Relationship between external weather conditions and number of hibernating bats in two caves in the western Italian Alps

Authors

  • Roberto Toffoli a:1:{s:5:"en_US";s:23:"Chirosphera Association";}

DOI:

https://doi.org/10.17161/eurojecol.v7i2.15560

Keywords:

Chiroptera, hibernaculum, annual changes, climatic variable, temperate bats

Abstract

Weather conditions can influence the hibernation behaviour of temperate cave-dwelling bats that are tolerant to low temperatures, and their number can be correlated with weather variables. In this work a first assessment on the correlation between the number of individuals of three species of hibernating bats (Barbastella barbastellus, Myotis emarginatus and Rhinolophus hipposideros) and the environmental weather conditions before the survey was carried out is provided for two hibernacula of the Italian Western Alps.

For the B. barbastellus, a significant inverse correlation was observed between the number of bats detected and the average daily temperature for thirty days preceding the count (p= 0.036) and ten days before counting (p= 0.036). A significant positive correlation was observed for M. emarginatus between the number of individuals and the average daily temperatures for thirty days preceding the count (p= 0.018). For R. hipposideros, a significant inverse correlation was observed with the average daily temperatures for the ten days before the count (p= 0.048) and the differences in the maximum and minimum temperature of the ten days preceding the count (p= 0.002).

Results of this study show how the ambient temperatures before a count can influence the number of bats present in hibernacula. This confirms how the abundance of bats at underground hibernating sites can be used as an indicator of climate change, as temperature is an important factor controlling hibernation, although  further studies are needed in order to better evaluate how the climatic variables interact with each other in regulating the number of bats in the hibernacula.

References

Altringham, J.D. (2011) Bats: from evolution to conservation. Oxford: Oxford University Press

Acquaotta, F., Fratianni, S. & Garzena, D. (2015) Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor Appl Climatol, 122(3-4), 619-634. https://doi.org/10.1007/s00704-014-1316-7

Badino, G. (2010). Underground meteorology-“What’s the weather underground?”. Acta carsologica, 39(3), 427-448. https://doi.org/10.3986/ac.v39i3.74

Battersby, J. (2010) Guidelines for surveillance and monitoring of European bats. EUROBATS Publication Series (no. 5). Bonn, Germany: UNEP/EUROBATS Secretariat

Berková, H. & Zukal, J. (2010). Cave visitation by temperate zone bats: effects of climatic factors. J. Zool, 280(4), 387-395. https://doi.org/10.1111/j.1469-7998.2009.00673.x

Boyles, J. G., Dunbar, M. B., Storm, J. J. & Brack, V. (2007). Energy availability influences microclimate selection of hibernating bats. Journal of Experimental Biology, 210(24), 4345-4350.

https://doi.org/10.1242/jeb.007294

Daan, S. (1973). Activity during natural hibernation in three species of vespertilionid bats. Neth. J. Zool, 23, 1–71. https://doi.org/10.1163/002829673X00193

Daan, S., Glas, G.H. & Voute, A.M. (1980) Long term changes in bat populations in the Netherlands. Lutra, 22, 95-105

Daan, S. & Wichers, H. J. (1968) Habitat selection of bats hibernating in a limestone cave. Zeitschrift für Säugetierkunde, 33, 262-287.

Fuszara, E., Fuszara, M., Jurczyszyn, M., Kowalski, M., Lesiński, G., Paszkiewicz R, et al. (2003) Shelter preference of the barbastelle, Barbastella barbastellus (Schreber, 1774), hibernating in Poland. Nyctalus, 8, 528–535.

Geiser, F. (2004). Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol., 66, 239-274.

https://doi.org/10.1146/annurev.physiol.66.032102.115105

Gottfried, I., Gottfried, T., Lesiński, G., Hebda, G., Ignaczak, M., Wojtaszyn, G., et al.. (2020). Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change–Are current monitoring schemes still reliable for cryophilic bat species?. PloS one, 15(2), e0227912. https://doi.org/10.1371/journal.pone.0227912

Erkert, H. G. (1982) Ecological aspects of bat activity rhythms. In: T. H. Kunz (Ed.), Ecology of bats (pp. 201-242). Boston , Massachusetts: Springer.

Hammer, Ø., Harper, D. A. & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.

Horáček, I. (2010) Monitoring bats in underground hibernacula. In: I., Horáček & M.,Uhrin (Eds.) A tribute to bats (pp. 93-108). Lesnická Práce, s.r.o, Kostelec nad Černými lesy.

Jonasson, K.A. & Willis, C.K.R. (2012) Hibernation energetics of free-ranging little brown bats. J. Exp. Biol., 215(12), 2141-2149. https://doi.org/10.1242/jeb.066514 PMID: 22623203

Jurczyszyn, M., Bajwolski, T, Dezor, L., Dzięciołowski, R., Dąbrowska, A. & Diskorz, R. (2003) Some ecological aspects and threats for population of Barbastella barbastellus hibernating in Poznan (Poland). Nyctalus, 8, 610–614.

Kerbiriou, C., Bas, Y., Julien, J.F. & groupes Chiroptères SFEPM (2018) Estimations des tendances des populations de Chiroptères à partir des suivis de gîtes hivernaux. Symbioses, 37, 7 – 15.

Kowalski, K. (1953) Materialy do rozmieszczenia i ekologii nietoperzy jaskiniowych v.' Polsce. Fragm. faun. Mus. zool. Pol., 6 (21), 541—567 (with a summary in english).

Ingersoll, T.E., Sewall, B.J. & Amelon, S.K. (2013) Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoSOne, 8(6), e65907. DOI: 10.1371/journal.pone.0065907

Lesiński, G.(1986) Ecology of bats hibernating underground in Central Poland. Acta Theriol., 31, 507–531.

Lindström, J. & Forchhammer, M.C. (2010) Time-series analyses. In: A.P. Møller, W. Fiedler, P. Berthold (Eds), Effects of climate change on birds (57-66). Oxford : Oxford University Press.

Newson, S. E., Mendes, S., Crick, H., Dulvy, N., Houghton, J., Hays, G. C., et al. (2009) Indicators of the impact of climate change on migratory species. Endanger. Species Res., 7(2), 101–113. https://doi.org/10.3354/esr00162

Park, K. J., Jones, G. & Ransome, R. D. (2000). Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Functional ecology, 14(5), 580-588. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00460.x

Piksa, K. & Nowak, J. (2013) The bat fauna hibernating in the caves of the Polish Tatra Mountains, and its long-term changes. Open Life Sciences, 8, 448-460. https://doi.org/10.2478/s11535-013-0146-9

Ransome, R.D. (1971) The effect of ambient temperature on the arousal frequency of the hibernating greater horseshoe bat, Rhinolophus ferrumequinum, in relation to site selection and the hibernation state. J. Zool., 164, 353–371. https://doi.org/10.1111/j.1469-7998.1971.tb01323.x

Ransome, R. (1990) Hibernating Bats. London: Christopher Helm.

Rebelo, H., Tarroso, P. & Jones, G. (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Change Biol., 16, 561–576. https://doi.org/10.1111/j.1365-2486.2009.02021.x

Rydell, J. & Bogdanowicz, W. (1997) Barbastella barbastellus. Mammalian Species, 557, 1–8. https://doi. org/10.2307/3504499

Sachanowicz, K. & Zub, K. (2002) Numbers of hibernating Barbastella barbastellus (Schreber, 1774) (Chiroptera, Vespertilionidae) and thermal conditions in military bunkers. Mamm Biol., 67, 179–184. https://doi.org/10.1078/1616-5047-00026

Sendor, T. & Simon, M. (2003) Population dynamics of the pipistrelle bat: Effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol., 72(2), 308–320.

https ://doi.org/10.1046/j.1365‐2656.2003.00702.x

Speakman, J..R. & Racey, P.A. (1989). Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of emergence flights. J. Anim. Ecol. 58, 797–813.

Stawski, C., Willis, C. K. R., & Geiser, F. (2014). The importance of temporal heterothermy in bats. Journal of Zoology, 292(2), 86-100. https://doi.org/10.1111/jzo.12105

Toffoli, R (2019) The bats of the Rio Martino Cave, North West Italy (Mammalia Chiroptera). Biodiversity Journal, 10, 249–257. https://doi.org/10.31396/Biodiv.Jour.2019.10.3.249.257

Toffoli, R. & Calvini, M. (2021) Long term trends of hibernating bats in North-Western Italy. Biologia, 76(2), 633-643. https://doi.org/10.2478/s11756-020-00584-x

Uhrin, M., Benda, P., Obuch, J. & Urban, P. (2010) Changes in abundance of hibernating bats in central Slovakia (1992–2009). Biologia, 65, 349-361. https://doi.org/10.2478/s11756-010-0020-z

Van der Meij, T., Van Strien, A.J., Haysom, K.A., Dekker, J., Russ, J., Biala, K., Bihari, Z., Jansen, E., Langton, S. et al. (2015) Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm. Biol 80, 170-177. https://doi.org/10.1016/j.mambio.2014.09.004

Webb, P.I., Speakman, J.R. & Racey, P.A. (1996) How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool, 74, 761–765. https://doi.org/10.1139/z96-087

Zukal, J., Berková, H. & Řehák, Z. (2005) Activity and shelter selection by Myotis myotis and Rhinolophus hipposideros hibernating in the Kateřinská cave (Czech Republic). Mamm. Biol., 70(5), 271-281. https://doi.org/10.1016/j.mambio.2005.03.003

Zukal. J., Berková, H., Banďouchová, H., Kováčová, V. & Pikula, J. (2017) Bats and caves: activity and ecology of bats wintering in caves. In: S., Karabulut, M.C., Cinku, (Eds.) Cave investigation. (pp. 51–75). InTech, Rijeka,

Downloads

Published

2021-12-22

Issue

Section

Articles

How to Cite

Toffoli, R. (2021). Relationship between external weather conditions and number of hibernating bats in two caves in the western Italian Alps. European Journal of Ecology, 7(2). https://doi.org/10.17161/eurojecol.v7i2.15560