Unmeasured side effects of mosquito control on biodiversity
DOI:
https://doi.org/10.17161/eurojecol.v6i1.13855Keywords:
diversity loss, non-target animals, conservation, Culicidae, extensive mosquito control, research gapAbstract
Intensive mosquito control programs are likely to contribute to insect diversity loss, but these effects are both underestimated and understudied. We recommend to conduct direct biodiversity monitoring programs to understand the effects of both chemical and biological control.References
Abeyasuriya, K. G. T. N. et al. (2017) Effect of dengue mosquito control insecticide thermal fogging on non-target insects. Int. J. Trop. Insect Sci. 37, 11–18. https://doi.org/10.1017/S1742758416000254
Addicott, J. F. (1974) Predation and prey community structure: an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants. Ecology, 55(3), 475-492. https://doi.org/10.2307/1935141
Allgeier S., Kästel A. & Brühl C. A. (2019) Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies. Ecotoxicol. Environ. Saf. 169, 786–796. https://doi.org/10.1016/j.ecoenv.2018.11.050
Becker, N., et al. (2010) Mosquitoes and their control. Part I Medical importance of mosquitoes. 2nd edition. Springer, Berlin.
Bolzonella, C., Lucchetta, M., Teo, G., Boatto, V. and Zanella, A. (2019) Is there a way to rate insecticides that is less detrimental to human and environmental health?. Glob. Ecol. Conserv. 20, p.e00699. https://doi.org/10.1016/j.gecco.2019.e00699
Corcellas, C. et al. (2017) Pyrethroid insecticides in wild bird eggs from a world heritage listed park: A case study in Doñana National Park (Spain). Environ. Pollut. 228, 321–330. http://dx.doi.org/10.1016/j.envpol.2017.05.035
Costa, E. et al. (2014) Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie. 45(1), 34–44. https://doi.org/10.1007/s13592-013-0226-5
Csillik, B. et al. (2000) Effect of the pesticide Deltamethrin on the Mauthner cells of Lake Balaton fish. Neurotoxicology. 21(3), 343–52.
Daugherty, M. P., Alto, B. W., & Juliano, S. A. (2000) Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of medical entomology, 37(3), 364-372. https://doi.org/10.1093/jmedent/37.3.364.
Dieme, C., Bechah, Y., Socolovschi, C., Audoly, G., Berenger, J.M., Faye, O., Raoult, D. and Parola, P. (2015) Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 112(26), 8088-8093. https://doi.org/10.1073/pnas.1413835112
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., & Collen, B. (2014) Defaunation in the Anthropocene. science, 345(6195), 401–406. https://doi.org/10.1126/science.1251817
Dunn, R. R. (2010) Global mapping of ecosystem disservices: The unspoken reality that nature sometimes kills us. Biotropica. 42(5), 555–557. https://doi.org/10.1111/j.1744-7429.2010.00698.x
Evans, B.R., Kotsakiozi, P., Costa-da-Silva, A.L., Ioshino, R.S., Garziera, L., Pedrosa, M.C., Malavasi, A., Virginio, J.F., Capurro, M.L. and Powell, J.R. (2019) Transgenic Aedes aegypti mosquitoes transfer genes into a natural population. Sci. Rep. 9(1), 1-6. https://doi.org/10.1038/s41598-020-62398-w
Hallmann, C. A. et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE. 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809
Heard, S. B. (1994) Pitcher‐plant midges and mosquitoes: a processing chain commensalism. Ecology, 75(6), 1647-1660. https://doi.org/10.2307/1939625
Hochkirch, A. (2016) The insect crisis we can‘t ignore. Nature. 539, 141.
Hochkirch, A. et al. (2016) European red list of grasshoppers, crickets and bush-crickets. European Union.
Hochkirch, A. et al. (2018) License to kill ?— Disease eradication programs may not be in line with the convention on biological diversity. Conserv. Lett. 11, 1–6 . https://doi.org/10.1111/conl.12370
Huang Y. S., Higgs S. & Vanlandingham D. L. (2017) Biological control strategies for mosquito vectors of arboviruses. Insects. 8(21), 1–25. https://doi.org/10.3390/insects8010021
Hubálek, Z. (2008) Mosquito-borne viruses in Europe. Parasitol. Res. 103(1), 29–43. https://doi.org/10.1007/s00436-008-1064-7
Kästel A., Allgeier S. & Brühl C. A. (2017) Decreasing Bacillus thuringiensis israelensis sensitivity of Chironomus riparius larvae with age indicates potential environmental risk for mosquito control. Sci. Rep. 7(1), 1–7. https://doi.org/10.1038/s41598-017-14019-2
Leather, S. R. (2017) “Ecological Armageddon”-more evidence for the drastic decline in insect numbers. Annals of Applied Biology, 172(1), 1–3. https://doi.org/10.1111/aab.12410
Manguin, S. & Boëte, C. 2011. “Global Impact of Mosquito Biodiversity, Human Vector-Borne Diseases and Environmental Change.” In The Importance of Biological Interactions in the Study of Biodiversity, edited by Jordi López-Pujol, 27–50. BoD – Books on Demand.
Mckenney B. A. & Kiesecker J. M. (2010) Policy development for biodiversity offsets : A review of offset frameworks. Environ. Manage. 45, 165–176. https://doi.org/10.1007/s00267-009-9396-3
Oliveira, J. M. et al. (2018) Exposure to deltamethrin induces oxidative stress and decreases of energy reserve in tissues of the Neotropical fruit-eating bat Artibeus lituratus. Ecotoxicol. Environ. Saf. 148, 684–692. https://doi.org/10.1016/j.ecoenv.2017.11.024
Piperaki E. T. & Daikos G. L. (2016) Malaria in Europe: emerging threat or minor nuisance? Clin. Microbiol. Infect. 22, 487–493. https://doi.org/10.1016/j.cmi.2016.04.023
Poulin, B., Lefebvre, G. and Paz, L., (2010) Red flag for green spray: adverse trophic effects of Bti on breeding birds J. Appl. Ecol. 47(4), 884–889. https://doi.org/10.1111/j.1365-2664.2010.01821.x
Sánchez-Bayo F. & Wyckhuys K. A. G. (2019) Worldwide decline of the entomofauna : A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Scott-dupree A. C. D. et al. (2009) Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens ( Hymenoptera: Apidae ), Megachile rotundata ( Hymentoptera : Megachilidae ), and Osmia lignaria ( Hymenoptera : Megachilidae). J. Econ. Entomol. 102, 177–182. https://doi.org/10.1603/029.102.0125
Timmermann U. & Becker N. (2017) Impact of routine Bacillus thuringiensis israelensis (Bti) treatment on the availability of flying insects as prey for aerial feeding predators. Bull. Entomol. Res. 107(6), 705–714. https://doi.org/10.1017/S0007485317000141
Tomé, H.V. et al. (2017) Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. R. Soc. Open Sci. 4(1), 160866. https://doi.org/10.1098/rsos.160866
Tschoeke, et al. (2019) Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environ. Pollut. 251, 591–599. https://doi.org/10.1016/j.envpol.2019.04.133
Urbina, M. A. et al. (2019) Effects of pharmaceuticals used to treat salmon lice on non-target species: Evidence from a systematic review. Sci. Total Environ. 649, 1124–1136. https://doi.org/10.1016/j.scitotenv.2018.08.334
van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., & Chase, J. M. (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368(6489), 417–420. https://doi.org/10.1126/science.aax9931
van Strien, A. J., van Swaay, C. A., van Strien-van Liempt, W. T., Poot, M. J., & WallisDeVries, M. F. (2019) Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biological Conservation, 234, 116–122. https://doi.org/10.1016/j.biocon.2019.03.023
van Swaay, C.A.M. et al. (2015) The European butterfly indicator for grassland species 1990–2013. Report VS2015.009. Vlinderstichting, Wageningen.
Vanzetto, G. V. et al. (2019) Toxic effects of pyrethroids in tadpoles of Physalaemus gracilis (Anura: Leptodactylidae). Ecotoxicology. 28, 1105–1114. https://doi.org/10.1007/s10646-019-02115-0
Zheng, X. et al. (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 572(7767), 56–61. https://doi.org/10.1038/s41586-019-1407-9
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Edina Török, Axel Hochkirch, Zoltán Soltész, Teja Tscharntke, Péter Batáry
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.