Dryas iulia (Lepidoptera, Nymphalidae) larval preference and performance on four sympatric Passiflora hosts

Main Article Content

Lucas Arantes-Garcia
Renata A. Maia
Patrícia Valadão
Yumi Oki
Geraldo Wlson Fernandes


Host plant quality is determinant for herbivorous insects performance and survival. While on larval stages, insects select their host plants based on factors such as leaf nitrogen and water content, digestibility, and defences. Of great interest is the coevolutionary relationship between the Heliconiini insects and the Passiflora plants. In this study we experimentally evaluated Dryas iulia (Nymphalidae) larval preference to four sympatric Passiflora (Passifloraceae) and subsequently, the larval performance on the two most consumed species. We tested the hypothesis that D. iulia larvae prefer the Passiflora species with higher nutritional quality and lower defence, which supports the greatest larval performance. Dryas iulia larvae preferred P. misera (60.5% leaf consumption) over P. pohlii (28.9%), P. suberosa (15.5%), and P. edulis (not consumed). Passiflora misera presented the highest N concentration, third in water content, second in tector trichomes, and no glandular trichomes (only P. suberosa did). Nitrogen best explained D. iulia larvae leaf consumption; which further explains the greatest larval performance in P. misera than in P. suberosa: i.e. higher survival (23.1%), conversion efficiency of ingested food (32.8%), relative growth rate (14.8%), heavier pupae (15.2%), and lower relative consumption rate (13.8%). This study creates the opportunity to further investigate the Heliconiini-Passiflora system and showed that D. iulia larvae can assess and choose the host plant (even among sympatric species) that supports the greatest performance.

Article Details

How to Cite
Arantes-Garcia, L., A. Maia, R., Valadão, P., Oki, Y., & Wlson Fernandes, G. (2021). Dryas iulia (Lepidoptera, Nymphalidae) larval preference and performance on four sympatric Passiflora hosts. European Journal of Ecology, 7(1). https://doi.org/10.17161/eurojecol.v7i1.13781


Agosta, S.J., Hulshof, C.M., Staats, E.G. (2017) Organismal responses to habitat change: herbivore performance, climate, and leaf traits in regenerating tropical dry forests. Journal Animal Ecology, 85, 590‒604. https://doi.org/10.1111/1365-2656.12647
Ambrósio, S.R., Oki, Y., Heleno, V.C., Chaves, J.S., Nascimento, P.G., Lichston, J.E., et al. (2008) Constituents of glandular trichomes of Tithonia diversifolia: relationships to herbivory and antifeedant activity. Phytochemistry, 69, 2052‒2060. https://doi.org/10.1016/j.phytochem.2008.03.019
Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Reviews. Entomology, 47, 817–844.
Barbehenn, R.V., Knister, J., Marsik, F., Jahant‐Miller, C., Nham, W. (2015) Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae. Physiological Entomology, 40, 72‒81. https://doi.org/10.1111/phen.12087
Beltrán, M. & Brower, A.V.Z. (2008) Dryas Huebner 1807, Dryas iulia (Fabricius 1775) [homepage in the internet]. Tree of life project [updated September 2008]. http://tolweb.org/Dryas_iulia/70435/2008.09.04. Accessed 20 oct 2019
Benson, W.W. (1978) Resource partitioning in passion vine butterflies. Evolution, 32, 393‒518. https://www.jstor.org/stable/2407717
Benson, W.W., Brown, K.S., Gilbert, L.E. (1976) Coevolution of plants and herbivores: passion flower butterflies. Evolution, 29, 659‒680. https://doi.org/10.1111/j.1558-5646.1975.tb00861.x
Brown, K.S. (1981) The biology of Heliconius and related genera. Annual Review of Entomology 26, 427‒456. https://doi.org/10.1146/annurev.en.26.010181.002235
Cahenzli, F., Wenk, B.A., Erhardt, A. (2015) Female butterflies adapt and allocate their progeny to the host‐plant quality of their own larval experience. Ecology, 96, 1966‒1973. https://doi.org/10.1890/14-1275.1
Cardoso, M.Z. (2008) Herbivore handling of a plant’s trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae). Neotropical Entomology, 37, 247‒252. https://doi.org/10.1590/S1519-566X2008000300002
Cerqueira-Silva, C.B.M., Faleiro, F.G., Jesus, O.N. De Santos, E.S.L. Dos Souza, A.P. de. (2018) Passion fruit (Passiflora spp.) breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in plant breeding strategies: fruits (pp 929‒951). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-91944-7_22
Chew, F.S. (1975) Coevolution of pierid butterflies and their cruciferous food plants. The relative quality of available resources. Oecologia, 20, 117‒127. https://doi.org/10.1111/j.1558-5646.1977.tb01045.x
Chew, F.S. (1980) Food plant preferences of Pieris caterpillars (Lepidoptera). Oecologia, 46, 347‒353. https://doi.org/10.1007/BF00346263
Clarke, A.R. & Zalucki, M.P. (2000) Foraging and vein-cutting behaviour of Euploea core corinna (W. S. Macleay) (Lepidoptera: Nymphalidae) caterpillars feeding on latex-bearing leaves. Australian Journal of Entomology, 39, 283‒290. https://doi.org/10.1046/j.1440-6055.2000.00191.x
Dassanayake, E.M. & Hicks, R.G. (1994) Aphid resistant properties in Passiflora species with special reference to the glandular hairs. Journal of Agricultural Sciences, 31, 59‒63.
Dhawan, K., Dhawan, S., Sharma, A. (2004) Passiflora: a review update. Journal of Ethnopharmacol, 94, 1‒23. https://doi.org/10.1016/j.jep.2004.02.023
Eaton, K.M. & Karban, R. (2014) Effects of trichomes on the behavior and distribution of Platyprepia virginalis caterpillars. Entomologia Experimentalis et Applicata, 151, 144‒151. https://doi.org/10.1111/eea.12178
Ehrlich, P.R. & Raven, P.H. (1964) Butterflies and plants: A study in coevolution. Evolution, 18, 586-608. https://doi:: 10.2307/2406212
Farias, V., Maranho, L.T., Mushner, V.C., Soffiati, P. (2016) Anatomia foliar de Passiflora subgênero Decaloba (Passifloraceae): implicações taxonômicas. Rodriguésia, 67, 029‒043. https://doi.org/10.1590/2175-7860201667103
Fernandes, G.W. (1994) Plant mechanical defenses against insect herbivory. Revista Brasileira de Entomologia, 38, 421‒433.
García, M., Jáuregui, D., Pérez, D. (2000) Característica del indumento en holas de cuatro especies del genero Passiflora L. (Passsifloraceae). Acta Botánica Venezuélica, 23, 1-8.
Gilbert, L.E. (1971) Butterfly-plant coevolution: has Passiflora adenopoda won the selectional race with Heliconiine Butterflies? Science, 172, 585‒586. https://doi.org/10.1126/science.172.3983.585
Gilbert, L.E. (1991) Biodiversity of a Central American Heliconius community: patterns, process, and problems. In: Price, P.W., Lewinsohn, T.M., Fernandes, G.W., Benson, W.W. (eds). Plant-animal interactions: evolutionary ecology in tropical and temperate regions (pp 403-427). John Wiley and Sons, New York.
Griese, E., Pineda, A., Pashalidou, F.G., Iradi, E.P., Hilker, M., Dicke, M., et al. (2020) Plant responses to butterfly oviposition partly explain preference–performance relationships on different brassicaceous species. Oecologia, 192, 1‒13. https://doi.org/10.1007/s00442-019-04590-y
Gripenberg, S., Mayhew, P.J., Parnell, M., Roslin, T. (2010) A meta‐analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 13, 383‒393. https://doi.org/10.1111/j.1461-0248.2009.01433.x
Hochuli, D.F. (1996) The ecology of plant/insect interactions: implications of digestive strategy for feeding by phytophagous insects. Oikos, 75, 133–141. https://doi.org/10.2307/3546331
Hothorn, T., Bretz, F., Westfall, P. (2008) Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363. https://doi.org/10.1002/bimj.200810425
Hulley, P.E. (1988) Caterpillar attacks plant mechanical defence by mowing trichomes before feeding. Ecological Entomology, 13, 239‒241.
Jaenike, J. (1978) On optimal oviposition behavior in phytophagous insects. Theoretical Population Biology, 14, 350‒356.
Johansen, D.A. (1940) Plant Microtecnique. McGraw-Hill Book Company Inc., New York.
Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., Bresta, P. (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. Journal of Forestry Research, 31, 1‒12. https://doi.org/10.1007/s11676-019-01034-4
Kariyat, R.R., Smith, J.D., Stephenson, A.G., De Moraes, C.M., Mescher, M.C. (2017) Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proceedings of the Royal Society B, 284, 1‒9. http://dx.doi.org/10.1098/rspb.2016.2323
Kerpel, S.M. & Moreira, G.R. (2005) Absence of learning and local specialization on host plant selection by Heliconius erato. Journal of Insect Behavior, 18, 433‒452. https://doi.org/10.1098/rspb.2016.2323
König, M.A.E., Wiklund, C., Ehrlén, J. (2016). Butterfly oviposition preference is not related to larval performance on a polyploid herb. Ecology and Evolution, 6: 2781– 2789. https://doi: 10.1002/ece3.2067
Lee, K.P., Kwon, S.T., Roh, C. (2012) Caterpillars use developmental plasticity and diet choice to overcome the early life experience of nutritional imbalance. Animal Behaviour, 84, 785‒793. https://doi.org/10.1016/j.anbehav.2012.06.033
Liu, Z., Scheirs, J., Heckel, D.G. (2010) Host plant flowering increases both adult oviposition preference and larval performance of a generalist herbivore. Environmental Entomology, 39, 552–560. https://doi.org/10.1603/EN09129
Llandres, A.L., Marques, G.M., Maino, J.L., Kooijman, S.A.L.M, Kearney, M.R, Casas, J.A. (2015) Dynamic energy budget for the whole life-cycle of holometabolous insects. Ecological Monographs, 85, 353‒371. https://doi.org/10.1890/14-0976.1
Malishev, M. & Sanson, G.D. (2015) Leaf mechanics and herbivory defence: how tough tissue along the leaf body deters growing insect herbivores. Austral Ecology 40, 300‒308. https://doi.org/10.1111/aec.12214
Mattson, W. (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology Systematics, 11, 119‒161.
Millan, C., Borges, S.S., Rodrigues, D., Moreira, G.R.P. (2013) Behavioral and life-history evidence for interspecific competition in the larvae of two heliconian butterflies. Naturwissenschaften, 100, 901‒911. https://doi.org/10.1007/s00114-013-1089-3
Morton, J.F. (1987) Passion fruit. In: Morton JF (ed) Fruits of warm climates (pp 320-328). Creative Resource Systems Inc., Winterville.
Nestel, D., Papadopoulos, N.T., Pascacio-Villafán, C., Righini, N., Altuzar-Molina, A.R., Aluja, M. (2016) Resource allocation and compensation during development in holometabolous insects. Journal of Insect Physiology. 95, 78–88. https://doi.org/10.1016/j.jinsphys.2016.09.010
Paim, A.C., Kaminski, L.A., Moreira, G.P.R. (2004) External morphology of immature stages of Neotropical heliconines: Dryas iulia alcionea (Lepidoptera, Nymphalidae, Heliconiinae). Iheringia Série Zoologia, 94, 25‒35. https://doi.org/10.1590/S0085-56262008000100003
Panizzi, A.R. & Parra, J.R.P. (2012) (eds) Insect bioecology and nutrition for integrated pest management. CRC press, Florida.
Périco, E. (1995) Interação entre quatro espécies de Heliconiini (Lepidoptera: Nymphalidae) e suas plantas hospedeiras (Passifloraceae) em uma floresta secundária do Rio Grande do Sul, Brasil. Biociências, 3, 3‒18.
Prudic, K.L., Oliver, J.C., Bowers, M.D. (2005) Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia, 143, 578–587.
Quezada-García, R., Seehausen, M.L., Bauce, E. (2015) Adaptation of an outbreaking insect defoliator to chronic nutritional stress. Journal of Evolutionary Biology, 28, 347‒355. https://doi.org/10.1111/jeb.12571
Quintero, C. & Bowers, M.D. (2018) Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia, 187, 401‒412.
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/.Accessed 15 oct 2019
Refsnider, J.M. & Janzen, F.J. (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annual Review of Ecology, Evolution, and Systematics, 41, 39–57. https://doi: 10.1146/annurev-ecolsys-102209-144712
Rhoads, D.F. (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal, G. & Janzen, D.H. (eds). Herbivores: their interaction with secondary plant metabolites (pp 3‒54). Academic Press, New York.
Sagers, C.L. (1992) Manipulation of host plant quality: herbivores keep leaves in the dark. Functional Ecology, 6, 741‒743. https://doi.org/10.2307/2389971
Samal, I., Tanwar, A.K., Bhoi, T.K., Hasan, F., Trivedi, N., Kumar, H., et al. (2019) Samal Insect-plant biochemical interactions for plant defense against spotted stem borer, Chilo partellus: A research summation. Journal of Entomology and Zoology Studies 7, 304‒310.
Santos, J.C., Silveira, F.A.O., Fernandes, G.W. (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Ecology and Evolution, 22, 123‒137. https://doi.org/10.1007/s10682-007-9162-z
Sarfraz, M., Dosdall, L.M., Keddie, B.A. (2009) Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biological Control, 51, 34‒41. https://doi.org/10.1016/j.biocontrol.2009.07.004
Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671‒675. https://doi.org/10.1038/nmeth.2089
Schoonhoven, L.M., Dicke, M., Loon, A.V. (2005) Insect-plant biology. Oxford University Press, Oxford.
Schuurink, R. & Tissier, A. (2019) Glandular trichomes: micro‐organs with model status? New Phytologist, 225, 2251‒2266. https://doi.org/10.1111/nph.16283
Scriber, J.M. (1984) Host – plant suitability. In: Bell, W.J., Cardé, R.T (eds) Chemical ecology of insects (pp 162‒202). Chapman and Hall, New York. https://doi.org/10.1007/978-1-4899-3368-3_7
Scriber, J.M. & Slansky, F. Jr. (1981) The nutritional ecology of immature insects. Annual Review Entomology, 26, 183‒211.
Singer, M.C. (1986) The definition and measurement of oviposition preference in plant-feeding insects. In: Miller, J.R. & Miller, T.A. (eds) Insect-Plant Interactions (pp 65‒94). Springer, New York. https://doi.org/10.1007/978-1-4612-4910-8_3
Slansky, F.J. (1993) Nutritional ecology: the fundamental quest for nutrients. In: Stamp, N.E. & Casey, T.M. (eds) Caterpillars: ecological and evolutionary constraints on foraging (pp 29-91). Chapman and Hall, New York.
Speight, M.R., Hunter, M.D., Watt, A.D. (2008) Ecology of Insects: Concepts and Applications, 2nd ed. UK: Wiley-Blackwell.
Spencer, K.C. (1988) Passiflora—Heliconius interaction. In: Spencer, K.C. (ed) Chemical mediation of coevolution (pp 167-240). Academic Press Inc., London.
Stiling, P. & Cornelissen, T. (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823‒1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x
Stotz, G.C., Suárez, L.H., Gonzáles, W.L, Gianoli, E. (2013) Local host adaptation and use of a novel host in the seed beetle Megacerus eulophus. PLoS One 8, 1‒5. https://doi.org//10.1371/journal.pone.0053892
Stratmann, J.W. & Bequette, C.J. (2016) Hairless but no longer clueless: understanding glandular trichome development. Journal of Experimental Botany, 67, 5285‒5287. https://doi.org/10.1093/jxb/erw339
Strong, D.R., Lawton, J.H., Southwood, S.R. (1984) Insects on plants. Community patterns and mechanisms. USA: Blackwell Scientific Publications.
Ulmer, T. & MacDougal, J.M. (2004) Passiflora: passionflowers of the world. Timber Press, Oregon.
Uyi, O.O., Zachariades, C., Heshula, L.U., Hill, M.P. (2018) Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by the host plant. PLoS One, 13, 1‒19. https://doi.org/10.1371/journal.pone.0190700
Vermeij, G.J. (2015) Plants that lead: do some surface features direct enemy traffic on leaves and stems? Biological Journal of the Linnean Society, 116, 288‒294. https://doi.org/10.1111/bij.12592
Wheeler, A.G. Jr. & Krimmel, B.A. (2015) Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Annual Review Entomology, 60, 393‒414. https://doi.org/10.1146/annurev-ento-010814-020932
Wosch, L., Imig, D.C., Cervi, A.C., Moura, B.B., Budel, J.M., Santos, C.A. De M. (2015) Comparative study of Passiflora taxa leaves: a morpho-anatomic profile. Revista Brasileira de Farmacognosia, 25, 328‒343. https://doi.org/10.1016/j.bjp.2015.06.004
Young, A.M. & Muyshondt, A. (1975) Studies on the natural history of central american butterflies in the family Cluster Satyridae‐Brassolidae‐Morphidae (Lepidoptera: Nymphaloidea). Opsiphanes tamarindi and Opsiphanes cassina in Costa Rica and El Salvador. Studies on Neotropical Fauna and Environment, 10, 19‒55. https://doi.org/10.1080/01650527509360481
Zibadi, S. & Watson, R.R. (2004) Passion fruit (Passiflora edulis). Journal of Evidence-Based Integrative Medicine, 1, 183‒187. https://doi.org/10.2165/01197065-200401030-00005