Mechanistic and Correlative Models of Ecological Niches

Authors

  • A. Townsend Peterson
  • Monica Papeş
  • Jorge Soberón

DOI:

https://doi.org/10.1515/eje-2015-0014

Keywords:

Fundamental Ecological Niche, mechanistic models, process based models, correlational models, geographic distribution

Abstract

The suite of factors that drives where and under what conditions a species occurs has become the focus of intense research interest. Three general categories of methods have emerged by which researchers address questions in this area: mechanistic models of species’ requirements in terms of environmental conditions that are based on first principles of biophysics and physiology, correlational models based on environmental associations derived from analyses of geographic occurrences of species, and process-based simulations that estimate occupied distributional areas and associated environments from assumptions about niche dimensions and dispersal abilities. We review strengths and weaknesses of these sets of approaches, and identify significant advantages and disadvantages of each. Rather than identifying one or the other as ‘better,’ we suggest that researchers take great care to use the method best-suited to each specific research question, and be conscious of the weaknesses of any method, such that inappropriate interpretations are avoided.

References

Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive
models of species’ distributions: Criteria for selecting optimal
models. Ecological Modelling, 162, 211-232.
Anderson, R.P. & Raza, A. (2010) The effect of the extent of the study
region on GIS models of species geographic distributions and
estimates of niche evolution: Preliminary tests with montane
rodents (genus Nephelomys) in Venezuela. Journal of Biogeography,
37, 1378-1393.
Araújo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic
envelope modelling. Ecology, 93, 1527-1539.
Araújo, M.B. & Rozenfeld, A. (2014) The geographic scaling of biotic
interactions. Ecography, 37, 406-415.
Barve, N., Barve, V., Jimenez-Valverde, A., Lira-Noriega, A., Maher, S.P.,
Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role
of the accessible area in ecological niche modeling and species
distribution modeling. Ecological Modelling, 222, 1810-1819.
Barve, N., Martin, C.E. & Peterson, A.T. (2014) Role of physiological
optima in shaping the geographic distribution of Spanish moss.
Global Ecology and Biogeography, 23, 633-645.
Bertness, M.D. & Callaway, R. (1994) Positive interactions in communities.
Trends in Ecology and Evolution, 9, 191-193.
Birch, L.C. (1953) Experimental background to the study of the distribution
and abundance of insects: I. The influence of temperature,
moisture and food on the innate capacity for increase of three
grain beetles. Ecology, 34, 698-711.
Boria, R.A., Olson, L.E., Goodman, S.M. & Anderson, R.P. (2014) Spatial
filtering to reduce sampling bias can improve the performance
of ecological niche models. Ecological Modelling, 275, 73-77.
Bruno, J.F., Stachowicz, J.J. & Bertness, M.D. (2003) Inclusion of facilitation
into ecological theory. Trends in Ecology and Evolution, 18,
119-125.
Buckley, L.B., Urban, M.C., Angilletta, M.J., Crozier, L.G., Rissler, L.J. &
Sears, M.W. (2010) Can mechanism inform species’ distribution
models? Ecology Letters, 13, 1041-1054.
Bullock, J.M., Edwards, R.J., Carey, P.D. & Rose, R.J. (2000) Geographical
separation of two Ulex species at three spatial scales: Does competition
limit species’ ranges? Ecography, 23, 257-271.
Cabral, J.S. & Schurr, F.M. (2010) Estimating demographic models for
the range dynamics of plant species. Global Ecology and Biogeography,
19, 85-97.
Chase, J.M. & Leibold, M.A. (2003) Ecological Niches: Linking Classical
and Contemporary Approaches. University of Chicago Press,
Chicago.
Colwell, R.K. & Rangel, T.F. (2009) Hutchinson’s duality: The once and
future niche. Proceedings of the National Academy of Sciences
USA, 106, 19644-19650.
de Souza Muñoz, M., de Giovanni, R., de Siqueira, M., Sutton, T., Brewer,
P., Pereira, R., Canhos, D. & Canhos, V. (2011) openModeller:
A generic approach to species’ potential distribution modelling.
GeoInformatica, 15, 111-135.
Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig,
F., Kearney, M., Morin, X., Romermann, C., Schroder, B. &
Singer, A. (2012) Correlation and process in species distribution
models: Bridging a dichotomy. Journal of Biogeography, 39,
2119-2131.
Drake, J. M. (2015) Range bagging: A new method for ecological niche
modelling from presence-only data. Journal of the Royal Society
Interface, 12, 20150086.
Elith, J., Graham, C., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A.,
Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J.,
Lohmann, L.G., Loisell, B.A., Manion, G., Moritz, C., Nakamura,
M., Nakazawa, Y., Overton, J., Peterson, A.T., Phillips, S.J., Richardson,
K., Scachetti-Pereira, R., Schapire, E., Soberón, J., Williams,
S., Wisz, M.S. & Zimmerman, N.E. (2006) Novel methods
improve prediction of species’ distributions from occurrence
data. Ecography, 29, 129-151.
Franklin, J. (2010) Mapping Species Distributions: Spatial Inference and
Prediction. Cambridge University Press, Cambridge.
Godsoe, W. (2010) I can’t define the niche but I know it when I see it: A
formal link between statistical theory and the ecological niche.
Oikos, 119, 53-60.
Grinnell, J. (1914) Barriers to distribution as regards birds and mammals.
American Naturalist, 48, 248-254.
Grinnell, J. (1917) Field tests of theories concerning distributional control.
American Naturalist, 51, 115-128.
Grinnell, J. (1924) Geography and evolution. Ecology, 5, 225-229.
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis‐Lewis, I., Sutcliffe,
P.R., Tulloch, A.I., Regan, T.J., Brotons, L., McDonald‐Madden, E.
& Mantyka‐Pringle, C. (2013) Predicting species distributions for
conservation decisions. Ecology Letters, 16, 1424-1435.
Guisan, A. & Zimmermann, N. (2000) Predictive habitat distribution
models in ecology. Ecological Modelling, 135, 147-186.
Higgins, S.I., O’Hara, R.B., Bykova, O., Cramer, M.D., Chuine, I., Gerstner,
E.M., Hickler, T., Morin, X., Kearney, M.R., Midgley, G.F. &
Scheiter, S. (2012) A physiological analogy of the niche for projecting
the potential distribution of plants. Journal of Biogeography,
39, 2132-2145.
Hijmans, R.J. (2012) Cross-validation of species distribution models:
Removing spatial sorting bias and calibration with a null model.
Ecology, 93, 679-688.
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2012) dismo: Species
Distribution Modeling; R Package Version 0.7-17.
Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia
on Quantitative Biology, 22, 415-427.
Hutchinson, G.E. (1978) An Introduction to Population Ecology. Yale
University Press, New Haven.
Jackson, S.T. & Overpeck, J.T. (2000) Responses of plant populations
and communities to environmental changes of the Late Quaternary.
Paleobiology, 26, 194-220.
Kearney, M. (2006) Habitat, environment and niche: What are we modelling?
Oikos, 115, 186-191.
Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: Combining
physiological and spatial data to predict species’ ranges.
Ecology Letters, 12, 334-350.
Kearney, M. & Porter, W.P. (2004) Mapping the fundamental niche:
Physiology, climate, and the distribution of a nocturnal lizard.
Ecology, 85, 3119-3131.
Kearney, M.R., Isaac, A.P. & Porter, W.P. (2014a) microclim: Global estimates
of hourly microclimate based on long-term monthly
climate averages.
Kearney, M. R., Shamakhy, A., Tingley, R., Karoly, D.J., Hoffmann, A.A.,
Briggs, P.R. & Porter, W.P. (2014b) Microclimate modelling at
macro scales: A test of a general microclimate model integrated
with gridded continental-scale soil and weather data. Methods
in Ecology and Evolution, 5, 273-286.
Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic
models of species distribution provide congruent forecasts
under climate change. Conservation Letters, 3, 203-213.
Kellermann, V., Loeschcke, V., Hoffmann, A.A., Kristensen, T.N.,
Fløjgaard, C., David, J.R., Svenning, J.C. & Overgaard, J. (2012)
Phylogenetic constraints in key functional traits behind species’
climate niches: Patterns of dessication and cold resistance
across 95 Drosophila species. Evolution, 66, 3377-3389.
Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny,
G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr,
F.M., Singer, A., Svenning, J.C., Zimmermann, N.E. & O’Hara, R.B.
(2012) Towards novel approaches to modelling biotic interactions
in multispecies assemblages at large spatial extents. Journal
of Biogeography, 39, 2163-2178.
Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn,
J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K. & Augeri,
D.M. (2013) The importance of correcting for sampling bias
in MaxEnt species distribution models. Diversity and Distributions,
19, 1366-1379.
Leathwick, J. R. & Austin, M.P. (2001) Competitive interactions between
tree species in New Zealand’s old-growth indigenous forests.
Ecology, 82, 2560-2573.
Linhart, Y.B. & Grant, M.C. (1996) Evolutionary significance of local
genetic differentiation in plants. Annual Review of Ecology and
Systematics, 27, 237-277.
Lira-Noriega, A., Soberón, J. & Miller, C.P. (2013) Process-based and
correlative modeling of desert mistletoe distribution: A multiscalar
approach. Ecosphere, 4, art99.
Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature
of absences and their importance in species distribution
modelling. Ecography, 33, 103-114.
Long, R.A., Bowyer, R.T., Porter, W.P., Mathewson, P., Monteith, K.L.
& Kie, J.G. (2013) Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of
climate. Ecological Monographs, 84, 513-532.
Lutterschmidt, W.I. & Hutchison, V.H. (1997) The critical thermal maximum:
History and critique. Canadian Journal of Zoology, 75,
1561-1574.
Marion, G., McInerny, G.J., Pagel, J., Catterall, S., Cook, A.R., Hartig, F.
& O’Hara, R.B. (2012) Parameter and uncertainty estimation for
process‐oriented population and distribution models: Data, statistics
and the niche. Journal of Biogeography, 39, 2225-2239.
McInerny, G.J. & Etienne, R.S. (2012a) Ditch the niche – Is the niche
a useful concept in ecology or species distribution modelling?
Journal of Biogeography, 39, 2096-2102.
McInerny, G.J. & Etienne, R.S. (2012b) Pitch the niche – Taking responsibility
for the concepts we use in ecology and species distribution
modelling. Journal of Biogeography, 39, 2112-2118.
Natori, Y. & Porter, W.P. (2007) Model of Japanese serow (Capricornis
crispus) energetics predicts distribution on Honshu, Japan. Ecological
Applications, 17, 1441-1459.
Owens, H.L., Campbell, L.P., Dornak, L., Saupe, E.E., Barve, N., Soberón,
J., Ingenloff, K., Lira-Noriega, A., Hensz, C.M., Myers, C.E. & Peterson,
A.T. (2013) Constraints on interpretation of ecological
niche models by limited environmental ranges on calibration
areas. Ecological Modelling, 263, 10-18.
Peterson, A.T. & Holt, R.D. (2003) Niche differentiation in Mexican
birds: Using point occurrences to detect ecological innovation.
Ecology Letters, 6, 774-782.
Peterson, A.T. & Soberón, J. (2012) Species distribution modeling and
ecological niche modeling: Getting the concepts right. Natureza
e Conservação, 10, 1-6.
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-
Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological Niches
and Geographic Distributions. Princeton University Press,
Princeton.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy
modeling of species geographic distributions. Ecological Modelling,
190, 231-259.
Porter, W. & Mitchell, J. (2006) Method and system for calculating the
spatial-temporal effects of climate and other environmental
conditions on animals. USA patent No. 7,155,377.
Porter, W.P., Munger, J.C., Stewart, W.E., Budaraju, S. & Jaeger, J. (1994)
Endotherm energetics: From a scalable individual-based model
to ecological applications. Australian Journal of Zoology, 42,
125-162.
Porter, W.P., Ostrowski, S. & Williams, J.B. (2010) Modeling animal landscapes.
Physiological and Biochemical Zoology, 83, 705-712.
Rangel, T.F., Diniz-Filho, J.A. & Colwell, R. (2007) Species-richness and
evolutionary niche dynamics: A spatial pattern-oriented simulation
experiment. American Naturalist, 170, 602-616.
Saupe, E.E., Barve, V., Myers, C.E., Soberon, J., Barve, N., Hensz, C.M.,
Peterson, A.T., Owens, H. & Lira-Noriega, A. (2012) Variation in
niche and distribution model performance: The need for a priori
assessment of key causal factors. Ecological Modelling, 237, 11-
22.
Sax, D.F., Early, R. & Bellemare, J. (2013) Niche syndromes, species extinction
risks, and management under climate change. Trends in
Ecology & Evolution, 28, 517-523.
Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O’Hara,
R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgley, G.F.,
Schröder, B., Singer, A. & Zimmermann, N.E. (2012) How to understand
species’ niches and range dynamics: A demographic
research agenda for biogeography. Journal of Biogeography, 39,
2146-2162.
Serra‐Varela, M., Grivet, D., Vincenot, L., Broennimann, O., Gonzalo‐
Jiménez, J. & Zimmermann, N. (2015) Does phylogeographical
structure relate to climatic niche divergence? A test using maritime
pine (Pinus pinaster Ait.). Global Ecology and Biogeography,
24, 1302-1313.
Simon, M.N., Ribeiro, P.L. & Navas, C.A. (2015) Upper thermal tolerance
plasticity in tropical amphibian species from contrasting
habitats: Implications for warming impact prediction. Journal of
Thermal Biology, 48, 36-44.
Soberón, J. & Peterson, A. (2005) Interpretation of models of fundamental
ecological niches and species’ distributional areas. Biodiversity
Informatics, 2, 1-10.
Strubbe, D., Jackson, H., Groombridge, J. & Matthysen, E. (2015) Invasion
success of a global avian invader is explained by withintaxon
niche structure and association with humans in the native
range. Diversity and Distributions, 21, 675-685.
Thessen, A.E. & Patterson, D.J. (2011) Data issues in the life sciences.
ZooKeys, 150, 15-51.
Villalobos, F., Lira-Noriega, A., Soberón, J. & Arita, H.T. (2014) Co-diversity
and co-distribution in phyllostomid bats: Evaluating the
relative roles of climate and niche conservatism. Basic and Applied
Ecology, 15, 85-91.
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard,
C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan,
A., Heikkinen, R.K., Høye, T.T., Kühn, I., Luoto, M., Maiorano,
L., Nilsson, M.C., Normand, S., Öckinger, E., Schmidt, N.M.,
Termansen, M., Timmermann, A., Wardle, D.A., Aastrup, P. &
Svenning, J.C. (2013) The role of biotic interactions in shaping
distributions and realised assemblages of species: Implications
for species distribution modelling. Biological Reviews, 88, 15-30.

Downloads

Published

2015-12-01

Issue

Section

Articles

How to Cite

Peterson, A. T., Papeş, M., & Soberón, J. (2015). Mechanistic and Correlative Models of Ecological Niches. European Journal of Ecology, 1(2), 28-38. https://doi.org/10.1515/eje-2015-0014