INVESTIGATING CROSS CONGRUENCE BETWEEN BUTTERFLY TAXA AND ECOLOGICAL COMMUNITY WITHIN THE FRAMEWORK OF SYSTEMATIC CONSERVATION PLANNING: A CASE STUDY FROM LESSER CAUCASUS ECOREGION OF TURKEY
Cross-Taxa Congruence
DOI:
https://doi.org/10.17161/eurojecol.v7i2.15042Keywords:
cross-taxa congruence, ecologic complementarity, , Marxan, species richness, surrogatesAbstract
Cross taxa congruence was investigated between butterfly taxa and ecological community for fine spatial scale (10 × 10 km² UTM grids) in north-eastern part of Turkey. The study area was evaluated within the scope of systematic conservation planning, and analyses were performed for sets of priority protected areas composed using complementarity-based site selection software Marxan. Cross taxa congruence was subsequently examined both in species richness and ecologic complementarity. Accordingly, it has been observed that the cross-taxon congruence between butterfly taxa and ecological community was relatively better than the results of previous studies. Another remarkable finding is that ecological community was a more robust surrogate than butterfly taxa. Although the results are valuable for conservation studies, they highlight the fact that a simple surrogate-based site selection would be inadequate to represent overall biodiversity. The weakness of congruence patterns among surrogates would also lead to gaps in biodiversity conservation. These findings therefore draw attention to the necessities of incorporating surrogates of distinct ecology or some other surrogates like environmental parameters into conservation planning. Otherwise, there may be mistakes regarding species representation and the vast majority of species may be misrepresented in protected areas and protected area plans. At this point, it should be emphasized that understating cross taxa congruence and/or relationships is a key component for efficient biodiversity conservation.
References
Axmacher, J. C., Brehm, G., Hemp, A., Tünte, H., Lyaruu, H. V. M., Müller-Hohenstein, K. Fiedle,r K. (2009) Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors? Journal of Biogeography, 36, 337–349, doi:10.1111/j.1365-2699.2008. 01997.x.
Axmacher, J. C., Liu, Y., Wang, C., Li, L., Yu, Z. (2011) Spatial α-diversity patterns of diverse insect taxa in Northern China: Lessons for biodiversity conservation. Biological Conservation, 144, 2362–2368, doi: 10.1016/j.biocon.2011.06.016.
Balmford, A., Long, A. (1995) Across-country analyses of biodiversity congruence and current conservation effort in the tropics. Conservation Biology, 9, 1539–1547, doi: 10.1046/j.1523-1739.1995. 09061539.x.
Carwardine, J., Rochester, W. A., Richardson, K. S., Williams, K. J., Pressey, R. L., Possingham, H. P. (2007) Conservation planning with irreplaceability: does the method matter? Biodiversity and Conservation, 16, 245–258, doi: 10.1007/s10531-006-9055-4.
Ciplak, B. (2008) The analogy between interglacial and global warming for the glacial relicts in a refugium: a biogeographic perspective for conservation of Anatolian Orthoptera. In: Fattorini, S. (Ed.), Insect Ecology and Conservation, Research Signpost, Kerala, pp. 135–163.
Cook, R. R., Auster, P. J. (2005) Use of simulated annealing for identifying essential fish habitat in a multispecies context. Conservation Biology, 19, 876–886, doi: 10.1111/j.1523-1739.2005. 00613.x.
Fattorini, S., Dennis, R. L. H., Cook, L. M. (2011) Conserving organisms over large regions require multi-taxa indicators: One taxon’s diversity-vacant area is another taxon’s diversity zone. Biological Conservation, 144, 1690–1701, doi: 10.1016/j.biocon.2011.03.002.
Fattorini, S., Dennis, R. L. H., Cook, L. M. (2012) Use of Cross-Taxon Congruence for Hotspot Identification at a Regional Scale. PLoS ONE, 7(6), e40018, doi: 10.1371/journal.pone.0040018.
Ferrier, S., Pressey, R. L., Barret, T. W. (2000) A new predictor of the irreplaceability of areas for achieving conservation goals, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 93, 303–325, doi: 10.1016/S0006-3207(99)00149-4.
Gaston, K. J. (2000) Global patterns in biodiversity. Nature, 405, 220–227, doi: 10.1038/35012228.
Hassal, C., Hollinshead, J., Hull, A. (2011) Environmental correlates of plant and invertebrate species richness in ponds. Biodiversity and Conservation, 20, 3189–3222, doi: 10.1007/s10531-011-0142-9.
Heino, J., Tolonen, K. T., Kotonen, J., Paasivirta, L. (2009) Indicator groups and congruence of assemblage similarity, species richness and environmental relationship in littoral macroinvertebrates. Biodiversity and Conservation, 18, 3085–3098, doi: 10. 1007/s10531-009-9626-2.
Hesselbart, G., Van Oorschot, H., Wagener, S. (1995) Die Tagfalter der Türkei, under Berücksichtigung der angrenzenden Länder, Dem Volk der Türkei.
Juutinen, A., Monkkonen, M. (2004) Testing alternative indicators for biodiversity conservation in old-growth boreal forest: ecology and economics. Ecological Economics, 50, 35–48, doi: 10.1016/j.ecolecon.2004.02.006.
Lund, M. P., Rahbek, C. (2002) Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Animal Conservation, 5, 163–171, doi: 10.1017/S1367943002002226.
Margules, C. R., Pressey, R. L. (2000) Systematic conservation planning. Nature, 405, 243–253, doi: 10.1038/35012251.
McDonnell, M. D., Possingham, H. P., Ball, I.R., Cousins, E. A. (2002) Mathematical Methods for Spatially Cohesive Reserve Design. Environmental Modelling and Assessment, 7, 107–114, doi: 10.1023/A:1015649716111.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858, doi: 10.1038/35002501.
Negi, H. R., Gadgil, M. (2002) Cross-taxon surrogacy of biodiversity in the Indian Garhwal Himalaya. Biological Conservation, 105, 143–155, doi: 10.1016/S0006-3207(01)00158-6.
Nöske, N. M., Hilt, N., Werner, F. A., Brehm, G., Fiedler, K., Sipman, H. J. M., Gradstein, S. R. (2008) Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology, 9, 4–12, doi: 10.1016/j.baae.2007.06.014.
Oertli, S., Müller, A., Steiner, D., Breitenstein, A., Dorn, S. (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biological Conservation, 126, 195–205, doi:
Pearson, D. L., Carroll, S. S. (1999) The influence of spatial scale on cross‐taxon congruence patterns and prediction accuracy of species richness. Journal of Biogeography, 26(5), 1079–1090, doi: 10.1046/j.1365-2699.1999. 00337.x.
Posa, M. R. C., Sodhi, N. S. (2006) Effects of anthropogenic land use on forest birds and butterflies in Subic Bay, Philippines. Biological Conservation, 129, 256–270, doi: 10.1016/j.biocon.2005.10.041.
Pressey, R. L., Humphries, C. J., Margules, C. R., Vane-Wright, R. I., Williams, P. H. (1993) Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology & Evolution, 8, 124-128, doi: 10.1016/0169-5347(93)90023-I.
Schouten, M. A., Barendregt, A., Verweij, P. A., Kalkman, V. J., Kleukers, R. M. J. C., Lenders, H. J. R., Siebel, H. N. (2010) Defining hotspots of characteristic species for multiple taxonomic groups in the Netherlands. Biodiversity and Conservation, 19, 2517–2536, doi: 10.1007/s10531-010-9857-2.
Sue, J. C., Debinski, D. M., Jakubauskas, M. E., Kindscher, K. (2004) Beyond species richness: Community similarity as measure of cross-taxon congruence for coarse-filter conservation. Conservation Biology, 18, 167–173, doi: 10.1111/j.1523-1739.2004. 00337.x.
Ricketts, T. H., Daily, G. C., Ehrlich, P. R. (2002) Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biological Conservation, 103, 361–370, doi: 10.1016/S0006-3207(01)00147-1.
Van Jaarsveld, A. S., Freitag, S., Chown, S. L., Muller, C., Koch, S., Hull, H., Bellamy, C., Krüger, M., Endrödy-Younga, S., Mansell, M. W., Scholtz, C. H. (1998) Biodiversity Assessment and Conservation Strategies. Science, 279, 2106–2108, doi: 10.1126/science.279.5359.2106.
Van Weerd, M., Udo de Haes, H. A. (2010) Cross-taxon congruence in tree, bird and bat species distributions at a moderate spatial scale across four tropical forest types in the Philippines. Biodiversity and Conservation, 19, 3393–3411, doi: 10.1007/s10531-010-9902-1.
Vane-Wright, R. I., Humphries, C. J., Williams, P. H. (1991) What to protect- systematic and the agony of choice. Biological Conservation, 55, 235–254, doi: 10.1016/0006-3207(91)90030-D.
Vera, P., Sasa, M., Encobo, S. I., Barba, E., Belda, E. J., Monro’s, J. S. (2011) Land use and biodiversity congruences at local scale: applications to conservation strategies. Biodiversity and Conservation, 20, 1287–1317, doi: 10.1007/s10531-011-0028-x.
Warman, L. D., Forsyth, D. M., Sinclair, A. R. E., Freemark, K., Moore, H. D., Barrett, T. W., Pressey, R. L., White, D. (2004) Species distributions, surrogacy, and important conservation regions in Canada. Ecology Letters, 7, 374–379, doi: 10.1111/j.1461-0248.2004. 00590.x.
Wilson, A., McBride, M., Bode, M., Possingham, H. P. (2006) Prioritising Global Conservation Efforts. Nature, 40, 337–340.
Williams, P. H., Burgess, N. D., Rahbek, C. (2000) Flagship species ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Animal Conservation, 3, 249–260, doi: 10.1111/j.1469-1795. 2000.tb00110. x.
Williams, P., Faith, D., Manne, L., Sechrest, W., Preston, C. (2006) Complementarity analysis: mapping the performance of surrogates for biodiversity. Biological Conservation, 128, 253–264, doi: 10.1016/j.biocon.2005.09.047.
Zielinski, W.J., Carroll, C., Dunk, J. R. (2006) Using landscape suitability models to reconcile conservation planning for two key forest predators. Biological Conservation, 133, 409–430, doi: 10.1016/j.biocon.2006.07.003.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 banu kaya özdemirel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.