Maximum Entropy Niche Modelling to Estimate the Potential Distribution of Phytophthora megakarya (Brasier & M. J. Griffin) in Tropical Regions
DOI:
https://doi.org/10.17161/eurojecol.v6i2.13802Keywords:
Black pod disease; Cocoa; MaxEnt; kuenm; West Africa'; Central AfricaAbstract
Background: Phytophthora megakarya is an invasive pathogen endemic to Central and West Africa. This species causes the most devastating form of black pod disease. Despite the deleterious impacts of this disease on cocoa production, there is no information on the geographic distribution of P. megakarya.
Aim: In this study, we investigated the potential geographic distribution of P. megakarya in cocoa-producing regions of the world using ecological niche modelling.
Methods: Occurrence records of P. megakarya in Central and West Africa were compiled from published studies. We selected relevant climatic and edaphic predictor variables in the indigenous range of this species to generate 14 datasets of climate-only, soil-only, and a combination of both data types. For each dataset, we calibrated 100 candidate MaxEnt models using 20 regularisation multiplier values and five feature classes. The best model was selected from statistically significant candidates with an omission rate ≤ 5% and the lowest Akaike Information Criterion corrected for small sample sizes, and projected onto cocoa-producing regions in Southeast Asia, Central and South America. The risk of extrapolation in model transfer was measured using the mobility-oriented parity (MOP) metric.
Results: We found an optimal goodness-of-fit and complexity for candidate models incorporating both climate and soil data. Predictions of the model with the best performance showed that nearly all of Central Africa, especially areas in Gabon, Equatorial Guinea, and southern Cameroon are at risk of black pod disease. In West Africa, suitable environments were observed along the Atlantic coast, from southern Nigeria to Gambia. Our analysis suggested that P. megakarya is capable of subsisting outside its native range, at least in terms of climatic and edaphic factors. Model projections identified likely suitable areas, especially in Brazil and Colombia, from southwestern Mexico down to Panama, and across the Caribbean islands in the Americas, and in Sri Lanka, Indonesia, Malaysia, and Papua New Guinea in Asia and adjacent areas
Conclusion: The outcomes of this study would be useful for developing measures aimed at preventing the spread of this pathogen in the tropics.
References
Akrofi, A. Y., Amoako-Atta, I., Assuah, M., & Asare, E. K. (2015). Black pod disease on cacao (Theobroma cacao, L) in Ghana: Spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Protection, 72, 66–75. https://doi.org/10.1016/j.cropro.2015.01.015
Ali, S. S., Amoako-Attah, I., Bailey, R. A., Strem, M. D., Schmidt, M., Akrofi, A. Y., Surujdeo-Maharaj, S., Kolawole, O. O., Begoude, B. A. D., ten Hoopen, G. M., Goss, E., Phillips-Mora, W., Meinhardt, L. W., & Bailey, B. A. (2016). PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya ’s field dominance in West Africa. Plant Pathology, 65(7), 1095–1108. https://doi.org/10.1111/ppa.12496
Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecological Modelling, 162(3), 211–232. https://doi.org/10.1016/S0304-3800(02)00349-6
Bailey, B. A., Ali, S. S., Akrofi, A. Y., & Meinhardt, L. W. (2016). Phytophthora megakarya, a Causal Agent of Black Pod Rot in Africa. In B. A. Bailey & L. W. Meinhardt (Eds.), Cacao Diseases (pp. 267–303). Springer International Publishing. https://doi.org/10.1007/978-3-319-24789-2_8
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200
Burgess, T. I., Scott, J. K., Mcdougall, K. L., Stukely, M. J. C., Crane, C., Dunstan, W. A., Brigg, F., Andjic, V., White, D., Rudman, T., Arentz, F., Ota, N., & Hardy, G. E. St. J. (2017). Current and projected global distribution of Phytophthora cinnamomi , one of the world’s worst plant pathogens. Global Change Biology, 23(4), 1661–1674. https://doi.org/10.1111/gcb.13492
Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019a). kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281
Cobos, M. E., Peterson, A. T., Osorio-Olvera, L., & Jiménez-García, D. (2019b). An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecological Informatics, 53, 100983. https://doi.org/10.1016/j.ecoinf.2019.100983
Corcobado, T., Solla, A., Madeira, M. A., & Moreno, G. (2013). Combined effects of soil properties and Phytophthora cinnamomi infections on Quercus ilex decline. Plant and Soil, 373(1–2), 403–413. https://doi.org/10.1007/s11104-013-1804-z
Deberdt, P., Mfegue, C. V., Tondje, P. R., Bon, M. C., Ducamp, M., Hurard, C., Begoude, B. A. D., Ndoumbe-Nkeng, M., Hebbar, P. K., & Cilas, C. (2008). Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control, 44(2), 149–159. https://doi.org/10.1016/j.biocontrol.2007.10.026
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/10.1111/ecog.02671
Duque-Lazo, J., van Gils, H., Groen, T. A., & Navarro-Cerrillo, R. M. (2016). Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecological Modelling, 320, 62–70. https://doi.org/10.1016/j.ecolmodel.2015.09.019
Efombagn, M. I. B., Marelli, J. P., Ducamp, M., Cilas, C., Nyasse, S., & Vefonge, D. (2004). Effect of Fruiting Traits on the Field Resistance of Cocoa (Theobroma cacao L.) Clones to Phytophthora megakarya. Journal of Phytopathology, 152(10), 557–562. https://doi.org/10.1111/j.1439-0434.2004.00895.x
Etaware, P. M., Adedeji, A. R., Osowole, O. I., & Odebode, A. C. (2020). ETAPOD: A forecast model for prediction of black pod disease outbreak in Nigeria. PLOS ONE, 15(1), e0209306. https://doi.org/10.1371/journal.pone.0209306
Franklin, J. (2009). Mapping Species Distributions: Spatial inference and Prediction. 340.
Hernández-Lambraño, R. E., González-Moreno, P., & Sánchez-Agudo, J. Á. (2018). Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 419–420, 101–109. https://doi.org/10.1016/j.foreco.2018.03.026
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra
Kluza, D. A., Vieglais, D. A., Andreasen, J. K., & Peterson, A. T. (2007). Sudden oak death: Geographic risk estimates and predictions of origins. Plant Pathology, 56(4), 580–587. https://doi.org/10.1111/j.1365-3059.2007.01602.x
La Manna, L., Matteucci, S. D., & Kitzberger, T. (2012). Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. European Journal of Forest Research, 131(2), 323–337. https://doi.org/10.1007/s10342-011-0503-7
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01
Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Mfegue, C. V. (2012). Origine et mécanismes de dispersion des populations de Phytophthora megakarya, pathogène du cacaoyer au Cameroun [Montpellier SupAgro]. https://www.supagro.fr/theses/extranet/12-0015_MFEGUE.pdf
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/10.1111/2041-210X.12261
Ndoumbè-Nkeng, M., Efombagn, M. I. B., Nyassé, S., Nyemb, E., Sache, I., & Cilas, C. (2009). Relationships between cocoa Phytophthora pod rot disease and climatic variables in Cameroon. Canadian Journal of Plant Pathology, 31(3), 309–320. https://doi.org/10.1080/07060660909507605
Nyassé, S., Grivet, L., Risterucci, A. M., Blaha, G., Berry, D., Lanaud, C., & DesprÉAux, D. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103(10), 1225–1234. https://doi.org/10.1017/S0953756299008369
Opoku, I. Y., Akrofi, A. Y., & Appiah, A. A. (2002). Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Protection, 21(8), 629–634. https://doi.org/10.1016/S0261-2194(02)00013-3
Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., Myers, C. E., & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2006). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar: Predicting species distributions with low sample sizes. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
Peterson, A. T. (2014). Mapping disease transmission risk: Enriching models using biogeography and ecology. Johns Hopkins University Press.
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Peterson, A. T., Soberón Jorge, Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions. Princeton University Press.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pokou, N. D., N’Goran, J. A. K., Kébé, I., Eskes, A., Tahi, M., & Sangaré, A. (2008). Levels of resistance to Phytophthora pod rot in cocoa accessions selected on-farm in Côte d’Ivoire. Crop Protection, 27(3–5), 302–309. https://doi.org/10.1016/j.cropro.2007.07.012
Puig, A. S., Ali, S., Strem, M., Sicher, R., Gutierrez, O. A., & Bailey, B. A. (2018). The differential influence of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion expansion, mycelia growth, gene expression, and metabolite profiles. Physiological and Molecular Plant Pathology, 102, 95–112. https://doi.org/10.1016/j.pmpp.2017.12.002
R Core Team (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- project.org/.
Ramírez-Gil, J. G., & Peterson, A. T. (2019). Current and potential distributions of the most important diseases affecting Hass avocado in Antioquia Colombia. Journal of Plant Protection Research, 59(2), 214–228. https://doi.org/10.24425/JPPR.2019.129288
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913–929. https://doi.org/10.1111/ecog.02881
Scott, P., Bader, M. K.-F., Burgess, T., Hardy, G., & Williams, N. (2019). Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environmental Science & Policy, 101, 175–182. https://doi.org/10.1016/j.envsci.2019.08.020
Soberon, J., & Peterson, A. T. (2005). Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics, 2(0). https://doi.org/10.17161/bi.v2i0.4
Vaclavık, T., & Meentemeyer, R. K. (2011). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 11.
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6), 542–552. https://doi.org/10.1111/ecog.01509
Velazco, S. J. E., Galvão, F., Villalobos, F., & De Marco Júnior, P. (2017). Using worldwide edaphic data to model plant species niches: An assessment at a continental extent. PLOS ONE, 12(10), e0186025. https://doi.org/10.1371/journal.pone.0186025
West, A. M., Kumar, S., Brown, C. S., Stohlgren, T. J., & Bromberg, J. (2016). Field validation of an invasive species Maxent model. Ecological Informatics, 36, 126–134. https://doi.org/10.1016/j.ecoinf.2016.11.001
Wieder, W. (2014). Regridded Harmonized World Soil Database v1.2. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1247
Zuquim, G., Costa, F. R. C., Tuomisto, H., Moulatlet, G. M., & Figueiredo, F. O. G. (2019). The importance of soils in predicting the future of plant habitat suitability in a tropical forest. Plant and Soil. https://doi.org/10.1007/s11104-018-03915-9
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Maxwell Obiakara, Dr., Prof.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.