cos
(
ϕk1⊥ + ϕk′

1⊥
+ ϕk2⊥ + ϕk′

2⊥
− 4ϕ

)
, (10)

where ϕki
is the azimuthal angle between P⊥ and ki, and the shorthand notation represent∫

[dK⊥] ≡
∫

d2k1⊥d
2k2⊥d

2k′
1⊥d

2k′
2⊥e

i(k1⊥−k′
1⊥)·b⊥δ2(k1⊥ + k2⊥ − q⊥)δ2(k′

1⊥ + k′
2⊥ − q⊥)

×F(x1,k
2
1⊥)F(x2,k

2
2⊥)F(x1,k

′2
1⊥)F(x2,k

′2
2⊥). (11)

One notices that the b⊥ dependence enters the cross section via the phase ei(k1⊥−k′
1⊥)·b⊥ . The function

F(x1,k
2
⊥) describes the probability amplitude for a photon carrying a given momentum. It can be related

to the normal photon TMD:

|F(x1,k
2
⊥)|2 = x1f

γ
1 (x1,k

2
⊥) =

Z2αe

π2
k2
⊥

[
F (k2

⊥ + x2M2
p )

(k2
⊥ + x2M2

p )

]2
, (12)
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where F is the Woods-Saxon form factor

F (k2) =

∫
d3reik·r

ρ0

1 + exp [(r −RWS)/d]
. (13)

Considering higher-order QED contributions, the lepton pair will acquire a recoil transverse mo-
mentum through the final state soft photon radiation effect, which will cause large logarithmic terms

αn
e ln2n Q2

m2 . These large logarithms can be resumed by using the Collins-Soper formalism 11 and result in
Sudakov factor in the exponential in the impact parameter space. At the one-loop order the Sudakov
factor reads 12,13,

Sud(µr, r⊥) =
αe

π
ln
Q2

m2
ln
P 2
⊥

µ2
r

, (14)

with µr = 2e−γE/r⊥. The cross section is then expressed as

dσ

d2p1⊥d2p2⊥dy1dy2d2b⊥
=

∫
d2r⊥
(2π)2

eir⊥·q⊥e−Sud(r⊥)

∫
d2q′

⊥e
−ir⊥·q′

⊥
dσ

0
(q′

⊥)

dP.S.
, (15)

where dP.S. = d2p1⊥d
2p2⊥dy1dy2d

2b⊥ being the phase space factor. The azimuthal asymmetries, i.e.,
the average value of the cos(nϕ), is defined as

⟨cos(nϕ)⟩ =

∫
dσ

dP.S. cos(nϕ) dP.S.∫
dσ

dP.S.dP.S.
. (16)

Numerical results for ⟨cos(4ϕ)⟩ of the di-electron and di-muon production in UPCs at RHIC and
LHC energy regions have been calculated in Refs. 6 and 7, where we predicted significant ⟨cos(4ϕ)⟩
asymmetries as shown in Fig.3. This effect was promotely verified by RHIC STAR collaboration 14. As
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Figure 3 – Estimates of the cos 4ϕ asymmetry as the function of q⊥ for different centralities at
√
s = 200 GeV.

The electron and positron rapidities and transverse momenta are integrated over the regions [-1, 1] and [0.2, 0.4]
GeV, respectively.

demonstrated in Table 1, the measured ⟨cos(4ϕ)⟩ for the process γγ → e+e− aligns excellently with the
theoretical predictions. A similar theoretical outcome for the centrality of 60%-80% was obtained based
on the Wigner distributions of photons 15.

3 Toward the precision test of the resummation formalism

Besides directly measuring the q⊥ distribution, the azimuthal angular decorrelation of the lepton pair
is often experimentally studied as well. When the lepton pair acquires finite transverse momentum,
they will deviate from the exact back-to-back configuration in the transverse momentum space, and the
deviation degree is measured by the so called acoplanarity with the definition being α = |∆ϕ|/π. The
azimuthal angle ∆ϕ is defined as ∆ϕ = π− (ϕ1 −ϕ2) where ϕ1 and ϕ2 represent the azimuthal angles for
the lepton and the anti-lepton, respectively, as shown in the right panel of Fig.2. We fix the direction of

4
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Measured |2⟨cos(4ϕ)⟩| QED calculated 2⟨cos(4ϕ)⟩
UPC 16.8%±2.5% −16.5%

60%-80% 27%±6% −34.5%

Table 1: Theoretical and experimental results for cos(4ϕ) asymmetry in di-electron UPC production in Au+Au
collisions at RHIC with

√
s = 200 GeV. The invariant mass Q is integrated over [0.45, 0.76] GeV, the electron

and positron rapidities y1,2 are integrated over [-1, 1], and the total transverse momentum of the dielectron q⊥ is
integrated over [0, 0.1] GeV. The individual electron transverse momentum is restricted to P⊥ > 0.2 GeV.

the electron transverse momentum p1⊥ to be Y-axis. The acoplanarity can then be easily reconstructed
by the ratio of qx (the component of q⊥ aligned with X-axis) and P⊥.

In this section we discuss the soft photon radiation effect on both the azimuthal asymmetries and
the acoplanarity. In the previous studies the soft photon contributions were resummed within double
leading logarithm approximation 12,16. In Ref. 9, we extended the resummation formalism to the next
to leading logarithm accuracy and investigate its phenomenological consequence as well. We will briefly
demonstrate the steps and results later.

3.1 The calculation of the azimuthal asymmetries

First we discuss the azimuthal asymmetry. It’s already known that the final state soft photon radiation
effect introduces modifications to the cross sections, as discussed in the preceding section, thereby influ-
encing the magnitude of azimuthal asymmetries. While on the other hand, the photon that is emitted
also induce a recoil effect on the lepton that emit it. Given that the lepton pair are nearly back-to-back
in the transverse plane, the recoil effect will also cause azimuthal asymmetry 17,13. The cross section with
soft photon radiation can be written as 18,19,17,13

dσ(q⊥)

dP.S.
=

∫
d2q′⊥

dσ0(q′⊥)

dP.S.
S(q⊥ − q′⊥) (17)

and the soft factor is expanded at the leading order as 13,

S(l⊥)=δ(l⊥) +
αe

π2l2⊥
{c0 + 2 c2 cos 2ϕ + 2 c4 cos 4ϕ + ...} , (18)

with c0 ≈ ln Q2

m2
π

, c2 ≈ ln Q2

m2
π

+ δy sinh δy − 2 cosh2 δy
2 ln[2(1 + cosh δy)]... when the final-state particle

mass is much smaller than P⊥. δy = y1 − y2 is the difference between the two rapidities of the leptons.
The final state soft photon radiation mainly occurs in regions where the lepton transverse momentum

q⊥ is relatively large, for instance, when q⊥ is larger than about 100 MeV. The previous section mainly
focused on the small transverse momentum area, so we ignore the azimuthal asymmetry effect induced by
the recoiled lepton there. In this section we will cover the [0, 200] MeV region for q⊥, where both coherent
photons and final state radiations can play their important roles. Considering an all-order resummation
of the large logarithmic terms, the cross section is also expressed as Eq.(15) in the transverse position
space, except that here we will include the subleading logarithm contributions.

We used the soft collinear effective theory (SCET) 20,21,22,23,24 and the standard Renormaliza-
tion Group (RG) methods to derive the resummation formula that includes the effects of lepton mass
resummation to all orders. We re-factorize the massive hard and soft functions in the small mass
limit (Q ≫ q⊥ ≳ m), where the massive hard function H(Q,m, µ) is factorized as the product of
the massless hard function H(Q,µ) and collinear jet functions J(m,µ), and the massive soft function
S(l⊥,∆y,m, µ) is factorized as the product of the massless soft function S(l⊥,∆y, µ) and collinear-soft
functions Ci(ki,⊥, pT ,m, µ). The resulting differential cross section is given by

dσ(q⊥)

dP.S.
=H(Q,µ)J2(m,µ)

∫
d2l⊥d

2k1⊥d
2k2⊥

dσ0(q⊥ − l⊥ − k1⊥ − k2⊥)

dP.S.
× S(l⊥,∆y, µ)C1(k1⊥, P⊥, y1,m, µ)C2(k2⊥, P⊥, y2,m, µ), (19)

where the hard function H(Q,µ) comes from the matching from QED to the low energy effective theory,
and the corresponding anomalous dimension is written as

ΓH =
αe

4π

(
8 ln

Q2

µ2
− 12

)
. (20)
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One can calculate the next-to-leading order contributions to the collinear jet function, the massive soft
function, and the collinear-soft function, respectively, and obtain the corresponding anomalous dimensions
which satisfying the consistency relations for the RG evolutions. The results are:

ΓS =
αe

4π

(
8 ln

µ2r2⊥
b20

+ 8 ln cos2 ϕr − 8 ln
1 + cosh ∆y

2

)
, (21)

ΓJ =
αe

4π

(
4 ln

µ2

m2
+ 2

)
, (22)

ΓC1,2
=

αe

4π

(
−4 ln

4P 2
⊥µ

2r2⊥
b20m

2
+ 4 − 4 ln cos2 ϕr ± 4iπ

)
. (23)

Then the Sudakov factor is given by

Sud(r⊥) =

∫ Q

µr

dµ

µ
ΓH + 2

∫ m

µr

dµ

µ
ΓJ +

∫ µrm/(2P⊥)

µr

dµ

µ
ΓC1

+

∫ µrm/(2P⊥)

µr

dµ

µ
ΓC2

. (24)

In the numerical calculation we compute both the azimuthal independent cross sections and the cos 2ϕ
and cos 4ϕ asymmetries for the unrestricted UPC case, where the impact parameter is simply integrated
over [2RWS,∞). The nucleus radius RWS is taken as 6.4 fm for Au and 6.68 fm for Pb. We show the
azimuthal independent cross section, ⟨(cos 2ϕ)⟩ and ⟨(cos 4ϕ)⟩ as a function of q⊥ at RHIC energy in Fig.4
and at LHC energy in Fig.5. In these curves the blue solid lines stand for the fully resummed results
from Eq.(24), and the purple dashed lines represent the results with the azimuthal dependent part being
treated at the one-loop order. The results without soft photon radiation effect are shown with the dotted
orange lines. It is evident that the perturbative tail, which is a result of soft photon radiation, takes
precedence over the lepton pair transverse momentum spectrum, which is determined by the coherent
photon primordial k⊥ distribution, at relatively high q⊥ values. The most remarkable contrast is the
cos 2ϕ asymmetry, which is ignorable at the lowest order due to the negligible mass of electron, exhibit
large values at high q⊥. In the current study, we resum both the azimuthally independent and dependent
leading logarithms into an exponential form. In the previous works 17,13, the azimuthally independent
logarithm was resummed to all orders and the azimuthally dependent component was treated at the fixed
order. We make a numerical comparison of the results derived from these two resummation schemes.
The difference between these two approaches becomes apparent in the large q⊥ region, especially for
the cos 4ϕ azimuthal asymmetry. It would be intriguing to examine such a resummation effect in future
experiments.

Figure 4 – Di-electron production in unrestricted UPCs in Au+Au collisions at the RHIC energy. The following
kinematic cuts are imposed: the rapidities |y1,2| < 1, transverse momentum P⊥ > 200 MeV, and the invariant
mass of the electron pair 450 MeV < Q < 760 MeV. Left panel: azimuthal averaged differential cross sections;
middle panel: ⟨cos(2ϕ)⟩ azimuthal asymmetry; right panel: ⟨cos(4ϕ)⟩ azimuthal asymmetry.

3.2 The calculation of the acoplanarity

In the coordinate frame that we established at the beginning of this section, the acoplanarity can be
constructed as α = qx/P⊥. Integrate Eq.(15) over qy one obtain the qx dependent cross section,

dσ

dqxd2P⊥dy1dy2d2b⊥
=

∫
dqy

drydrx
(2π)2

ei(rxqx+ryqy)e−Suda(rx,ry)

∫
dq′xdq

′
y e−i(rxq

′
x+ryq

′
y)
dσ

0
(q′⊥)

dP.S.

=

∫
drx
2π

eirxqxe−Suda(rx,ry=0)

∫
dq′xdq

′
y e−irxq

′
x
dσ

0
(q′⊥)

dP.S.
, (25)

6

https://journals.ku.edu/upc/


Phys. Proc. Ultra-Peripheral Collisions 1, 020 (2024) 7-9

Figure 5 – Di-electron production in unrestricted UPCs in Pb+Pb collisions at the LHC energy. The following
kinematic cuts are imposed: the rapidities |y1,2| < 0.8 and the invariant mass of the di-electron 10 GeV < Q <
20 GeV. Left panel: azimuthal averaged differential cross sections; middle panel: ⟨cos(2ϕ)⟩ azimuthal asymmetry;
right panel: ⟨cos(4ϕ)⟩ azimuthal asymmetry.

where the leading logarithm contribution to the Sudakov factor Suda(rx) is given by,

Suda(rx) =
αe

2π

[
ln2 Q2

µ2
rx

− ln2 m2

µ2
rx

θ(m− µrx)

]
, (26)

with µrx = 2e−γE/rx.
A one-dimensional Fourier transform is made in Eq.(25) since the acoplanarity is a one-dimensional

observable, apart from the two-dimensional q⊥ distribution situation. When deriving the momentum
space expression of the Sudakov factor Suda(lx), the Y-component of the soft photon transverse momen-
tum has to be integrated over the whole available phase-space region. Given this we need to re-derive a
factorization formula instead of integrating out qy from the resummed q⊥ distribution. At the small α
limit, the factorization formula is written as,

dσ(α)

dP.S.
=2P⊥H(Q,µ)J2(m,µ)

∫
dlxdk1,xdk2,x

dσ0(qx − lx − k1x − k2x)

dP.S.
× S(lx,∆y, µ, ν)C1(k1x, P⊥, y1,m, µ, ν)C2(k2x, P⊥, y2,m, µ, ν), (27)

where the hard and jet functions are the same with those in Eq.(19) since they are independent of specific
observables. Implementing the one-dimensional Fourier transformation, one can define the rx dependent
soft and soft-collinear functions, calculate them to the next-to-leading order, and finally resummed to all
orders as exponential form. The Sudakov factor is expressed as

Suda(rx) =

∫ Q

µrx

dµ

µ
ΓH + 2

∫ m

µrx

dµ

µ
ΓJθ(m− µrx)

=
αe

2π

[(
ln2 Q2

µ2
rx

− 3 ln
Q2

µ2
rx

)
−
(

ln2 m2

µ2
rx

− ln
m2

µ2
rx

)
θ(m− µrx)

]
. (28)

We numerically calculated the acoplanarity distributions for di-muon production at CMS and di-
electron production at ATLAS to compare with their measurements25,26, as shown in Fig.6. We only made
estimations for the 0n0n events in which no neutron emission from the excited nuclei in the forward region
to avoid possible contributions from incoherent photons. In this case the impact parameter dependence
of the cross section is weighted with a b⊥ distribution (see the review article 27 and references therein),

2π

∫ ∞

2R

b⊥db⊥P
2(b⊥)dσ(b⊥, ...), (29)

where the probability P (b⊥) for the 0n event for Pb can be parameterized as 28,

P (b⊥) = exp

[
− (17.4 fm)2

b2⊥

]
. (30)

The theoretical results align with both ATLAS and CMS low α data. Yet, in the region of rela-
tively high α, our numerical estimations noticeably exceed the experimental data. Compared with the
results with double logarithm resummation, the inclusion of the leading single logarithm contribution
into the resummation formalism somewhat reduces the discrepancy between the experimental data and
the theoretical estimation, although the deviations are still apparent. The potential reason for this needs
further investigation. We also reconstruct the acoplanarity using the resummed q⊥ distribution as given
in Eq. (15). The observed α distribution evidently does not support this approach as shown with the
yellow dotted lines in Fig. 6.
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Figure 6 – The normalized cross sections of di-lepton production as a function of α. Left panel: di-muon production
at CMS for the 0n0n case, with the kinematic cutoff: |y1,2| < 2.4, P⊥ > 3.5 GeV and 8 GeV < Q < 60 GeV.
Right panel: di-electron production at ATLAS for the 0n0n case, with the kinematic cutoff: |y1,2| < 0.8 and
10 GeV < Q < 20 GeV. The blue solid lines stand for the fully resummed results from Eq.(28), and the purple
dashed lines represent the leading double logarithm resummed results obtained using Eq.(26). The acoplanarity
distribution reconstructed from the resummed q⊥ distribution given by Eq. (15) and Eq. (14) is shown with the
dotted orange lines. The CMS data displayed in the figure is taken from Ref. 25 and the ATLAS data is taken
from Ref. 26.

4 Summary

In heavy ion ultra-peripheral collisions, the photons induced by the relativistically moving ions carry
small transverse momenta. In TMD physics, it’s known that gluons carrying small transverse momenta
in an unpolarized hadron are linearly polarized. Through the analogy of QED to QCD, we derived that
coherent photons are highly linearly polarized, and further predicted that this effect can be measured
through the cos 2ϕ and cos 4ϕ azimuthal asymmetries in di-lepton production in UPCs. We calculated
the azimuthal asymmetries in the RHIC energy region, and consistent data for the cos 4ϕ asymmetry in
di-electron production process was soon obtained by the STAR collaboration, confirming that coherent
photons are linearly polarized.

During the calculation, the contribution from high-order QED corrections cannot be ignored, espe-
cially when q⊥ is relatively large. These contributions not only change the size of the cross sections so
that change the magnitude of the azimuthal asymmetries, but also will induce azimuthal asymmetries by
themselves due to the recoil effect. We revisited the di-lepton production process in UPCs, focusing on
the final state soft photon radiation resummation effect on two observables: azimuthal asymmetry and
acoplanarity. The results show that at relatively high q⊥, the soft photon radiation effect is dominant,
and will significantly change the shapes of azimuthal asymmetries, particularly, it will induce large cos 2ϕ
asymmetry which is absent at leading order due to the negligible electron mass. It is worth mentioning
that the resummation of soft photon radiation has different formulas for the q⊥ distribution and acopla-
narity, because Fourier transforms were performed in different dimensions. Within the SCET framework,
we carry out the resummation for these two observables to all orders, including the contribution of single
logarithm. Our results show that the q⊥-dependent azimuthal asymmetry is not very sensitive to the sub-
leading resummation effect, while the all order one-dimensional resummation is necessary to describe the
acoplanarity data of ATLAS and CMS. Although our calculation still has some deviation from the exper-
imental data, the result after including the single logarithm is much closer to the experiment. Therefore,
the di-lepton production process in UPCs provides a good opportunity to test the resummation formula
through the measurement of angular correlation.
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15. M. K lusek-Gawenda, W. Schäfer and A. Szczurek, Phys. Lett. B 814, 136114 (2021)

doi:10.1016/j.physletb.2021.136114 [arXiv:2012.11973 [hep-ph]].
16. S. Klein, A. H. Mueller, B. W. Xiao and F. Yuan, Phys. Rev. D 102, no.9, 094013 (2020)

doi:10.1103/PhysRevD.102.094013 [arXiv:2003.02947 [hep-ph]].
17. Y. Hatta, B. W. Xiao, F. Yuan and J. Zhou, Phys. Rev. Lett. 126, no.14, 142001 (2021)

doi:10.1103/PhysRevLett.126.142001 [arXiv:2010.10774 [hep-ph]].
18. S. Catani, M. Grazzini and A. Torre, Nucl. Phys. B 890, 518-538 (2014)

doi:10.1016/j.nuclphysb.2014.11.019 [arXiv:1408.4564 [hep-ph]].
19. S. Catani, M. Grazzini and H. Sargsyan, JHEP 06, 017 (2017) doi:10.1007/JHEP06(2017)017

[arXiv:1703.08468 [hep-ph]].
20. C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001)

doi:10.1103/PhysRevD.63.114020 [arXiv:hep-ph/0011336 [hep-ph]].
21. C. W. Bauer and I. W. Stewart, Phys. Lett. B 516, 134-142 (2001) doi:10.1016/S0370-

2693(01)00902-9 [arXiv:hep-ph/0107001 [hep-ph]].
22. C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. D 65, 054022 (2002)

doi:10.1103/PhysRevD.65.054022 [arXiv:hep-ph/0109045 [hep-ph]].
23. C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 66, 014017

(2002) doi:10.1103/PhysRevD.66.014017 [arXiv:hep-ph/0202088 [hep-ph]].
24. M. Beneke, A. P. Chapovsky, M. Diehl and T. Feldmann, Nucl. Phys. B 643, 431-476 (2002)

doi:10.1016/S0550-3213(02)00687-9 [arXiv:hep-ph/0206152 [hep-ph]].
25. A. M. Sirunyan et al. [CMS], Phys. Rev. Lett. 127, no.12, 122001 (2021)

doi:10.1103/PhysRevLett.127.122001 [arXiv:2011.05239 [hep-ex]].
26. G. Aad et al. [ATLAS], JHEP 2306, 182 (2023) doi:10.1007/JHEP06(2023)182 [arXiv:2207.12781

[nucl-ex]].
27. M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205-243

(2007) doi:10.1146/annurev.nucl.57.090506.123020 [arXiv:nucl-ex/0701025 [nucl-ex]].
28. A. J. Baltz and M. Strikman, Phys. Rev. D 57, 548-549 (1998) doi:10.1103/PhysRevD.57.548

[arXiv:hep-ph/9705220 [hep-ph]].

9

https://journals.ku.edu/upc/

	Linearly polarized gluons and photons
	Probing the linear polarization of photons
	Toward the precision test of the resummation formalism
	The calculation of the azimuthal asymmetries
	The calculation of the acoplanarity

	Summary

