Biologically informed ecological niche models for an example pelagic, highly mobile species

Authors

  • Kate Ingenloff

DOI:

https://doi.org/10.1515/eje-2017-0006

Keywords:

Boosted regression trees, digital accessible knowledge, distribution modelling, Maxent, minimum volume ellipsoids, pelagic seabird distribution, Diomedea exulans

Abstract

Background: Although pelagic seabirds are broadly recognised as indicators of the health of marine systems, numerous gaps exist in knowledge of their at-sea distributions at the species level. These gaps have profound negative impacts on the robustness of marine conservation policies. Correlative modelling techniques have provided some information, but few studies have explored model development for non-breeding pelagic seabirds. Here, I present a first phase in developing robust niche models for highly mobile species as a baseline for further development.
Methodology: Using observational data from a 12-year time period, 217 unique model parameterisations across three correlative modelling algorithms (boosted regression trees, Maxent and minimum volume ellipsoids) were tested in a time-averaged approach for their ability to recreate the at-sea distribution of non-breeding Wandering Albatrosses (Diomedea exulans) to provide a baseline for further development.
Principle Findings/Results: Overall, minimum volume ellipsoids outperformed both boosted regression trees and Maxent. However, whilst the latter two algorithms generally overfit the data, minimum volume ellipsoids tended to underfit the data. Conclusions: The results of this exercise suggest a necessary evolution in how correlative modelling for highly mobile species such as pelagic seabirds should be approached. These insights are crucial for understanding seabird–environment interactions at macroscales, which can facilitate the ability to address population declines and inform effective marine conservation policy in the wake of rapid global change.

References

Anderson, R.P. (2003) Real vs. artefactual absences in species distributions:
tests for Oryzomys albigularis (Rodentia:Muridae) in Venezuela.
Journal of Biogeography, 30, 591–605.
Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting
pseudo-absences for species distribution models: how, where
and how many? Methods in Ecology and Evolution, 3, 327–338.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P.,
Peterson, A.T., et al. (2011) The crucial role of the accessible area
in ecological niche modeling and species distribution modeling.
Ecological Modelling, 222, 1810–1819.
Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I.J. (2013) Online solutions
and the ‘Wallacean shortfall’: what does GBIF contribute
to our knowledge of species’ ranges? Diversity and Distributions,
19, 1043–1050.
Beck, J., Boller, M., Erhardt, A. & Schwanghart, W. (2014) Spatial bias
in the GBIF database and its effect on modeling species’ geographic
distributions. Ecological Informatics, 19, 10–15.
Bellier, E.G., Certain, G., Planque, B., Monestiez, P. & Bretagnolle, V.
(2010) Modelling habitat selection at multiple scales with multivariate
geostatistics: an application to seabirds in open sea.
Oikos, 119, 988–999.
Birdlife International and Natureserve (2015b) Marine IBA e-Atlas:
http://maps.birdlife.org/marineIBAs/default.html.
Burg, T.M. & Croxall, J.P. (2004) Global population structure and taxonomy
of the Wandering Albatross species complex. Molecular
Ecology, 13, 2345–2355.
Catry, P., Lemos, R.T., Brickle, P., Phillips, R.A., Matias, R. & Granadeiro,
J.P. (2013) Predicting the distribution of a threatened albatross:
the importance of competition, fisheries and annual variability.
Progress in Oceanography, 110, 1–10.
Ceia, F.R., Phillips, R.A., Ramos, J.A., Cherel, Y., Vieira, R.P., Richard, P., et
al. (2012) Short- and long-term consistency in the foraging niche
of Wandering Albatrosses. Marine Biology, 159, 1581–1591.
Chambers, G.K., Moeke, C., Steel, R. & Trueman, J.W. (2009) Phylogenetic
analysis of the 24 named albatross taxa based on full mitochondrial
cytochrome b DNA sequences. Notornis, 56, 82–94.
Clay, T.A., Manica, A., Ryan, P. G., Silk, J.R.D., Croxall, J.P., Ireland, L. &
Phillips, R.A. (2016) Proximate drivers of spatial segregation in
non-breeding albatrosses. Scientific Reports, 6, 29932.
Coble, P.G. (2007) Marine optical biogeochemistry: The chemistry of
ocean color. Chemical Reviews, 107, 402–418.
Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan,
B., Symes, A., et al. (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International,
22, 1–34.
Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English,
C.A., et al. (2012) Climate change impacts on marine ecosystems.
Annual Review of Marine Science, 4, 11–37.
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A.,
et al. (2006) Novel methods improve prediction of species’ distributions
from occurrence data. Ecography, 29, 129–151.
Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted
regression trees. Journal of Animal Ecology, 77, 802–813.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011)
A statistical explanation of MaxEnt for ecologists. Diversity and
Distributions, 17, 43–57.
Game, E.T., Grantham, H.S., Hobday, A.J., Pressey, R.L., Lombard, A.T.,
Beckley, L.E., et al. (2009) Pelagic protected areas: the missing
dimension in ocean conservation. Trends in Ecology & Evolution,
24, 360–369.
Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A.T.
(2004) New developments in museum-based informatics and
applications in biodiversity analysis. Trends in Ecology & Evolution,
19, 497–503.
Grecian, W.J., Witt, M.J., Attrill, M.J., Bearhop, S., Godley, B.J., Grémillet,
D., et al. (2012) A novel projection technique to identify important
at-sea areas for seabird conservation: an example using
Northern Gannets breeding in the North East Atlantic. Biological
Conservation, 156, 43–52.
Hyrenbach, K.D., Forney, K.A. & Dayton, P.K. (2000) Marine protected
areas and ocean basin management. Aquatic Conservation—
Marine and Freshwater Ecosystems, 10, 437–458.
Hyrenbach, K.D., Veit, R.R., Weimerskirch, H., Metzl, N. & Hunt, G.L.
(2007) Community structure across a large-scale ocean productivity
gradient: marine bird assemblages of the southern Indian
Ocean. Deep-Sea Research Part I-Oceanographic Research Papers,
54, 1129–1145.
Iucn (2016) IUCN Red List of Threatened Species v2015-4: http://www.
iucnredlist.org.
Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn,
J., Reinfelder, V., et al. (2013) The importance of correcting for
sampling bias in MaxEnt species distribution models. Diversity
and Distributions, 19, 1366–1379.
Krüger, L., Ramos, J.A., Xavier, J.C., Grémillet, D., González‐Solís, J.,
Petry, M.V., Phillips, R.A., Wanless, R.M. & Paiva, V.H. (2017)
Projected distributions of Southern Ocean albatrosses, petrels
and fisheries as a consequence of climatic change. Ecography,
Lascelles, B.G., Langham, G.M., Ronconi, R.A. & Reid, J.B. (2012) From
hotspots to site protection: identifying Marine Protected Areas
for seabirds around the globe. Biological Conservation, 156,
5–14.
Lewison, R., Oro, D., Godley, B., Underhill, L., Bearhop, S., Wilson, R.P.,
et al. (2012) Research priorities for seabirds: improving conservation
and management in the 21st century. Endangered Species
Research, 17, 93–121.
Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading
measure of the performance of predictive distribution models.
Global Ecology and Biogeography, 17, 145–151.
Louzao, M., Pinaud, D., Péron, C., Delord, K., Wiegand, T. & Weimerskirch,
H. (2011) Conserving pelagic habitats: seascape modelling
of an oceanic top predator. Journal of Applied Ecology, 48,
121–132.
Louzao, M., Aumont, O., Hothorn, T., Wiegand, T. & Weimerskirch, H.
(2013) Foraging in a changing environment: habitat shifts of
an oceanic predator over the last half century. Ecography, 36,
57–67.
Mateo, R.G., De La Estrella, M., Felicísimo, Á.M., Munoz, J. & Guisan,
A. (2013) A new spin on a compositionalist predictive modelling
framework for conservation planning: a tropical case study in
Ecuador. Biological Conservation, 160, 150–161.
Mcgowan, J., Hines, E., Elliott, M., Howar, J., Dransfield, A., Nur, N., et
al. (2013) Using seabird habitat modeling to inform marine spatial
planning in central California’s National Marine Sanctuaries.
PLoS One, 8, e71406.
Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Max-
Ent for modeling species’ distributions: what it does, and why
inputs and settings matter. Ecography, 36, 1058–1069.
Milot, E., Weimerskirch, H. & Bernatchez, L. (2008) The seabird paradox:
dispersal, genetic structure and population dynamics in a
highly mobile, but philopatric albatross species. Molecular Ecology,
17, 1658–1673.
Nelson, N.B. & Siegel, D.A. (2013) The global distribution and dynamics
of chromophoric dissolved organic matter. Annual Review of
Marine Science, 5, 447–476.
Nunn, G.B., Cooper, J., Jouventin, P., Robertson, C.J.R. & Robertson,
G.G. (1996) Evolutionary relationships among extant albatrosses
(Procellariiformes: Diomedeidae) established from complete
cytochrome-B gene sequences. Auk, 113, 784–801.
Onley, D. & Scofield, P. (2007) Albatrosses, petrels, & shearwaters of
the world. Princeton University Press, Princeton, New Jersey.
Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O’connell, A.F., Miller,
P.I., et al. (2012) Comparison of five modelling techniques to
predict the spatial distribution and abundance of seabirds. Biological
Conservation, 156, 94–104.
Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberon,
J., et al. (2013) Constraints on interpretation of ecological
niche models by limited environmental ranges on calibration
areas. Ecological Modelling, 263, 10–18.
Peterson, A.T., Martínez-Campos, C., Nakazawa, Y. & Martínez-Meyer,
E. (2005) Time-specific ecological niche modeling predicts spatial
dynamics of vector insects and human dengue cases. Transactions
of the Royal Society of Tropical Medicine and Hygiene,
99, 647–655.
Peterson, A.T. (2006) Uses and requirements of ecological niche models
and related distribution models. Biodiversity Informatics, 3,
59–72.
Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating
characteristic analysis applications in ecological niche
modeling. Ecological Modelling, 213, 63–72.
Phillips, R.A., Silk, J.R.D., Croxall, J.P., Afanasyev, V. & Bennett, V.J.
(2005) Summer distribution and migration of nonbreeding albatrosses:
individual consistencies and implications for conservation.
Ecology, 86, 2386–2396.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy
modeling of species geographic distributions. Ecological Modelling,
190, 231–259.
Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick,
J., et al. (2009) Sample selection bias and presence-only
distribution models: implications for background and pseudoabsence
data. Ecological Applications, 19, 181–197.
Piatt, J.F., Sydeman, W.J. & Wiese, F. (2007) Introduction: a modern role
for seabirds as indicators. Marine Ecology Progress Series, 352,
199–204.
Prince, P.A., Wood, A.G., Barton, T. & Croxall, J.P. (1992) Satellite tracking
of Wandering Albatrosses (Diomedea exulans) in the South
Atlantic. Antarctic Science, 4, 31–36.
Qiao, H.J., Soberón, J. & Peterson, A.T. (2015) No silver bullets in correlative
ecological niche modelling: insights from testing among
many potential algorithms for niche estimation. Methods in
Ecology and Evolution, 6, 1126–1136.
Quillfeldt, P., Engler, J.O., Silk, J.R., Phillips, R.A. (2017) Influence of device
accuracy and choice of algorithm for species distribution
modelling of seabirds: a case study using black‐browed albatrosses.
Journal of Avian Biology,
R Development Core Team (2009) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing:
http://www.r-project.org.
Rains, D., Weimerskirch, H. & Burg, T.M. (2011) Piecing together the
global population puzzle of Wandering Albatrosses: genetic
analysis of the Amsterdam albatross Diomedea amsterdamensis.
Journal of Avian Biology, 42, 69–79.
Ramos, R., Sanz, V., Militao, T., Bried, J., Neves, V.C., Biscoito, M., et
al. (2015) Leapfrog migration and habitat preferences of a small
oceanic seabird, Bulwer’s petrel (Bulweria bulwerii). Journal of
Biogeography, 42, 1651–1664.
Roberts, J.J., Best, B.D., Dunn, D.C. & Halpin, P.N. (2010) Marine Geospatial
Ecology Tools: an integrated framework for eological
geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental
Modelling and Software, 25, 1197–1207.
Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007) The application
of predictive modelling of species distribution to biodiversity
conservation. Diversity and Distributions, 13, 243–251.
Saupe, E.E., Barve, V., Myers, C.E., Soberόn, J., Barve, N., Hensz, C.M.,
et al. (2012) Variation in niche and distribution model performance:
the need for a priori assessment of key causal factors.
Ecological Modelling, 237, 11–22.
Scales, K.L., Miller, P.I., Ingram, S.N., Hazen, E.L., Bograd, S.J. & Phillips,
R.A. (2016) Identifying predictable foraging habitats for a
wide-ranging marine predator using ensemble ecological niche
models. Diversity and Distributions, 22, 212–224.
Shcheglovitova, M. & Anderson, R.P. (2013) Estimating optimal complexity
for ecological niche models: a jackknife approach for species
with small sample sizes. Ecological Modelling, 269, 9–17.
Soberón, J. & Peterson, A.T. (2005) Interpretation of models of fundamental
ecological niches and species’ distributional areas. Biodiversity
Informatics, 2, 1–10.
Sousa-Baena, M.S., Garcia, L.C. & Peterson, A.T. (2014) Completeness
of digital accessible knowledge of the plants of Brazil and priorities
for survey and inventory. Diversity and Distributions, 20,
369–381.
Thiebot, J.B., Lescroel, A., Pinaud, D., Trathan, P.N. & Bost, C.A. (2011)
Larger foraging range but similar habitat selection in non-breeding
versus breeding sub-Antarctic penguins. Antarctic Science,
23, 117–126.
Urtizberea, A., Dupont, N., Rosland, R. & Aksnes, D.L. (2013) Sensitivity
of euphotic zone properties to CDOM variations in marine ecosystem
models. Ecological Modelling, 256, 16–22.
Wakefield, E.D., Phillips, R.A. & Matthiopoulos, J. (2009) Quantifying
habitat use and preferences of pelagic seabirds using individual
movement data: a review. Marine Ecology Progress Series, 391,
165–182.
Wakefield, E.D., Phillips, R.A., Trathan, P.N., Arata, J., Gales, R., Huin,
N., et al. (2011) Habitat preference, accessibility, and competition
limit the global distribution of breeding Black-browed Albatrosses.
Ecological Monographs, 81, 141–167.
Weimerskirch, H., Inchausti, P., Guinet, C. & Barbraud, C. (2003) Trends
in bird and seal populations as indicators of a system shift in the
Southern Ocean. Antarctic Science, 15, 249–256.
Weimerskirch, H., Gault, A. & Cherel, Y. (2005) Prey distribution and
patchiness: factors in foraging success and efficiency of Wandering
Albatrosses. Ecology, 86, 2611–2622.
Weimerskirch, H., Åkesson, S. & Pinaud, D. (2006) Postnatal dispersal of
Wandering Albatrosses Diomedea exulans: implications for the
conservation of the species. Journal of Avian Biology, 37, 23–28.
Weimerskirch, H., Jouventin, P., Mougin, J.L., Stahl, J.C. & Vanbeveren,
M. (1985) Banding recoveries and the dispersal of seabirds
breeding in French Austral and Antarctic Territories. Emu, 85,
22–33.
Weimerskirch, H., Louzao, M., De Grissac, S. & Delord, K. (2012) Changes
in wind pattern alter albatross distribution and life-history
traits. Science, 335, 211–214.
Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess,
M., et al. (2007) How global is the Global Biodiversity Information
Facility? PLoS One, 2, e1124.

Downloads

Published

2017-06-01

Issue

Section

Articles

How to Cite

Ingenloff, K. (2017). Biologically informed ecological niche models for an example pelagic, highly mobile species. European Journal of Ecology, 3(1), 55-75. https://doi.org/10.1515/eje-2017-0006