Distribution of mosquito larvae in rice field habitats: A spatial scale analysis in semi-field condition

Authors

  • Roy Milita
  • Kundu Malini
  • Chatterjee Soumendranath
  • Aditya Gautam

DOI:

https://doi.org/10.2478/eje-2019-0006

Keywords:

mosquito larva, Culex sp., rice fields, spatial distribution, vegetation, Anisops sp.

Abstract

The distribution of the mosquito larvae in the breeding habitats varies at the spatial scale depending on the availability of the resources and the predators. This proposition was assessed through the observation of the spatial distribution of Culex larvae (Culex tritaeniorhynchus) in artificially constructed rice field habitats. Using a binomial generalized linear model with logit link, the disparity in the abundance of the larvae was evaluated to justify the effects of light (light vs shade), vertical (surface vs bottom), and horizontal (wall vs center) distribution as explanatory variables. Under light availability, the spatial occupancy of the mosquito larvae was higher in the center than in the walls of the mesocosms. However, the larval orientation was higher on the surface than at the bottom of the mesocosms in all instances. In comparison to open spaces, the larval aggregation was higher in the presence of the floating vegetations like Azolla and Lemna, indicating that the habitat heterogeneity of the mesocosms influenced the distribution of the mosquito larvae in the available spaces. A reduction in the larval aggregation pattern in the spaces was observed in the presence of the predator (Anisops sp.) reflecting the possible evasion tactics of the mosquito larvae. The observations suggest that the mosquito larvae may utilize the vegetation in the rice field habitats quite effectively and occupy empty spaces of predators. The results may be considered as a prototype of the prospective localization of the mosquito larvae in the rice fields and help to frame the strategies of spraying the biopesticides to achieve optimal efficacy in mosquito regulation.

References

Addinsoft SARL. (2010) XLSTAT software, version 9.0. Addinsoft, Paris,
France.
Aditya, G., Pal, S., Saha, N. & Saha, G.K. (2012) Mosquito prey preference
of indigenous larvivorous fishes: implications for biological
control. Journal of Vector Borne Diseases, 49(4), 217–225.
Awasthi, A.K., Molinero, J.C., Wu, C.H., Tsai, K.H., King, C.C. & Hwang J.S.
(2015) Behavioral changes in mosquito larvae induced by copepods
predation. Hydrobiologia, 749, 113–123.
Dale, P.E.R. & Knight, J.M. (2008) Wetlands and Mosquitoes: a review.
Wetlands Ecology and Management, 16, 255–276.
Das, P.K., Sivagnaname, N. & Amalraj, D.D. (2006) Population interactions
between Culex vishnui mosquitoes and their natural enemies
in Pondicherry, India. Journal of Vector Ecology, 31, 84 – 88.
Hurlbert, S.H. (1984) Pseudoreplication and the design of ecological
field experiments. Ecological Monographs, 54(2), 187–211.
Juliano, S.A.& Reminger, L. (1992)The relationship between vulnerability
to predation and behavior of larval treehole mosquitoes:
geographic and ontogenetic differences. Oikos, 63(3),465–476.
Juliano, S.A., Hechtel, L.J. & Waters, J.R. (1993) Behavior and risk of
predation in larval tree-hole mosquitoes: effects of hunger and
population history of predation. Oikos, 68, 229–241.
Legendre, P. & Legendre, L. (1998) Numerical Ecology. 2nd ed. Amsterdam:
Elsevier Science BV. 853 p.
Lytra, I.& Emmanouel, N. (2014) Study of Culex tritaeniorhynchus and
species composition of mosquitoes in a rice field in Greece. Acta
Tropica, 134, 66–71.
Merritt, R.W., Dadd, R.H.& Walker, E.D. (1992) Feeding behavior, natural
food, and nutritional relationships of larval mosquitoes. Annual
Review of Entomology, 37, 349–374.
Mogi, M., Memah, V., Miyagi, I., Toma, T.& Sembel, D.T. (1995) Mosquito
(Diptera: Culicidae) and predator abundance in irrigated
and rain-fed rice fields in North Sulawesi, Indonesia. Journal of
Medical Entomology, 32, 361–367.
Mogi, M.& Miyagi, I. (1990) Colonization of rice fields by mosquitoes
(Diptera: Culicidae) and larvivorous predators in a synchronous
rice cultivation areas in the Philippines. Journal of Medical Entomology,
27, 530–536.
Muturi, E.J., Shililu, J.I., Jacob, B.G., Mwangangi, J.M., Mbogo, C.M.,
Githure, J.I.& Novak, R.J. (2008) Diversity of riceland mosquitoes
and factors affecting their occurrence distribution in Mewa, Kenya.
Journal of American Mosquito Control Association, 24(3),
349–358.
Mwangangi, J.M., Muturi, E.J., Shililu, J.I., Jacob, B., Kabiru, E.W., Mbogo,
C.M., Githure, J.I.& Novak, R.J. (2008) Distribution of mosquito
larvae within the paddy and its implication in larvicidal application
in Mewa rice irrigation scheme, Central Kenya. Journal
of American Mosquito Control Association, 24(1), 36–41.
Ohba, S.Y., Matsuo, T.& Takagi, M. (2013) Mosquitoes and other aquatic
insects in fallow field biotopes and rice paddy fields. Medical
and Veterinary Entomology, 27, 96–103.
Ohba, S.Y., Soai, N.V., Anh, D.T.V., Nguyen, Y.T.& Takagi, M. (2014) Study
of mosquito fauna in rice ecosystems around Hanoi, Northern
Vietnam. Acta Tropica, 142, 89–95.
Orr, B.K.& Resh, V.H. (1992) Influence of Myriophyllum aquaticum cover
on Anopheles mosquito abundance, oviposition, and larval microhabitat.
Oecologia, 90, 474–482.
Overgaard, H.J., Tsuda, Y., Suwonkerd, W. & Takagi, M. (2002) Characteristics
of Anopheles minimus (Diptera: Culicidae) larval habitats in
Northern Thailand. Environmental Entomology, 31 (1), 134–141.
Overgaard, H.J. (2007) Effect of plant structure on ovipositing behavior
of Anopheles minimus s.l. Journal of Vector Ecology, 32 (2),
193–197.
Pitcairn, M.J., Wilson, L.T., Washino, R.K. & Rejmánková, E. (1994) Spatial
patterns of Anopheles freeborni and Culex tarsalis (Diptera:
Culicidae) larvae in California ricefields. Journal of Medical Entomology,
31(4), 545–553.
Pramanik, M.K., Aditya, G. & Raut, S.K. (2006) A survey of anopheline
mosquitoes and malarial parasite in commuters in a rural and an
urban area in West Bengal, India. Journal of Vector Borne Diseases,
43, 198–202.
Rattanarithikul, R., Harbach, R.E., Harrison, B.A., Panthusiri, P., Jones,
J.W. & Coleman, R.E. (2005) Illustrated keys to the mosquitoes of
Thailand II. Genera Culex and Lutzia. The Southeast Asian Journal
of Tropical Medicine and Public Health, 36(2), 1–97.
Saha, N., Aditya, G., Bal, A. & Saha, G.K. (2008) Light and habitat structure
influences predation of Culex quinquefasciatus larvae by
the water bugs (Hemiptera: Heteroptera). Insect Science, 15,
461–469.
Saha, N., Aditya, G. & Saha, G.K. (2009) Habitat complexity reduces
prey vulnerability: An experimental analysis using aquatic insect
predators and immature dipteran prey. Journal of Asia Pacific
Entomology, 12, 233–239.
Skiff, J.J.& Yee, D.A. (2014) Behavioral differences among four co-occurring
species of container mosquito larvae: effects of depth and
resource environments. Journal of Medical Entomology, 51(2),
375–381.
Sunish, I.P., Reuben, R. & Rajendran, R. (2006) Natural survivorship of
immature stages of Culex vishnui (Diptera: Culicidae) complex,
vectors of Japanese encephalitis virus, in rice fields in southern
India. Journal of Medical Entomology, 43(2), 185–191.
Sunish, I.P.& Reuben, R. (2002)Factors including the abundance of Japanese
encephalitis vectors in rice fields in India-II. Biotic. Medical
and Veterinary Entomology, 16, 1–9.
Walker, E.D.& Merritt, R.W. (1991) Behavior of larval Aedes triseriatus
(Diptera: Culicidae). Journal of Medical Entomology, 28(5),
581–589.
Walker, E.D.& Merritt, R.W. (1993) Bacterial enrichment in the surface
micro layer of an Anopheles quadrimaculatus (Diptera:
Culicidae) larval habitat. Journal of Medical Entomology, 30(6),
1050–1052.
Wallace, J.R.& Merritt, R.W. (2004) Diel feeding periodicity of larval
anopheline mosquitoes on microorganisms and microinvertebrates: a spatial and temporal comparison of Anopheles quadrimaculatus
(Diptera: Culicidae) diets in a Michigan pond. Journal
of Medical Entomology, 41(5), 853–860.
Watanabe, K., Koji, S., Hidaka, K. & Nakamura, K. (2013) Abundance, diversity,
and seasonal population dynamics of aquatic Coleoptera
and Heteroptera in rice fields: effects of direct seeding management.
Environmental Entomology, 42(5), 841–850.
Workman, P.D. & Walton, W.E. (2003) Larval behavior of four Culex
(Diptera: Culicidae) associated with treatment wetlands in the
southwestern United States. Journal of Vector Ecology, 28(2),
213–228.
Zar, J.H. (1999) Biostatistical analysis. New Delhi: Pearson Education.
663p.

Downloads

Published

2019-12-17

Issue

Section

Articles

How to Cite

Milita, R., Malini, K., Soumendranath, C., & Gautam, A. (2019). Distribution of mosquito larvae in rice field habitats: A spatial scale analysis in semi-field condition. European Journal of Ecology, 5(1), 38-48. https://doi.org/10.2478/eje-2019-0006