Diversity of actinobacteria in the marshes of Ezzemoul and Djendli in northeastern Algeria

Authors

  • Maria Smati
  • Mahmoud Kitouni

DOI:

https://doi.org/10.2478/eje-2019-0009

Keywords:

actinobacteria, sebkha, culture, cloning, 16s rRNA gene, phylogenetic biodiversity

Abstract

The main purpose of this research is to study the microbial diversity of actinobacteria, living in “Ezzemoul” and “Djendli” sebkhas soils. These salt lakes are situated in the east of Algeria and they are microbiologically underexploited. Such unexplored ecological niches have been considered by many authors as sources of novel actinobacteria and bioactive molecules. Actinobacteria play an important role in safeguarding the environment by improving plant growth through nitrogen fixation, biodegradation, and bioremediation. Therefore, studying the diversity and distribution of actinobacteria in such special environments is important for determining the ecological and biotechnological roles of these microorganisms. In this article, we focused on the occurrence and the diversity of actinobacteria from sebkhas using two techniques: cultural and culture-independent (molecular cloning). The latter are based on phylogenetic analysis of the 16S rDNA gene. Thus, the cultural method allowed us to obtain 62 isolates: 40 from the “Ezzemoul” site and 22 from the “Djendli” site. These isolates tolerate mainly 2, 5, and 10% sodium chloride (NaCl) and belong to the genera Nocardiopsis, Streptomyces, and Rhodococcus. Moreover, the molecular cloning gave us 39 clones. Twenty-four clone sequences from “Ezzemoul” site are affiliated to the genera Demequina, Plantactinospora, Friedmanniella, and Mycobacterium. Also, 15 clone sequences from “Djendli” site are related to the genera Marmoricola, Phytoactinopolyspora, Streptomyces, and to an unclassified actinobacterial clone. Some sequences from both sites are related to uncultured clones. In addition to the data provided by the cultural method, molecular cloning allowed us to have additional information about the unknown actinobacteria, uncultured ones as well as on the genera that exist in both sites. So, the cultural method is complementary to the culture-independent one, and their combination revealed an important diversity in targeted saline environments. Furthermore, all new isolated strains that tolerate 10% NaCl may have a very interesting biotechnological potential in the future.

References

Aberkane M (2014) Ecologie de la Sarcelle marbrée Marmaronetta angustirostris
dans les zones humides de l’Est algérien. PhD thesis,
Badji Mokhtar University, Annaba, Algeria, (in French).
Aliat T, Kaabeche M, Khomri H, et al (2016) A Pedological Characterisation
of Some Inland Wetlands and Ramsar Sites in Algeria. Land
Degrad Dev 27:693–705. doi: 10.1002/ldr.2467
Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search
tool. J Mol Biol 215:403–410
Balla A (2012) Synthèse écologique sur les zones humides algériennes
d’importance internationale be “Sites Ramsar”. PhD thesis, Batna
University, Algeria, (in French).
Bedford BL, Walbridge MR, Aldous A (1999) Patterns in Nutrient Availability
and Plant Diversity of Temperate North American Wetlands.
Ecology 80:2151–2169. doi: 10.2307/176900
Bellagoune S (2015) Hivernage du Tadorne de Belon Tadorna tadorna
(Anatidés) dans la sebkha de Djendli (Batna, Est algérien).PhD
thesis, Badji Mokhtar University, Annaba, Algeria, (in French).
Bennur T, Ravi Kumar A, Zinjarde SS, Javdekar V (2016) Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol
120:1–16. doi: 10.1111/jam.12950
Borsodi AK, Felföldi T, Máthé I, et al (2013) Phylogenetic diversity of
bacterial and archaeal communities inhabiting the saline Lake
Red located in Sovata, Romania. Extremophiles 17:87–98. doi:
10.1007/s00792-012-0496-2
Boughachiche F, Rachedi K, Duran R, et al (2016) Optimization of alkaline
protease production by Streptomyces sp. strain isolated
from saltpan environment. Afr J Biotechnol 15:1401–1412
Cai Y, Xue Q, Chen Z, Zhang R (2009) Classification and salt-tolerance of
actinomycetes in the Qinghai lake water and lakeside saline soil.
J Sustain Dev 2:107–110
Chenchouni H (2009) Place des argiles dans la caractérisation écopédologique
du Chott de Djendli (Batna, Algérie) et mise en évidence
de la relation salinité–répartition des halophytes, (in
French). In: Proceedings of the 3rd Maghrebin Symposium on
Clays ‘SMA. pp 23–25
Cocolin L, Alessandria V, Dolci P, et al (2013) Culture independent methods
to assess the diversity and dynamics of microbiota during
food fermentation. International Journal of Food Microbiology
167:29–43. doi: 10.1016/j.ijfoodmicro.2013.05.008
Dastager SG, Lee J-C, Ju Y-J, et al (2008) Marmoricola bigeumensis sp.
nov., a member of the family Nocardioidaceae. Int J Syst Evol
Microbiol 58:1060–1063. doi: 10.1099/ijs.0.65576-0
Dupain R, Lanchon R, Saint-Arroman JC (2000) Granulats, sols, ciments
et bétons: caractérisation des matériaux de génie civil par les
essais de laboratoire, (in French). Paris: Casteilla
Ebihara H, Takada A, Kobasa D, et al (2006) Molecular Determinants of
Ebola Virus Virulence in Mice. PLOS Pathog 2:e73. doi: 10.1371/
journal.ppat.0020073
Eswaran H, Rice T, Ahrens R, Stewart B. (2002) Soil classification: a global
desk reference. Boca Raton: CRC Press
Felsenstein J (1985) Confidence limits on phylogenies: an approach using
the bootstrap. Evolution 39:783–791
Fidalgo C, Henriques I, Rocha J, et al (2016) Culturable endophytic bacteria
from the salt marsh plant Halimione portulacoides: phylogenetic
diversity, functional characterization, and influence
of metal(loid) contamination. Environ Sci Pollut Res 23:10200–
10214. doi: 10.1007/s11356-016-6208-1
Finster KW, Herbert RA, Kjeldsen KU, et al (2009) Demequina lutea sp.
nov., isolated from a high Arctic permafrost soil. Int J Syst Evol
Microbiol 59:649–653. doi: 10.1099/ijs.0.004929-0
Gagnard J, Huguet C, Ryser J-P (1988) L’analyse du sol et du végétal
dans la conduite de la fertilisation. Le controle de la qualite des
fruits, (in French).
Gasmi M, Kitouni M (2017) Optimization of chitinase production by a
new Streptomyces griseorubens C9 isolate using response surface
methodology. Ann Microbiol 67:175–183. doi: 10.1007/
s13213-016-1249-8
Ghai R, Mizuno CM, Picazo A, et al (2013) Metagenomics uncovers a
new group of low GC and ultra-small marine Actinobacteria. Sci
Rep 3:2471. doi: 10.1038/srep02471
Guo X, Guan X, Liu C, et al (2016) Plantactinospora soyae sp. nov., an
endophytic actinomycete isolated from soybean root [Glycine
max (L.) Merr]. Int J Syst Evol Microbiol 66:2578–2584. doi:
10.1099/ijsem.0.001088
Hamada M, Tamura T, Yamamura H, et al (2013) Demequina flava sp.
nov. and Demequina sediminicola sp. nov., isolated from sea
sediment. Int J Syst Evol Microbiol 63:249–253. doi: 10.1099/
ijs.0.039297-0
Hocinat A, Boudemagh A (2015) Biodegradation of commercial
Ortiva fungicide by isolated actinomycetes from the activated
sludge. Desalination Water Treat 57:6091–6097. doi:
10.1080/19443994.2015.1022799
Hozzein WN (2015) Biodiversity of Halophilic and Halotolerant Actinobacteria.
In: DK Maheshwari, M Saraf (Eds.), Halophiles Sustainable Development and Biodiversity (pp.1-28). Switzerland:
Springer International Publishing
Iwai K, Aisaka K, Suzuki M (2010) Friedmanniella luteola sp. nov.,
Friedmanniella lucida sp. nov., Friedmanniella okinawensis sp.
nov. and Friedmaniella sagamiharensis sp. nov., isolated from
spiders. Int J Syst Evol Microbiol 60:113–120. doi: 10.1099/
ijs.0.007815-0
Ji Y, Chunyu W-X, Li E-Y, et al (2017) Phytoactinopolyspora halotolerans
sp. nov., a halotolerant actinobacterium isolated from a saline
soil in Xinjiang, northwest of China. Antonie Van Leeuwenhoek
111:27–34. doi: 10.1007/s10482-017-0923-6
Jose PA, Jebakumar SRD (2013) Phylogenetic appraisal of antagonistic,
slow growing actinomycetes isolated from hypersaline inland
solar salterns at Sambhar salt Lake, India. Front Microbiol 4:190.
doi: 10.3389/fmicb.2013.00190
Kharroub K (2007) Identification et étude moléculaire des bactéries et
des archéobactéries aérobies halophiles de la sebkha Ezzemoul
(Ain M’Lila). PhD thesis, Mentouri University, Constantine, Algeria,
(in French)
Kim S-J, Hamada M, Ahn J-H, et al (2016) Friedmanniella aerolata sp.
nov., isolated from air. Int J Syst Evol Microbiol 66:1970–1975.
doi: 10.1099/ijsem.0.000973
Kimura M (1980) A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide
sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581
Kitouni M, Boudemagh A, Oulmi L, et al (2005) Isolation of actinomycetes
producing bioactive substances from water, soil and tree
bark samples of the north–east of Algeria. J Mycol Médicale-
Journal Med Mycol 15:45–51
Lahoum A, Verheecke-Vaessen C, Bouras N, et al (2017) Taxonomy of
mycelial actinobacteria isolated from Saharan soils and their efficiency
to reduce aflatoxin B1 content in a solid-based medium.
Ann Microbiol 67:231–237. doi: 10.1007/s13213-017-1253-7
Lane DJ (1991) 16S/23S rRNA sequencing. In: E Stackebrandt, M Goodfellow
(Eds.), Nucleic acid techniques in bacterial systematics
(pp.115–175). New York: John Wiley and Sons
Larkin MA, Blackshields G, Brown NP, et al (2007) Clustal W and Clustal
X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/
btm404
Lawson PA, Collins MD, Schumann P, et al (2000) New LL-diaminopimelic
acid-containing actinomycetes from hypersaline, heliothermal
and meromictic Antarctic Ekho Lake: Nocardioides aquaticus
sp. nov. and Friedmanniella [correction of Friedmannielly]
lacustris sp. nov. Syst Appl Microbiol 23:219–229
Lee JY, Hwang BK (2002) Diversity of antifungal actinomycetes in various
vegetative soils of Korea. Can J Microbiol 48:407–417. doi:
10.1139/w02-025
Lee SD, Lee DW, Ko Y-H (2011) Marmoricola korecus sp. nov. Int J Syst
Evol Microbiol 61:1628–1631. doi: 10.1099/ijs.0.025460-0
Lee S-Y, Im W-T, Kang M-S, et al (2016) Marmoricola ginsengisoli sp.
nov. and Marmoricola pocheonensis sp. nov. isolated from a
ginseng-cultivating field. Int J Syst Evol Microbiol 66:1996–2001.
doi: 10.1099/ijsem.0.000977
Li J, Zhao G-Z, Long L-J, et al (2012) Rhodococcus nanhaiensis sp. nov.,
an actinobacterium isolated from marine sediment. Int J Syst
Evol Microbiol 62:2517–2521. doi: 10.1099/ijs.0.038067-0
Li L, Ma J-B, Abdalla Mohamad O, et al (2015) Phytoactinopolyspora
endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete
isolated from the roots of Glycyrrhiza uralensis F. Int
J Syst Evol Microbiol 65:2671–2677. doi: 10.1099/ijs.0.000322
Lv Z., Zhang L., Li Y, et al (2006) Biodiversity of halophilic actinomycetes
of Cangzhou salty environments. , 26(1):1-6. J Hebei Univ Nat
Sci Ed 26:1–6
Maszenan AM, Seviour RJ, Patel BK, et al (1999) Friedmanniella spumicola
sp. nov. and Friedmanniella capsulata sp. nov. from activated
sludge foam: gram-positive cocci that grow in aggregates of
repeating groups of cocci. Int J Syst Bacteriol 49 Pt 4:1667–1680.
doi: 10.1099/00207713-49-4-1667
Matsumoto A, Nakai K, Morisaki K, et al (2010) Demequina salsinemoris
sp. nov., isolated on agar media supplemented with ascorbic
acid or rutin. Int J Syst Evol Microbiol 60:1206–1209. doi:
10.1099/ijs.0.012617-0
Meklat A, Sabaou N, Zitouni A, et al (2011) Isolation, Taxonomy, and
Antagonistic Properties of Halophilic Actinomycetes in Saharan
Soils of Algeria. Appl Environ Microbiol 77:6710–6714. doi:
10.1128/AEM.00326-11
Naikpatil SV, Rathod JL (2011) Selective isolation and antimicrobial activity
of rare actinomycetes from mangrove sediment of Karwar.
J Ecobiotechnology 3:48–53
Neffar S, Chenchouni H, Si Bachir A (2016) Floristic composition and
analysis of spontaneous vegetation of Sabkha Djendli in northeast
Algeria. Plant Biosyst - Int J Deal Asp Plant Biol 150:396–
403. doi: 10.1080/11263504.2013.810181
Norris PR (2012) Class Acidimicrobiia. In: M Goodfellow, P Kämpfer,
HJ Busse, ME Trujillo, K Suzuki, W Ludwig, WB Whitman (Eds.),
Bergey’s Manual of Systematic Bacteriology, 2nd edn (pp.1968–
1969). New York: Springer
Okoro CK, Brown R, Jones A, et al (2009) Diversity of culturable actinomycetes
in hyper-arid soils of the Atacama Desert, Chile.
Antonie Van Leeuwenhoek 95:121–133. doi: 10.1007/s10482-
008-9295-2
Oskay M, Tamer AU, Azeri C, et al (2004) International Conference on
the Great Himalayas: Climate, Health, Ecology, Management
and Conservation, Kathmandu, Organized by Kathmandu University
and the Aquatic Ecosystem Health and Management Society,
Canada. Afr J Biotechnol 3:441–446
Pandey B, Ghimire P, Agrawal VP (2004) International Conference on
the Great Himalayas: Climate, Health, Ecology, Management
and Conservation, Kathmandu, Organized by Kathmandu University
and the Aquatic Ecosystem Health and Management
Society, Canada.
Park S, Jung Y., Won S., Yoon J. (2016) Demequina litorisediminis sp.
nov., isolated from a tidal flat, and emended description of the
genus Demequina. Int J Syst Evol Microbiol 66:4197–4203. doi:
10.1099/ijsem.0.001335
Peeters C, Depoorter E, Praet J, Vandamme P (2016) Extensive cultivation
of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J
Cyst Fibros 15:769–775. doi: 10.1016/j.jcf.2016.02.014
Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria.
Trends in Biotechnology 30:475–484. doi: 10.1016/j.
tibtech.2012.05.007
Piao Z, Yang L, Zhao L, Yin S (2008) Actinobacterial Community Structure
in Soils Receiving Long-Term Organic and Inorganic Amendments.
Appl Environ Microbiol 74:526–530. doi: 10.1128/
AEM.00843-07
Pochon J, Tardieux P (1962) Techniques d’analyse en microbiologie du
sol, (in French)
Queipo-Ortuño MI, Colmenero JDD, Macias M, et al (2008) Preparation
of Bacterial DNA Template by Boiling and Effect of Immunoglobulin
G as an Inhibitor in Real-Time PCR for Serum Samples
from Patients with Brucellosis. Clinical and Vaccine Immunology
15:293–296. doi: doi:10.1128/CVI.00270-07
Rengasamy P (2006) World salinization with emphasis on Australia. Journal
of Experimental Botany. 57:1017–1023. doi: DOI:10.1093/
jxb/erj108.
Richards LA (1954) Diagnostic and improvement of saline and alkaline
soils. U.S Department of agriculture, Washington D.C
Sahraoui N, Ballif M, Zelleg S, et al (2011) Mycobacterium algericum sp.
nov., a novel rapidly growing species related to the Mycobacterium
terrae complex and associated with goat lung lesions. Int J
Syst Evol Microbiol 61:1870–1874. doi: 10.1099/ijs.0.024851-0
Saitou N, Nei M (1987) The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:
10.1093/oxfordjournals.molbev.a040454
Schumann P, Prauser H, Rainey FA, et al (1997) Friedmanniella antarctica
gen. nov., sp. nov., an LL-diaminopimelic acid-containing
actinomycete from Antarctic sandstone. Int J Syst Bacteriol
47:278–283. doi: 10.1099/00207713-47-2-278
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces
species. Int J Syst Bacteriol 16:313–340
Song Z, Zhi X, Li W, et al (2009) Actinobacterial Diversity in Hot Springs
in Tengchong (China), Kamchatka (Russia), and Nevada (USA).
Geomicrobiol J 26:256–263. doi: 10.1080/01490450902892373
Stach JEM, Maldonado LA, Ward AC, et al (2003) New primers for the
class Actinobacteria: application to marine and terrestrial environments.
Environ Microbiol 5:828–841. doi: 10.1046/j.1462-
2920.2003.00483.x
Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished
gold standards. Microbiol Today 33:152–5
Sudnitsyn II (2009) Specificity of actinomycetes in salt-affected soils.
Eurasian Soil Sci 42:235–236. doi: 10.1134/S106422930902015X
Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: molecular evolutionary
genetics analysis version 6.0. Mol Biol Evol 30:2725–
2729
Táncsics A, Máthé I, Benedek T, et al (2017) Rhodococcus sovatensis
sp. nov., an actinomycete isolated from the hypersaline and heliothermal
Lake Ursu. Int J Syst Evol Microbiol 67:190–196. doi:
10.1099/ijsem.0.001514
Tuo L, Pan Z, Li F-N, et al (2016) Friedmanniella endophytica sp. nov.,
an endophytic actinobacterium isolated from bark of Kandelia
candel. Int J Syst Evol Microbiol 66:3057–3062. doi: 10.1099/
ijsem.0.001146
Urzì C, Salamone P, Schumann P, Stackebrandt E (2000) Marmoricola
aurantiacus gen. nov., sp. nov., a coccoid member of the family
Nocardioidaceae isolated from a marble statue. Int J Syst Evol
Microbiol 50:529–536
Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, et al
(2009) Changes in the bacterial populations of the highly alkaline
saline soil of the former lake Texcoco (Mexico) following
flooding. Extremophiles 13:609–621. doi: 10.1007/s00792-009-
0244-4
Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of
‘unculturable’ bacteria. FEMS microbiology letters 309:1–7
Vasireddy R, Vasireddy S, Brown-Elliott BA, et al (2016) Mycobacterium
arupense, Mycobacterium heraklionense, and a Newly Proposed
Species, “Mycobacterium virginiense” sp. nov., but Not Mycobacterium
nonchromogenicum, as Species of the Mycobacterium
terrae Complex Causing Tenosynovitis and Osteomyelitis. J
Clin Microbiol 54:1340–1351. doi: 10.1128/JCM.00198-16
Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a Search-Based Approach
to Chimera Identification for 16S rRNA Sequences. Appl
Environ Microbiol 78:717–725. doi: 10.1128/AEM.06516-11
Yoon S-H, Ha S-M, Kwon S, et al (2017) Introducing EzBioCloud: a taxonomically
united database of 16S rRNA gene sequences and
whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–
1617. doi: 10.1099/ijsem.0.001755
Zhang X, Zhang J, Zhang Y, et al (2013) Friedmanniella flava sp. nov., a
soil actinomycete. Int J Syst Evol Microbiol 63:1771–1775. doi:
10.1099/ijs.0.043984-0

Downloads

Published

2019-12-31

Issue

Section

Articles

How to Cite

Smati, M., & Kitouni, M. (2019). Diversity of actinobacteria in the marshes of Ezzemoul and Djendli in northeastern Algeria. European Journal of Ecology, 5(2), 41-53. https://doi.org/10.2478/eje-2019-0009