Current and future predicting habitat suitability map of Cunninghamia konishii Hayata using MaxEnt model under climate change in Northern Vietnam

Main Article Content

Thanh Tuan Nguyen
Ilaria Gliottone
Mai Phuong Pham

Abstract

Cunninghamia konishii Hayata is a rare and endangered plant species that plays a relevant role in ecological and
commercial systems of natural forests in Vietnam. In this research, we evaluated the potential geographic distribution of
C. konishii under current and future climatic conditions in Northern Vietnam using the ecological niche modelling approach
based on the largest available database of occurrence records for this species. C. konishii is mainly distributed in
the northern part of Vietnam at altitudes above 1000 m where the slopes range between 12 and 25 degrees, particularly
in special-use and protected forest. The optimal distribution area of C. konishii requires specific climatic conditions: an
annual precipitation around 1200 mm, precipitation of the warmest quarter ranging from 600 to 800 mm, a precipitation
seasonality of 90 to100 mm, an annual mean temperature ranging from 12°C to 19°C, and a temperature seasonality
ranging from 300 to 350. Additionally, the species requires specific soil groups: humic acrisols, ferralic acrisols, and
yellow-red humic soils. Considering these requirements, the results of our research show that the suitable regions for the
growth of C. konishii are found in the provinces of Ha Giang, Son La, Thanh Hoa and Nghe An, covering a total area of
1509.56 km2. However, analyzing the results under the Community Climate System Model version 4 (CCSM4) model, it
is possible to observe that the area will decline to 504.39 km2 by 2090 according to RCP 2.6 scenario, to 406.25 km2 in
the RCP 4.5 scenario, and to 47.62 km2 in the RCP 8.5 scenario. The findings of this present research may be applied to
several additional studies such as identifying current and future locations to establish conservation areas for C. konishii.

Article Details

How to Cite
Nguyen, T. T., Gliottone, I. ., & Pham, M. P. (2021). Current and future predicting habitat suitability map of Cunninghamia konishii Hayata using MaxEnt model under climate change in Northern Vietnam. European Journal of Ecology, 7(2). https://doi.org/10.17161/eurojecol.v7i2.15079
Section
Articles

References

Asanok, L., Kamyo, T., and Marod, D. 2020. Maximum entropy modeling for the conservation of hopea odorata in Riparian Forests, Central Thailand. Biodiversitas 21(10): 4663–4670. doi:10.13057/biodiv/d211047.

Badía, D., Ruiz, A., Girona, A., Martí, C., Casanova, J., Ibarra, P., and Zufiaurre, R. 2016. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 13(12): 2155–2169. doi:10.1007/s11629-015-3773-6.

Brown, J.L. 2014. SDMtoolbox 2.0 User Guide By. J.L.

Chung, J. Der, Chien, C. Te, Nigh, G., and Ying, C.C. 2009. Genetic variation in growth curve parameters of konishii fir (cunninghamia lanceolata (lamb.) hook. var. konishii). Silvae Genet. 58(1–2): 1–10. doi:10.1515/sg-2009-0001.

Chung, J.D., Lin, T.P., Tan, Y.C., Lin, M.Y., and Hwang, S.Y. 2004. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: A comparison with Cunninghamia lanceolata, a mainland species in China. Mol. Phylogenet. Evol. 33(3): 791–801. doi:10.1016/j.ympev.2004.08.011.

Dunckel, K., Weiskittel, A., Fiske, G., Sader, S.A., Latty, E., and Arnett, A. 2015. Linking remote sensing and various site factors for predicting the spatial distribution of eastern hemlock occurrence and relative basal area in Maine, USA. For. Ecol. Manage. 358: 180–191. Elsevier B.V. doi:10.1016/j.foreco.2015.09.012.

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R., Soberón, J., Williams, S., S. Wisz, M., and E. Zimmermann, N. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). 29(2): 129–151. doi:10.1111/j.2006.0906-7590.04596.x.

Environment, M. of N. resources and. 2016. Climate change, sea level rise scenarios for Vietnam. Vietnam publishing house of natural resources, environment and cartography.

Evcin, O., Kucuk, O., and Akturk, E. 2019. Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environ. Monit. Assess. 191(11). Environmental Monitoring and Assessment. doi:10.1007/s10661-019-7853-x.

Guo, Y., Li, X., Zhao, Z., and Wei, H. 2018. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China. Sci. China Earth Sci. 61(11): 1669–1684. doi:10.1007/s11430-017-9241-2.

IUCN. 2020. The IUCN Red List of Threatened Species. Available from https://www.iucnredlist.org [accessed 9 July 2020].

Kamyo, T., and Asanok, L. 2020. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Sci. Technol. 16(1): 1–7. Taylor & Francis. doi:10.1080/21580103.2019.1687108.

Kodrul, T., Gordenko, N., Sokolova, A., Maslova, N., Wu, X., and Jin, J. 2018. A new Oligocene species of Cunninghamia R. Brown ex Richard et A. Richard (Cupressaceae) from the Maoming Basin, South China. Rev. Palaeobot. Palynol. 258: 234–247. Elsevier B.V. doi:10.1016/j.revpalbo.2018.09.003.

Li, Y., Li, M., Li, C., and Liu, Z. 2020. Optimized maxent model predictions of climate change impacts on the suitable distribution of cunninghamia lanceolata in China. Forests 11(3). doi:10.3390/f11030302.

Lima-Ribeiro, M.S. 2015. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Informatics 10(November): 0–21. doi:10.17161/bi.v10i0.4955.

Loc, P.K., van The, P., Long, P.K., Regalado, J., Averyanov, L. V., and Maslin, B. 2017. Native conifers of Vietnam - a review. Pakistan J. Bot. 49(5): 2037–2068.

MOST, V. 2007. Vietnam red data book, part II. plants. Pub Sci Tech.

Ngoc Dai, D., and Quang Hung, N. 2012. Chemical composition of the essential oil from woods of Cunningamia konishii Hayata from Ha Giang. J. Biol. 34: 469–472.

Ngoc Son, H., and Thi Thu Hoan, N. 2018. Study on the efects of sowing time to growth of Cunninghamia konishii Hayata seedlings in Hagiang province. J. Sci. Technol. 177(01): 27–31.

Ngoc Son, H., and Thi Tuyen, N. 2017. Some physical characteristics of Cuninghamia konishii Hayata wood grown in Ha Giang province. J. For. Sci. Technol. 1: 142–148.

Oke, O.A., and Thompson, K.A. 2015. Distribution models for mountain plant species: The value of elevation. Ecol. Modell. 301: 72–77. doi:https://doi.org/10.1016/j.ecolmodel.2015.01.019.

Pham, T. Van, Averyanov, L. V, Petersburg, S., Regalado, J., Nguyen, K.S., and Resources, B. 2010a. New data on the distribution and biology of Cunninghamia lanceolata var . konishii ( Hayata ) Fujita in Vietnam. (March 2017).

Pham, T. Van, Averyanov, L. V, Petersburg, S., Regalado, J., Nguyen, K.S., and Resources, B. 2010b. New data on the distribution and biology of Cunninghamia lanceolata var . konishii ( Hayata ) Fujita in Vietnam. In In 2nd Symposium of the “Flore du Cambodge, du Laos et du Vietnam.”

Pham, T. Van, Nguyen, K.S., Resources, B., Averyanov, L. V, and Petersburg, S. 2009. The diversity of the flora of Vietnam: Continuing contribution to the enumeration of conifer species , their distribution and assessment of their conservation value in Son La province. J. Genet. Appl. (August 2016).

Pham, T. Van, Nguyen, K.S., Resources, B., Averyanov, L. V, Petersburg, S., and Regalado, J. 2007. The diversity of the flora of Vietnam 28. results of the inventory of conifer species and distribution and of the conservation value assessment in Ha Giang provice. J. Genet. Appl. (October).

Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3): 231–259. doi:https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Revadekar, J. V., Hameed, S., Collins, D., Manton, M., Sheikh, M., Borgaonkar, H.P., Kothawale, D.R., Adnan, M., Ahmed, A.U., Ashraf, J., Baidya, S., Islam, N., Jayasinghearachchi, D., Manzoor, N., Premalal, K.H.M.S., and Shreshta, M.L. 2013. Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971-2000. Int. J. Climatol. 33(1): 199–209. doi:10.1002/joc.3418.

Sau, L. 1996. Vietnam Forest Trees. Agricultural publishing house, Ha Noi.

Sharma, S., Arunachalam, K., Bhavsar, D., and Kala, R. 2018. Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. J. Appl. Res. Med. Aromat. Plants 10(March): 99–105. Elsevier. doi:10.1016/j.jarmap.2018.02.003.

Sinai, S. 2001. Evaluation of plant diversity and endemism in Saint Catherine Protectorate, South Sinai, Egypt. Egypt. J. Bot. (April 2015). Available from https://www.researchgate.net/publication/270648533_Evaluation_of_plant_diversity_and_endemism_in_Saint_Catherine_Protectorate_South_Sinai_Egypt.

Smith, C.D. 2008. The Relationship between Monthly Precipitation and Elevation in the Alberta Foothills during the Foothills Orographic Precipitation Experiment BT - Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience: Volume 1: Atmospheric Dyna. Edited by M. Woo. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 167–185. doi:10.1007/978-3-540-73936-4_10.

Thanh, T., Hiếu, V., Sim, M.A., Dũng, A., Thái, H., and Thomas, H.H. 2017. The distribution and some ecological characteristics of fokienia hodginsii (dunn) a. henry et h. h. thomas and cunninghamia konishii hayata in pu huong nature reserve, nghe an province. J. Biol. 39(1): 122–128.

Thi, N., Nga, T., Dung, N.A., Chung, N.T., Thai, T.H., Hung, N.D., Reserve, H.N., An, N., Resources, B., and Noi, H. 2016. The distribution and some ecological characteristics, and essential oil of Cunninghamia konishii Hayata in Pu Hoat nature reserve, Nghe An province, Vietnam. kku Eng. J. 43: 121–124. doi:10.14456/kkuenj.2016.37.

Thi, N., Nga, T., Dung, N.A., and Thai, T.H. 2015. Composition of the root oil of Cunninghamia konishii Hayata , growing wild in Nghe an province , Vietnam. seventh Natl. Conf. Ecol. Biol. Resour. (June): 1340–1344.

Tran, H.T., Bazzali, O., Hoi, T.M., Minh, D.T., Thi, N., Nga, T., Tomi, F., Casanova, J., and Bighelli, A. 2015. Chemical composition of the essential oil from Cunninghamia konishii Hayata growing wild in. Am. J. Essent. Oils Nat. Prod. 2(3): 1–5.

Tran, V.D., Vu, T.T., Tran, Q.B., Nguyen, T.H., Ta, T.N., Ha, T.M., and Nguyen, H. V. 2018. Predicting suitable distribution for an endemic, rare and threatened species (Grey-shanked douc langur, pygathrix cinerea nadler, 1997) using MaxEnt model. Appl. Ecol. Environ. Res. 16(2): 1275–1291. doi:10.15666/aeer/1602_12751291.

Urbina-Cardona, N., Blair, M.E., Londoño, M.C., Loyola, R., Velásquez-Tibatá, J., and Morales-Devia, H. 2019. Species Distribution Modeling in Latin America: A 25-Year Retrospective Review. Trop. Conserv. Sci. 12(40). doi:10.1177/1940082919854058.

Wang, R., Li, Q., He, S., Liu, Y., Wang, M., and Jiang, G. 2018. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS One 13(2): 1–21. doi:10.1371/journal.pone.0192153.

Woodwand, F.I. 1987. Climate and plant distribution. Cambridge University Press, Cambridge, UK.

Yang, X., Gao, Z., Zhou, T., Zhang, J., Wang, L., Xiao, L., Wu, H., and Li, S. 2020. Mapping the potential distribution of major tick species in China. Int. J. Environ. Res. Public Health 17(14): 1–15. doi:10.3390/ijerph17145145.

Zhang, K., Yao, L., Meng, J., and Tao, J. 2018. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634: 1326–1334. Elsevier B.V. doi:10.1016/j.scitotenv.2018.04.112.