Honey bees metapopulations, parasites, and landscape - search for possible relationships: case study Slovakia

Main Article Content

Jozef Obona
Árvay Július
Bobuľská Lenka
Demková Lenka
Manko Peter
Michalko Miloslav
Kowalski Stanislav
Sabo Rastislav

Abstract

The loss of bees is a relatively well-known worldwide phenomenon. Many papers examine the direct influence of different factors on global bees lost. However, a look at this problem with the intentions of host-parasite-environment interactions is rare. This paper post tries to prove possible connections among bees, their parasites and landscape structure. During the research at 27 suitable sites across Slovakia, Nosema spp. spores were detected in two samples (7.41 % of examined apiaries) and Varroa destructor in a total of 41 % of samples (mean prevalence of 0.57). Significant differences were found in mites infestation in altitudes up to 500 m and over 500 m, and at sites with different ES. Considering the landscape structure, Varroa infestation was significantly positively influenced by the presence of discontinuous urban fabrics.

Article Details

How to Cite
Obona, J., Július, Árvay, Lenka , B., Lenka, . D., Peter , M., Miloslav , M., Stanislav , K., & Rastislav, . S. (2022). Honey bees metapopulations, parasites, and landscape - search for possible relationships: case study Slovakia. European Journal of Ecology, 8(1). https://doi.org/10.17161/eurojecol.v8i1.15428
Section
Articles

References

Brown, M.J. & Paxton, R.J. (2009) The conservation of bees: a global perspective. Apidologie, 40(3), 410-416. https://doi.org/10.1051/apido/2009019

Cely-Santos, M. & Philpott, S.M. (2019) Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. Journal of Insect Conservation, 23(1), 133-146. https://doi.org/10.1007/s10841-018-00122-w

Cely-Santos, M. & Philpott, S.M. (2019) Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. Journal of Insect Conservation, 23, 133-146. https://doi.org/10.1007/s10841-018-00122-w

CLC, (2018) Corine Land Cover 2018 (vector) - version 20, Jun. 2019. online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed 3 March 2021).

Clermont, A., Eickermann, M., Kraus, F., Hoffmann, L. & Beyer. M. (2015) Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Science of the Total Environment, 532: 1-13. https://doi.org/10.1016/j.scitotenv.2015.05.128

Couvillon, M.J.R., Schürch, R. & Ratnieks, F.I.W. (2014) Dancing bees communicate a foraging preference for rural lands in high-level Agri-Environment Schemes. Current Biology, 24, 1212-1215. https://doi.org/10.1016/j.cub.2014.03.072

Danner, N., Härtel, S. & Steffan-Dewenter, I. (2014) Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic and Applied Ecology, 15, 677-684. https://doi.org/10.1016/j.baae.2014.08.010

Decourtye, A., Alaux, C., Le Conte, Y. & Henry. M. (2019) Toward the protection of bees and pollination under global change: present and future perspectives in a challenging applied science. Current opinion in insect science, 35, 123-131. https://doi.org/10.1016/j.cois.2019.07.008

Dolezal, A.G., Carrillo-Tripp, J., Miller, W.A., Bonning, B.C. & Toth, A.L. (2016) Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State. PLoS One, 11(4), e0153531. https://doi:10.1371/journal.pone.0153531

Flynn, D.F., Gogol‐Prokurat, M., Nogeire, T., Molinari, N., Richers, B.T., Lin, B.B. & DeClerck, F. (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecology letters, 12(1), 22-33. https://doi.org/10.1111/j.1461-0248.2008.01255.x

Forfert, N., Natsopoulou, M.E., Frey, E., Rosenkranz, P., Paxton, R.J. & Moritz, R.F.A. (2015) Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission. PLoS One, 10(10), e0140337. https://doi.org/10.1371/journal.pone.0140337

Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Higes, M., McMahon, D.P. Martín-Hernández, R., Natsopoulou, M., Paxton, R.J., Tanner, G., Webster, T.C. & Williams, G. R. (2013) Standard methods for Nosema research. Journal of Apicultural Research, 52(1), 1-28. https://doi.org/10.3896/IBRA.1.52.1.14

Galindo-Cardona, A., Scannapieco, A.C., Russo, R., Escalante, K., Geria, M., Lepori, N., Ayup, M.M., Muntaabski, I., Liendo, M.C., Landi, L., Giray, T. & Monmany-Garzia, A.C. (2020) Varroa destructor parasitism and genetic variability at honey bee (Apis mellifera) drone congregation areas and their associations with environmental variables in Argentina Frontiers in Ecology and Evolution, 8, 590345. https://doi.org/10.3389/fevo.2020.590345

Gallai, N., Salles, J.M., Settele, J. & Vaissiere, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68, 810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014

Goulson, D., Nicholls, E., Botias, C. & Rotheray, E.L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957. https://doi.org/10.1126/science.1255957

Grau, R., Kuemmerle, T. & Macchi. L. (2013) Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Current Opinion in Environmental Sustainability, 5, 477-483. https://doi.org/10.1016/j.cosust.2013.06.001

Green, R.E., Cornell, S.J., Scharlemann, J.P. & Balmford, A. (2005) Farming and the fate of wild nature. Science, 307, 550-555. https://doi.org/10.1126/science.1106049

Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.F., Aupinel, P., Aptel, J., Tchamitchian, S. & Decourtye. A. (2012) A common pesticide decreases foraging success and survival in honey bees. Science, 336, 348-350. https://doi.org/10.1126/science.1215039

Klatt, B.K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E. & Tscharntke, T. (2014) Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B, 281, 24-40. https://doi.org/10.1098/rspb.2013.2440

Kralj, J. & Fuchs. S. (2010) Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie, 41, 21-28. https://doi.org/10.1051/apido/2009046

Kuchling, S., Kopacka, I. & Kalcher-Sommersguter, E. (2018) Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Scientific Reports 8, 12263 (2018). https://doi.org/10.1038/s41598-018-30891-y

Kupková, L. (2001) Data about country, yesterday and now. Geoinfo, 1, 16-19.

Lambin, E.F., Gibbs, H.K., Ferreira, L., Grau, R., Mayaux, P., Meyfroidt, P. & Munger, J. (2013) Estimating the world's potentially available cropland using a bottom-up approach. Global environmental change, 23(5), 892-901. https://doi.org/10.1016/j.gloenvcha.2013.05.005

Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C.F. (2012) Spatial and temporal trends of global pollination benefit. PLoS One, 7, e35954. https://doi.org/10.1371/journal.pone.0035954

Li, Z., Chen, Y., Zhang, S. Chen, S., Li, W., Yan, L., Shi, L., Wu, L., Sohr, A., Su, A. & Dyer, A.G. (2013) Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS One, 8, e77354. https://doi.org/10.1371/journal.pone.0077354

Miklós, L. (1986) Landscape stability in ecological generals of SSR. Environment 20, 87-93.

Mogren, C.L., Rand, T.A., Fausti, S.W. & Lundgren, J.G. (2016) The effects of crop intensification on the diversity of native pollinator. Environmental Entomology, 45, 865-872. https://doi.org/10.1093/ee/nvw066

Muli, E., Patch, H., Frazier, M., Frazier, J., Torto, B. & Baumgarten, T. (2014) Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East Africa. PLoS One, 9(4), e94459. https://doi.org/10.1371/journal.pone.0094459

Papanikolaou, A.D., Kühn, I., Frenzel, M., Kuhlmann, M., Poschlod, P., Potts, S.G. & Schweiger, O. (2017) Wild bee and floral diversity co‐vary in response to the direct and indirect impacts of land use. Ecosphere, 8(11), e02008. https://doi.org/10.1002/ecs2.2008

R Core Team (2016) A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016.

Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A. & Hawthorne, D. (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences USA, 116(5), 1792-1801. https://doi.org/10.1073/pnas.1818371116

Rinderer, T.E., De Guzman, L.I. & Sylvester, H.A. (2004) Reexamination of the accuracy of a detergent solution for varroa mite detection. American Bee Journal, 144(7), 560-562.

Sanchez-Bayo F. & Goka, K. (2014) Pesticide residues and bees–a risk assessment. PLoS One, 9, e94482. https://doi.org/10.1371/journal.pone.0094482

Tilman, D., Balzer, C., Hill, J. & Befort. B.L. (2011) Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260-20264. https://doi.org/10.1073/pnas.1116437108

Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. & Thies, C. (2005) Landscape perspectives on agricultural intensification and biodiversity a ecosystem service management. Ecology Letters, 8, 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

Weiner, C.N., Werner, M., Linsenmair, K.L. & Bleuthgen, N. (2014) Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology, 95, 466-474. https://doi.org/10.1890/13-0436.1

Žigrai, F. (2001) An integrated approach to research cultural landscape (selected theoretical and methodological aspects). Landscape, human, culture, 2001, 16-19.