Why bats matters: A critical assessment of bat-mediated ecological processes in the Neotropics

Authors

  • Dennis Castillo-Figueroa a:1:{s:5:"en_US";s:32:"Pontificia Universidad Javeriana";}

DOI:

https://doi.org/10.17161/eurojecol.v6i1.13824

Keywords:

Chiroptera; Ecosystems; Neotropical Region; Functional roles; Seed dispersal; Pollination; Nutrient cycling; Arthropod suppression; Functional trait; New World Bats.

Abstract

New World bats play a significant role in ecosystem functioning and are imperative for maintaining environmental services. Nevertheless, human-caused environmental changes are jeopardizing bat communities, which results in the loss of functional roles provided by them. It is important, therefore, to assess ecological processes performed by bats in the Neotropics to define priorities in further research for better conservation planning. In this systematic review, I identify general trends, advances, bias, and knowledge gaps in bat-mediated ecological processes across Neotropical ecosystems. I have conducted an extensive search on Google Scholar, Scopus, Web of Science, and Bat Eco–Interactions Database resulting in 538 references, of which 185 papers were included in the review. The papers were published in 76 peer-reviewed journals, with the highest peak between 2006-2010. From the six biomes recorded, Moist broadleaf tropical forest was the most researched, contrary to Montane biomes (>2000 m), where few studies have been conducted. Seed dispersal was the process with more studies (44%), followed by pollination (38%), nutrient cycling (10%), and arthropod suppression (8%). Seed dispersal and pollination displayed large bias on specific bat-plant systems (Artibeus-Ficus, Sturnira-Solanum, Carollia-Piper, Pachycereeae tribe-Leptonycteris) and ecoregions (Ithsmian-Atlantic moist forest, Cerrado, Tehuacán Valley matorral), thus being important to explore other bat and plant species as well as other ecosystems. Arthropod suppression and nutrient cycling were largely overlooked despite constituting essential functions in ecosystem resilience; particularly, more research is needed to know cascading effects on plant fitness in different agroforestry systems, but also is key the understanding of how bats can be pivotal mobile links in terrestrial ecosystems and cave environments. I highlight the importance to consider bats with multiple roles and functional trait-based approach to gain a comprehensive understanding of their functionality. Even though functional studies have increased in the last two decades, several aspects of bat roles are still obscured, and is necessary to keep evaluating their ecological and economic importance to provide useful information for major decision-makings in Neotropical ecosystems’ conservation. Bat extirpations are likely to affect their ecological roles, therefore, mitigating major threats of bats are urgently needed to sustain ecosystem integrity in the Neotropics.

References

Aguilar-Rodríguez. P.A., MacSwiney, G.M.C., Krömer, T., García-Franco, J.G., Knauer, A. & Kessler, M. (2014) First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae). Ann Bot, 113, 1047–1055.
Aguirre, L.F., Herrel, A., Van Damme, R. & Matthysen, E. (2003) The implications of food hardness for diet in bats. Funct Ecol, 17, 201–212.
Antonelli, A., Ariza, M., Albert, J., Andermann, T., Azevedo, J., Bacon, C., et al. (2018) Conceptual and empirical advances in Neotropical biodiversity research. PeerJ, DOI:10.7287/peerj.preprints.3074v1.
Aranguren, C.I., González-Carcacía, J.A., Martínez, H. & Nassar, J.M. (2011) Noctilio albiventris (Noctilionidae), a potential seed disperser in disturbed tropical dry forest habitats. Acta Chiropt, 13, 189–194.
Arroyo-Rodríguez, V., Melo, F.P.L., Martínez-Ramos, M., Bongers, F., Chazdon, R.L., Meave, J.A., et al. (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev, 92(1), 326–340.
Baldwin, J.W. & Whitehead, S.R. (2015) Fruit secondary compounds mediate the retention time of seeds in the guts of Neotropical fruit bats. Oecologia, 177, 453–466.
Bernard, E. & Fenton, M.B. (2003) Bat mobility and roosts in a fragmented landscape in central Amazonia, Brazil. Biotropica, 35, 262–277.
Boyles, J.G., Cryan, P.M., McCracken, G.F. & Kunz TH (2011). Economic importance of bats in agriculture. Science, 332, 41–42.
Brown, S. & Lugo, A.E. (1990) Tropical secondary forests. J Trop Ecol, 6, 1–32.
Cadotte, M.W., Carscadden, K. & Mirotchnick, N. (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol, 48, 1079–1087.
Castillo-Figueroa, D. (2018) Beyond specimens: linking biological collections, functional ecology and biodiversity conservation. Rev Peru Biol, 25(3), 343–348.
Castillo-Figueroa, D. & Pérez-Torres, J. (2018) Respuestas funcionales de murciélagos asociados a fragmentos de bosque seco tropical en Córdoba (Colombia): implicaciones del tipo de manejo en sistemas de ganadería extensiva. Rev Biodivers Neotrop, 8(3), 197–211.
Carvalho-Ricardo, M.C., Uieda, W., Fonseca, R.C. & Rossi, M.N. (2014) Frugivory and the effects of ingestion by bats on the seed germination of three pioneering plants. Acta Oecol, 55, 51–57.
Carvalho, N., Raizer, J. & Fischer, E. (2017) Passage through Artibeus lituratus (Olfers, 1818) increases germination of Cecropia pachystachya (Urticaceae) seeds. Trop Conserv Sci, 10, 1–7.
Cassano, C.R., Silva, R.M., Mariano‐neto, E., Schroth, G. & Faria, D. (2016). Bat and bird exclusion but not shade cover influence arthro‐ pod abundance and cacao leaf consumption in agroforestry land‐ scape in northeast Brazil. Agr Ecosyst Environ, 232, 247–253.
Ceballos, G., Ehrlich, P. & Dirzo, R. (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci, 114(30), E6089–E6096.
Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M.A., Bongers, F., Zambrano, A.M.A., Aide, T.M., et al. (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv, DOI:10.1126/sciadv.1501639
Cleveland, C.J., Betke, M., Federico, P., Frank, J.D., Hallam, T.G., Horn, J. et al. (2006) Economic value of the pest control service provided by Brazilian free–tailed bats in south–central Texas. Front Ecol Environ, 4, 238–243.
Córdova-Tapia, F. & Zambrano, L. (2015) La diversidad funcional en la ecología de comunidades. Ecosistemas, 24, 8–87.
Cortés-Delgado, N. & Perez-Torres, J. (2011) Habitat edge context and the distribution of phyllostomid bats in the Andean forest and anthropogenic matrix in the Central Andes of Colombia. Biodivers Conserv, 20, 987–999.
Cole, R.K.J., Holl, K.D. & Zahawi, R.A. (2010) Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol Appl, 20(5), 1255–1269.
Díaz, S. & Cabido, M. (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol, 16, 646–655.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., et al. (2017) An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience, 67, 534–545.
Doughty, C.E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E.S. et al. (2016) Global nutrient transport in a world of giants. Proc Natl Acad Sci USA, 113, 868–873.
Duchamp, J.E., Sparks, D.W. & Swihart, R.K. (2010) Exploring the ‘‘nutrient hot spot’’ hypothesis at trees used by bats. J Mammal, 91(1), 48–53.
Etter A., McAlpine, C. & Possingham, H. (2008) A historical analysis of the spatial and temporal drivers of landscape change in Colombia since 1500. Ann Assoc Am Geogr, 98, 1–27.
Emerson, J.K. & Roark, A.M. (2007) Composition of guano produced by frugivorous, sanguivorous and insectivorous bats. Acta Chiropt, 9, 261–267.
Fleming, T.H., Geiselman, C. & Kress, W.J. (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot, 104, 1017–1043.
Ferreira, R.L. & Martins, R.P. (1999) Trophic structure and natural history of bat guano invertebrate communities with special reference to Brazilian caves. Trop Zool, 12(2), 231–259.
Ferreira, R.L., Prous, X. & Martins, R.P. (2007) Structure of bat guano communities in a dry Brazilian cave. Trop Zool, 20(1), 55–74.
Frick, W., Kingston, T. & Flanders, J. (2019) A review of the major threats and challenges to global bat conservation. Ann N Y Acad Sci, DOI:10.1111/nyas.14045.
Frick, W.F., Price, R.D., Heady, P.A. & Kay, K.M. (2013) Insectivorous bat pollinates columnar cactus more effectively per visit than specialized nectar bat. Am Nat, 181, 137–144.
Garbino, G.S., Tavares, V.D.C. (2018) Roosting ecology of Stenodermatinae bats (Phyllostomidae): Evolution of foliage roosting and correlated phenotypes. Mammal Rev, 48, 75–89.
Galindo-González, J., Guevara, S. & Sosa, V.J. (2000) Bat and bird-generated seed rains at isolated trees in pastures in a tropical rainforest. Conserv Biol, 14, 1693–1703.
Geiselman, C.K., Defex, T., Brown, T. & Younger, S. (2015) Database bat Eco – interactions. Retrieved from http://www.batplant.org/search, Accessed 15 Dec 2019.
Gnaspini, P. & Trajano, E. (2000) Guano communities in tropical caves. In: H. Wilkens, D.C. Culver & W.F. Humphreys (Eds.), Ecosystems of the World 30: Subterranean Ecosystems (251–268). Amsterdam: Elsevier.
Godínez-Alvarez, H., Valiente-Banuet, A. & Rojas-Martínez, A. (2002) The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology, 83(9), 2617–2629.
González-Maya, J.F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. (2017) Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk. PLoS ONE, DOI:10.1371/journal.pone.0175931.
Grafe, U.T., Schöner, C.R., Kerth, G., Junaidi, A. & Schöner, M.G. (2011) A novel resource–service mutualism between bats and pitcher plants. Biol Lett, 7, 436–439.
Guariguata, M. & Kattan, G.H. (eds) (2002). Ecología y conservación de bosques neotropicales. San José: Editorial Tecnológica.
Guisande C, Heine J, González-DaCosta J, García-Roselló E (2014) RWizard Software. http://www. 409 ipez.es/rwizard. Accessed 23 Mar 2020.
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., et al. (2013) High-resolution global maps of 21rst-century forest cover change. Science, 342, 850–853.
Henry, M. & Joudard, S. (2007) Effect of bat exclusion on patterns of seed rain in tropical rain forest in French Guiana. Biotropica, 39, 510–518.
Ibarra-Cerdeña, C.N., Iñiguez-Dávalos, L.I. & Sánchez-Córdero, V. (2005) Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. Am J Bot, 92(3), 503–509.
Johnson, C.N., Balmford, A., Brook, B.W., Buettel, J.C., Galetti, M., Guangchun, L., et al. (2017) Biodiversity losses and conservation responses in the Anthropocene. Science, 356, 270–275.
Karp, D.S. & Daily, G.C. (2014) Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology, 95, 1065–1074.
Kalka, M.B., Smith, A.R. & Kalko, E.K.V. (2008) Bats limit arthropods and herbivory in a tropical forest. Science, 320, 71.
Kalko, E.K.V., Friemel, D., Handley, Jr. C.O. & Schnitzler, H.-U. (1999) Roosting andforaging of two neotropical bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae). Biotropica, 31, 344–353.
Kalka, M. & Kalko, E.K.V. (2006) Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama. J Trop Ecol, 22, 1–10.
Kasso, M. & Balakrishnan, M. (2013) Ecological and Economic Importance of Bats (Order Chiroptera). Hindawi Publishing Corporation, DOI:10.1155/2013/187415.
Kunz, T.H., Braun de Torrez, E., Bauer, D., Lobova, T. & Fleming, T.H. (2011) Ecosystem services provided by bats. Ann NY Acad Sci, DOI:10.1111/j.1749-6632.2011.06004.x.
Kunz, T.H., Whitaker, J.O. & Wadanoli, M.D. (1995) Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia, 101, 407–415.
Lacher, T.E., Davidson, A.D., Fleming, T.H., Gómez-Ruiz, E.P., McCracken, G.F., Owen-Smith, N., et al. (2019) The functional roles of mammals in ecosystems. J Mammal, 100(3), 942–964.
Librán-Embid, F., De Coster, G. & Metzger, J.P. (2017) Effects of bird and bat exclusion on coffee pest control at multiple spatial scales. Landsc Ecol, 32(9), 1907–1920.
Lobova, T.A & Mori, S.A. (2004) Epizoochorous dispersal by bats in French Guiana. J Trop Ecol, 20, 581–582.
Luck, G., Harrington, R., Harrison, P.A., Kremen, C., Berry, P.M., Bugter, R., et al. (2009) Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience 59(3):223–235.
Luck, G., Lavorel, S., McIntyre, S. & Lumb, K. (2012) Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J Anim Ecol, 81(5), 1065–1076.
Lundberg, J. & Moberg, F. (2003) Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems, 6, 87–98.
Maas, B., Karp, D.S., Bumrungsri, S., Kevin Darras, D.G., Huang, J.C.C., Lindell, C.A., et al. (2016) Bird and bat predation services in tropical forests and agroforestry landscapes. Biol Rev, 91, 1081–1101.
Maas, B., Heath, S., Grass, I., Cassano, C., Classen, A., Faria, D., et al. (2019) Experimental field exclosure of birds and bats in agricultural systems —Methodological insights, potential improvements, and cost-benefit trade-offs. Basic Appl Ecol, 35, 1–12.
Mammal Diversity Database (2020) American Society of Mammalogists. Retrieved from www.mammaldiversity.org, Accessed 6 March 2020.
Melo, F., Rodriguez-Herrera, B., Chazdon, R.L., Medellin, R.A. & Ceballos, G.G. (2009) Small tent-roosting bats promote dispersal of large-seeded plants in a Neotropical forest. Biotropica, 41, 737– 743.
Mello, M.A.R., Kalko, E.K.V., Silva, W.R. (2008) Movements of the bat Sturnira lilium and its role as a seed disperser of Solanaceae in the Brazilian Atlantic forest. J Trop Ecol, 24, 225–228.
Morrison, E.B. & Lindell, C.A. (2012) Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol Appl, 22, 1526–1534.
Muchhala, N. & Thomson, J.D. (2010) Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production. Am Nat, 175, 717–726.
Muscarella, R., & Fleming, T.H. (2007) The role of frugivorous bats in tropical forest succession. Biol Rev, 82, 573–590.
Nassar, J.M., Ramírez, M.N. & Linares, O. (1997) Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Am J Bot, 84, 918–927.
Novaes, R., Souza, R., Ribeiro, E., Siqueira, A., Greco, A. & Moratelli, R. (2015) First evidence of frugivory in Myotis (Chiroptera, Vespertilionidae, Myotinae). Biodiversity Data Journal, DOI:10.3897/BDJ.3.e6841.
Núñez, S.F., López-Baucells, A., Rocha, R., Farneda, F.Z., Bobrowiec, P.E.D., Palmeirim, J.M., et al. (2019) Echolocation and Stratum Preference: Key Trait Correlates of Vulnerability of Insectivorous Bats to Tropical Forest Fragmentation. Front Ecol Evol, DOI: 10.3389/fevo.2019.00373.
Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., et al. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019.
Oliveira, A.K.M. & Lemes, F.T.F. (2010) Artibeus planirostris como dispersor e indutor de germinação em uma área do Pantanal do Negro, Mato Grosso do Sul, Brasil. Rev Bras Biocienc, 8(1),49–52.
Oliveira, A.K.M., Lemes, F.T.F. & Pulchério-Leite, A. (2013) Consumo de frutos de Cecropia pachystachya Trécul e Ficus gomelleira Kunt & C.D. Bouché por Platyrrhinus lineatus (E. Geoffroy, 1810) e seu efeito sobre a germinação de sementes. Rev Biol Neotrop ,10(2), 1–8.
Olson, D.M. & Dinerstein, E. (2002) The Global 200: Priority ecoregions for global conservation. Ann Missouri Bot Gard, 89(2), 199–224.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., et al. (2001) Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933–938.
Pierson, E.D. (1998) Tall trees, deep holes, and scarred landscapes: conservation biology of North American bats. In: T.H. Kunz, P.A. Racey (Eds.), Bat biology and conservation (309–324). Washington: Smithsonian Institution Press.
Rex, K., Michene, R., Kunz, T.H. & Voigt, C. (2011) Vertical stratification of Neotropical leaf-nosed bats (Chiroptera: Phyllostomidae) revealed by stable isotopes. J Trop Ecol, 27, 211–222.
Renner, S.S. & Ricklefs, R.E. (1995) Dioecy and its correlates in the flowering plants. Am J Bot, 82, 596–606.
Rojas-Martínez, A.E., Pavón, N.P. & Castillo, J.P. (2015) Effects of seed ingestion by the lesser long-nosed bat Leptonycteris yerbabuenae on the germination of the giant cactus Isolatocereus dumortieri. Southwest Nat, 60(1), 85–89.
Rull, V. & Carnavli, A.C. (2020) Neotropical diversification: Patterns and Processes. Cham: Springer.
Saldaña-Vázquez, R.A., Castaño, J.H., Baldwin, J. & Pérez-Torres, J. (2019) Does seed ingestion by bats increase germination?: a new meta-analysis 15 years later. Mammal Rev, 49, 201–209.
Salgado, S.S., Motta, P.C., De Souza Aguiar, L.M. & Nardoto, G.B. (2014) Tracking dietary habits of cave arthropods associated with deposits of hematophagous bat guano: A study from a neotropical savanna. Austral Ecol, 39, 560–566.
Sampedro, A.C., Martínez, C.M., Mercado, A.M., Osorio, S.C., Oteroy, Y.L. & Santos, L.M. (2008) Refugios, período reproductivo y composición social de las poblaciones de Desmodus rotundus (Geoffroy, 1810) (Chiroptera: Phyllostomidae), en Zonas Rurales del Departamento de Sucre, Colombia. Caldasia, 30, 127–134.
Santiago-Hernández, M.H., Martén-Rodríguez, S., Lopezaraiza-Mikel, M., Oyama, K., González-Rodríguez, A. & Quesada, M. (2019) The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology. DOI:10.1002/ecy.2803.
Soriano, P. (2000) Functional structure of bat communities in tropical rainforests and Andean cloud forests. Ecotropicos, 13, 1–20.
Soriano, P.J. & Ruiz, A. (2002) The Role of Bats in Reproduction of Columnar Cacti in the Northern Andes. In: T.H. Fleming A. & Valiente-Banuet (Eds.), Ecology, Evolution and Conservation of columnar cacti and their mutualists (241–263). Tucson: Arizona University Press.
Tremlett, C.J., Moore, M., Chapman, M.A., Zamora-Gutierrez, V. & Peh, K.S.H. (2019) Pollination by bats enhances both quality and yield of a major cash crop in Mexico. J Appl Ecol, 57(3), 450–459.
Tschapka, M. (2003) Pollination of the understorey palm Calyptrogyne ghiesbreghtiana by hovering and perching bats. Biol J Linn Soc, 80, 281–288.
Valiente-Banuet, A., Molina-Freaner, F., Torres, A., Arizmendi, M.C. & Casas, A. (2004) Geographic differentiation in the pollination system of the columnar cactus Pachycereus pecten-aboriginum. Am J Bot, 91, 850–855.
Valiente-Banuet, A., Arizmendi, A.M., Rojas-Martínez, A. & Domínguez-Canseco, I. (1996) Ecological relationships between columnar cacti and nectar feeding bats in Mexico. J Trop Ecol, 12, 103–119.
Villalobos-Chaves, D., Melo, F.P.L. & Rodríguez-Herrera, B. (2020) Dispersal patterns of large-seeded plants and the foraging behavior of a frugivorous bat. J Trop Ecol, DOI: 10.1017/S0266467420000036.
Vitousek, P.M. & Howarth, R.W. (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13, 87–115.
Vleut, I., Levy-Tacher, S.I., Galindo-González, J. & de Boer, W.F. (2015). Positive effect of surrounding rainforest on composition, diversity and late-successional seed dispersal by bats. Basic Appl Ecol, 16, 308–315.
Voigt, C., Borissov, I. & Kelm, D.H. (2015). Bats Fertilize Roost Trees. Biotropica, 47(4), 403-406.
Williams-Guillén, K., Perfecto, I. & Vandermeer, J. (2008) Bats limit insects in a neotropical agroforestry system. Science, 320, 70.

Downloads

Published

2020-08-19

Issue

Section

Articles

How to Cite

Castillo-Figueroa, D. (2020). Why bats matters: A critical assessment of bat-mediated ecological processes in the Neotropics. European Journal of Ecology, 6(1), 77-101. https://doi.org/10.17161/eurojecol.v6i1.13824