Geographic trends in range sizes explain patterns in bird responses to urbanization in Europe

Authors

  • Michal Ferenc
  • Ondrej Sedlacek
  • Roman Fuchs
  • Maurizio Fraissinet
  • David Storch

DOI:

https://doi.org/10.2478/eje-2019-0010

Keywords:

towns and cities, environmental filtering, homogenization, latitutidinal gradient, Rapoport's rule, rarity

Abstract

The probability of occurrence of bird species in towns/cities increases with their range sizes, and Rapoport’s rule states that range sizes increase with latitude. To test the hypothesis that the increasing number of bird species persisting in cities at higher latitudes of Europe is linked to their larger range sizes, we compiled data on bird communities of: a) 41 urban bird atlases; b) 37 city core zones from published sources; c) regions of nine grid cells of the EBCC Atlas of European Breeding Birds around each city. We tested whether the proportion of species from particular regional bird assemblages entering cities (i.e., proportional richness) was related to the geographical  position, mean range size of regional avifaunas, proportion of vegetated areas and city habitat heterogeneity. The mean range sizes of the observed and randomly selected urban avifaunas were contrasted. The proportional richness of urban avifaunas was positively related to the geographic position and mean range size of birds in regional assemblages. The evidence favoured range sizes if considering the European range sizes or latitudinal extents, but was limited for global range sizes. Randomizations tended to show larger range sizes for the real avifaunas than in the randomly selected ones. For urban core zones, the results were less clear-cut with some evidence only in favour of the European range sizes. No role of vegetation or habitat heterogeneity was found. In conclusion, while vegetation availability or heterogeneity did not show any effects, spatial position and range sizes of birds in regional assemblages seemed to influence the proportional richness of cities and their core zones. Factors correlated with spatial position (e.g., climate) might increase the attractivity of particular cities to birds. However, the effects of range sizes indicated that urbanization possibly has more negative impacts on the avifauna in the regions occupied by less widespread species.

References

Arnfield A.J. (2003) Two decades of urban climate research: a review of
turbulence, exchanges of energy and water, and the urban heat
island. International Journal of Climatology, 23, 1–26.
BirdLife International (2018) Available at: http://www.birdlife.org.
Bonier F., Martin P.R., & Wingfield J.C. (2007) Urban birds have broader
environmental tolerance. Biology Letters, 3, 670–673.
Brown J.H. (1995) Macroecology. University of Chicago Press,
Brown J.H. (2013) On the relationship between abundance and distribution
of species. The American Naturalist, 124, 255–279.
Brown J.H. & Kodric-Brown A. (1977) Turnover Rates in Insular Biogeography:
Effect of Immigration on Extinction. Ecology, 58,
445–449.
Cardillo M. (2002) The life‐history basis of latitudinal diversity gradients:
how do species traits vary from the poles to the equator?
Journal of Animal Ecology, 71, 79–87.
Cardoso G.C. (2014) Nesting and acoustic ecology, but not phylogeny,
influence passerine urban tolerance. Global Change Biology, 20,
803–810.
Clergeau P., Croci S., Jokimäki J., Kaisanlahti-Jokimäki M.-L., & Dinetti
M. (2006) Avifauna homogenization by urbanisation: analysis
at different European latitudes. Biological Conservation, 127,
336–344.
Clergeau P., Jokimäki J., & Savard J.P.L. (2001) Are urban bird communities
influenced by the bird diversity of adjacent landscapes?
Journal of Applied Ecology, 38, 1122–1134.
Conole L.E. & Kirkpatrick J.B. (2011) Functional and spatial differentiation
of urban bird assemblages\rat the landscape scale. Landscape
and Urban Planning, 100, 11–23.
Croci S., Butet A., & Clergeau P. (2008) Does Urbanization Filter Birds on
the Basis of Their Biological Traits? The Condor, 110, 223–240.
Dale S., Lifjeld J.T., & Rowe M. (2015) Commonness and ecology, but
not bigger brains, predict urban living in birds. BMC Ecology, 15,
12.
Díaz M., Møller A.P., Flensted-Jensen E., Grim T., Ibáñez-Álamo J.D., Jokimäki
J., Markó G., & Tryjanowski P. (2013) The Geography of
Fear: A Latitudinal Gradient in Anti-Predator Escape Distances of
Birds across Europe. PLoS ONE, 8, e64634.
Dinetti M., Cignini B., Fraissinet M., & Zapparoli M. (1995) Gruppo di
lavoro ‘Atlanti ornitologici urbani italiani’: standard per le ricerche
sull’Avifauna di ambienti urbanizzati’. Rivista italiana di
Ornitologia, 64, 141–149.
Erz W. (1966) Ecological principles in the urbanization of birds. Ostrich,
37, 357–363.
Essl F., Dullinger S., Rabitsch W., Hulme P.E., Pyšek P., Wilson J.R.U., &
Richardson D.M. (2015) Delayed biodiversity change: no time to
waste. Trends in Ecology & Evolution, 30, 375–378.
Evans K.L., Chamberlain D.E., Hatchwell B.J., Gregory R.D., & Gaston
K.J. (2011) What makes an urban bird? Global Change Biology,
17, 32–44.
Evans K.L., Newson S.E., & Gaston K.J. (2009) Habitat influences on urban
avian assemblages. Ibis, 151, .
Ferenc M., Sedláček O., Fuchs R., Dinetti M., Fraissinet M., & Storch
D. (2014a) Are cities different? Patterns of species richness and
beta diversity of urban bird communities and regional species
assemblages in Europe. Global Ecology and Biogeography, 23,
479–489.
Ferenc M., Sedláček O., & Fuchs R. (2014b) How to improve urban
greenspace for woodland birds: site and local-scale determinants
of bird species richness. Urban Ecosystems, 17, 625–640.
Ferenc M., Sedláček O., Fuchs R., Hořák D., Storchová L., Fraissinet M.,
& Storch D. (2018) Large-scale commonness is the best predictor
of bird species presence in European cities. Urban Ecosystems,
21, 369–377.
Ferenc M., Sedláček O., Mourková J., Exnerová A., Škopek J., Formánek
J., & Fuchs R. (2016) Disentangling the influences of habitat
availability, heterogeneity and spatial position on the species
richness and rarity of urban bird communities in a central European
city. Urban Ecosystems, 19, 1265–1281.
Gaston K. & Blackburn T. (2008) Pattern and Process in Macroecology
(Google eBook). Blackwell Science, Oxford,
Gaston K.J., Blackburn T.M., Greenwood J.J.D., Gregory R.D., Quinn
R.M., & Lawton J.H. (2000) Abundance-occupancy relationships.
Journal of Applied Ecology, 37, 39–59.
Gaston K.J., Blackburn T.M., & Spicer J.I. (1998) Rapoport’s rule: time
for an epitaph? Trends in Ecology & Evolution, 13, 70–74.
Grimm N.B., Faeth S.H., Golubiewski N.E., Redman C.L., Wu J., Bai X.,
Briggs J.M., Grimm N.B., Faeth S.H., Golubiewski N.E., Redman
C.L., Wu J., Bal X., & Briggs J.M. (2015) Global Change and the
Ecology of Cities Global Change and the Ecology of Cities. Science,
319, 756–760.
Hagemeijer W. & Blair M. (1997) The EBCC Atlas of European Breeding
Birds. Poyser, London,
Hanski I. (1995) Metapopulation Dynamics. Population (English Edition),
396, 41–49.
Hu Y. & Cardoso G.C. (2009) Are bird species that vocalize at higher frequencies
preadapted to inhabit noisy urban areas? Behavioral
Ecology, 20, 1268–1273.
Jokimäki J. & Kaisanlahti-Jokimäki M.L. (2003) Spatial similarity of urban
bird communities: A multiscale approach. Journal of Biogeography,
30, 1183–1193.
Jokimäki J. & Suhonen J. (1993) Effects of urbanization on the breeding
bird species richness in Finland: a biogeographical comparison.
Jokimäki J., Suhonen J., Jokimäki-Kaisanlahti M.L., & Carbó-Ramírez P.
(2016a) Effects of urbanization on breeding birds in European
towns: Impacts of species traits. Urban Ecosystems, 19, 1565–
1577.
Jokimäki J., Suhonen J., & Kaisanlahti-Jokimäki M.-L. (2016b) Urbanization
and species occupancy frequency distribution patterns in
core zone areas of European towns. European Journal of Ecology,
2, 23–43.
Kark S., Iwaniuk A., Schalimtzek A., & Banker E. (2007) Living in the city:
Can anyone become an “urban exploiter”? Journal of Biogeography,
34, 638–651.
Leveau L.M. (2013) Bird traits in urban–rural gradients: how many functional
groups are there? Journal of Ornithology, 154, 655–662.
Leveau L.M., Jokimäki J., & Kaisanlahti-Jokimäki M.-L. (2017) Scale dependence
of biotic homogenisation by urbanisation: a comparison
of urban bird communities between central Argentina and
northern Finland. European Journal of Ecology, 3, 1–18.
Luck G.W. & Smallbone L.T. (2011) The impact of urbanization on taxonomic
and functional similarity among bird communities. Journal
of Biogeography, 38, 894–906.
MacGregor‐Fors I., Morales‐Pérez L., & Schondube J.E. (2010) Does size
really matter? Species–area relationships in human settlements.
Diversity and Distributions, 17, 112–121.
Malher F., Lesaffre G., Zucca M., & Coatmeur J. (2010) Oiseaux nicheurs
de Paris. Un atlas urbain. Paris: Corif. Delachaux et Niestlé, .
McKinney M.L. (2006) Urbanization as a major cause of biotic homogenization.
Biological Conservation, 127, 247–260.
Meffert P.J. & Dziock F. (2013) The influence of urbanisation on diversity
and trait composition of birds. Landscape Ecology, 28, 943–957.
Møller A.P., Jokimäki J., Skorka P., & Tryjanowski P. (2014) Loss of migration
and urbanization in birds: a case study of the blackbird
(Turdus merula). Oecologia, 175, 1019–1027.
Morelli F., Benedetti Y., Ibáñez-Álamo J.D., Jokimäki J., Mänd R., Tryjanowski
P., & Møller A.P. (2016) Evidence of evolutionary homogenization
of bird communities in urban environments across
Europe. Global Ecology and Biogeography, 25, 1284–1293.
Nychka D., Furrer R., Paige J., & Sain S. (2017) fields: Tools for spatial
data. .
Orme C.D.L., Davies R.G., Olson V.A., Thomas G.H., Ding T.S., Rasmussen
P.C., Ridgely R.S., Stattersfield A.J., Bennett P.M., Owens I.P.F., &
others (2006) Global patterns of geographic range size in birds.
PLoS Biology, 4, e208.
Paradis E., Claude J., & Strimmer K. (2004) A{PE}: analyses of phylogenetics
and evolution in {R} language. Bioinformatics, 20, 289–
290.
Purvis A., Gittleman J.L., Cowlishaw G., & Mace G.M. (2000) Predicting
extinction risk in declining species. Proceedings of the Royal Society
B: Biological Sciences, 267, 1947–1952.
R Core Team (2017) R: A Language and Environment for Statistical Computing.
.
Rapoport E.H. (1982) Areography: Geografical Strategies of Species.
Pergamon Press Oxford,
Rohde K. (1996) Rapoport’s Rule is a Local Phenomenon and Cannot
Explain Latitudinal Gradients in Species Diversity. Biodiversity
Letters, 3, 10.
Seto K.C., Guneralp B., & Hutyra L.R. (2012) Global forecasts of urban
expansion to 2030 and direct impacts on biodiversity and carbon
pools. Proceedings of the National Academy of Sciences, 109,
16083–16088.
Shannon C.E. (1948) A Mathematical Theory of Communication. Bell
System Technical Journal, 27, 379–423.
Shmida A. & Wilson M. V. (1985) Biological Determinants of Species
Diversity. Journal of Biogeography, 12, 1.
Sol D. (2013) Behavioural adjustments for a life in the city. Animal Behaviour,
85, 1101–1112.
Sol D., González-Lagos C., Moreira D., Maspons J., & Lapiedra O. (2014)
Urbanisation tolerance and the loss of avian diversity. Ecology
Letters, 17, 942–950.
Stevens G.C. (1989) The Latitudinal Gradient in Geographical Range:
How so Many Species Coexist in the Tropics. The American Naturalist,
133, 240–256.
Tryjanowski P., Skórka P., Sparks T.H., Biaduń W., Brauze T., Hetmański
T., Martyka Rafałand Indykiewicz P., Myczko Ł., Kunysz P., Kawa
P., Czyż S., Czechowski Pawełand Polakowski M.Z.P., Jerzak L.,
Janiszewski T., Goławski A., Duduś L., Nowakowski J.J., Wuczyński
A., & Wysocki D. (2015) Urban and rural habitats differ in number
and type of bird feeders and in bird species consuming supplementary
food. Environmental Science and Pollution Research,
22, 15097–15103.
Wickham H. (2017) tidyverse: Easily Install and Load the ‘Tidyverse’.

Downloads

Published

2019-12-31

Issue

Section

Articles

How to Cite

Ferenc, M., Sedlacek, O., Fuchs, R., Fraissinet, M., & Storch, D. (2019). Geographic trends in range sizes explain patterns in bird responses to urbanization in Europe. European Journal of Ecology, 5(2), 16-29. https://doi.org/10.2478/eje-2019-0010