Historical Demography and Climate Driven Range Shifts in the Blue-spotted Salamander Under the Climate Change Scenarios

BIOGEOGRAPHY OF THE BLUE-SPOTTED SALAMANDER

Authors

  • UTKU PERKTAS Hacettepe University
  • Can Elverici Hacettepe University
  • Özge Yaylalı Hacettepe University

DOI:

https://doi.org/10.17161/eurojecol.v10i1.18544

Keywords:

phylogeography, Blue-spotted Salamander, Climate Change, ecological niche modelling, historical demography

Abstract

This study integrates phylogeography with distributional analysis to understand the demographic history and range dynamics of a limited dispersal capacity amphibian species, Blue-spotted Salamander (Ambystoma laterale), under several climate change scenarios. For this we used an ecological niche modeling approach, together with Bayesian based demographic analysis, to develop inferences regarding this species' demographic history and range dynamics. The current model output was mostly congruent with the present distribution of the Blue-spotted Salamander. However, under both the Last Interglacial and the Last Glacial Maximum bioclimatic conditions, the model predicted a substantially narrower distribution than the present. These predictions showed almost no suitable area in the current distribution range of the species during almost the last 22.000 y before present (ybp). The predictions indicated that the distribution of this species shifted from eastern coast of northern North America to the southern part of the current distribution range of the species. The Bayesian Skyline Plot analysis, which provided good resolution of the effective population size changes over the Blue-spotted Salamander history, was mostly congruent with ecological niche modeling predictions for this species. This study provides the first investigation of the Blue-spotted Salamander’s late-Quaternary history based on ecological niche modeling and Bayesian-based demographic analysis. In terms of the main result of this study, we found that the species' present genetic structure has been substantially affected by past climate changes, and this species has reached current distribution range almost from nothing since the Last Glacial Maximum.

References

ALLIO, R., S. DONEGA, N. GALTIER, AND B. NABHOLZ. (2017). Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Molecular Biology and Evolution, 34(11), 2762–2772. https://doi.org/10.1093/MOLBEV/MSX197

AVISE, J. C., R. A. LANSMAN, AND R. O. SHADE (1979). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics, 92(1), 279–295. https://doi.org/10.1093/GENETICS/92.1.279

AVISE, J. C., J. F. SHAPIRA, S. W. DANIEL, C. F. AQUADRO, AND R. A. LANSMAN (1983). Mitochondrial DNA differentiation during the speciation process in Peromyscus. Molecular Biology and Evolution, 1(1), 38–56. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040301

AVISE, J C, J. ARNOLD, R. M. BALL, E. BERMINGHAM, T. LAMB, J. E. NEIGEL, AND N. C. SAUNDERS (1987). Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics, 18(1), 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421

AVISE, JOHN C. (2000). Phylogeography : the history and formation of species. Harvard University Press.

BARROWCLOUGH, G. F., J. G. GROTH, E. K. BRAMLETT, J. E. LAI, J. E AND W. M. MAUCK (2018). Phylogeography and geographic variation in the Red-bellied Woodpecker (Melanerpes carolinus): characterization of mtDNA and plumage hybrid zones. The Wilson Journal of Ornithology, 130(3), 671–683. https://doi.org/10.1676/17-070.1

BRITO, P. H. (2005). The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe. Molecular Ecology, 14(10), 3077–3094. https://doi.org/10.1111/j.1365-294X.2005.02663.x

BROWN, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700. https://doi.org/10.1111/2041-210X.12200

CAMPBELL, L. P., C. LUTHER, D. MOO-LLANES, J. M. RAMSEY, R. DANIS-LOZANO, AND A. T. PETERSON. (2015). Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 1–9. https://doi.org/10.1098/RSTB.2014.0135

CONANT, R. AND J. T. COLLINS. (1991). A field guide to reptiles and amphibians of the USA and Canada. Houghton Mifflin Harcourt.

DEMASTES, J. W., J. M. EASTMAN, AND J. S. EAST. (2007). Phylogeography of the Blue- spotted Salamander, Ambystoma Laterale (Caudata: Ambystomatidae). Am. Midl. Nat., 157(1), 149–161. https://doi.org/10.1674/0003- 0031(2007)157[149:POTBSA]2.0.CO;2

ESCOBAR, L. E., A. LIRA-NORIEGA, G. MEDINA-VOGEL, AND A. TOWNSEND PETERSON. (2014). Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health, 9(1), 221–229. https://doi.org/10.4081/gh.2014.19

Freeland, J. R. (2005). Molecular Ecology. Chichester, UK: John Wiley & Sons.

Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405(6789), 907–913. https://doi.org/10.1038/35016000

Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247 –276. https://doi.org/10.1006/BIJL.1996.0035

HIJMANS, R. J., S. E. CAMERON, J. L. PARRA, P. G. JONES, AND A. JARVIS. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/https://doi.org/10.1002/joc.1276

IUCN SSC Amphibian Specialist Group. (2015). Ambystoma laterale. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T59060A56459409.en

KLICKA, J., G. M. SPELLMAN, K. WINKER, V. CHUA, AND B. T. SMITH. (2011). A Phylogeographic and Population Genetic Analysis of a Widespread, Sedentary North American Bird: The Hairy Woodpecker (Picoides villosus). The Auk, 128(2), 346–362. https://doi.org/10.1525/auk.2011.10264

KUMAR, S., G. STECHER, M. LI, C. KNYAZ, AND K. TAMURA. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/MOLBEV/MSY096

LINDSAY, K., J. F. GOBEIL, J. L. LAWLER, C. SCHLOSS, K. F. BEAZLEY, AND T. J. BEECHEY. (2016). Wildlife Conservation, Protected Areas and Climate Change in Canada: Implications of Projected Species Range Shifts. CCEA Occasional Paper No. 21. Canadian Council on Ecological Areas, CCEA Secretariat, Ottawa, Ontario, Canada.

MOSCARELLA, R. A., M. AGUILERA, AND A. A. ESCALANTE. (2003). Phylogeography, Population Structure, and Implications for Conservation of White-Tailed Deer (Odocoileus virginianus) in Venezuela. Journal of Mammalogy, 84(4), 1300– 1315. https://doi.org/10.1644/BRB-028

PEREIRA, S. L. AND A. J. BAKER. (2006). A Mitogenomic Timescale for Birds Detects Variable Phylogenetic Rates of Molecular Evolution and Refutes the Standard Molecular Clock. Molecular Biology and Evolution, 23(9), 1731–1740. https://doi.org/10.1093/MOLBEV/MSL038

PERKTAŞ, U. AND C. ELVERICI. (2020). Climate-Driven Range Shifts of the Sharp- Tailed Grouse Tympanuchus phasianellus. Acta Ornithologica, 54(2), 213–222. https://doi.org/10.3161/00016454AO2019.54.2.007

PIELOU, E. C. (1991). After the Ice Age : the return of life to glaciated North America. University of Chicago Press.

RYAN, K. J. AND A. J. K. CALHOUN. (2014). Postbreeding Habitat Use of the Rare, Pure- Diploid Blue-spotted Salamander (Ambystoma laterale). Journal of Herpetology, 48(4), 556–566. https://doi.org/10.1670/13-204

SIMOES, M., D. ROMERO-ALVAREZ, C. NUÑEZ-PENICHET, L. JIMÉNEZ, AND M. COBOS. (2020). General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 15(2), 67–68. https://doi.org/10.17161/BI.V15I2.13376

SUCHARD, M. A., P. LEMEY, G. BAELE, D. L. AYRES, A. J. DRUMMOND, AND A. RAMBAUT. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1). https://doi.org/10.1093/VE/VEY016

VAN ELS, P., C. CICERO, AND J. KLICKA. (2012). High latitudes and high genetic diversity: Phylogeography of a widespread boreal bird, the gray jay (Perisoreus canadensis). Molecular Phylogenetics and Evolution, 63(2), 456–465. https://doi.org/10.1016/J.YMPEV.2012.01.019

VANEK, J. P., R. B. KING, AND G. A. GLOWACKI. (2019). Landscape and management factors influence the occupancy dynamics of sympatric salamanders in an urban preserve system. Global Ecology and Conservation, 20, e00742. https://doi.org/10.1016/J.GECCO.2019.E00742

WEBB, T., B. SHUMAN, AND J. W. WILLIAMS, (2003). Climatically forced vegetation dynamics in eastern North America during the late Quaternary Period. Developments in Quaternary Science, 1(C), 459–478. https://doi.org/10.1016/S1571-0866(03)01021-2

Downloads

Published

2024-04-29

Issue

Section

Articles

How to Cite

PERKTAS, U., Elverici, C. ., & Yaylalı, Özge. (2024). Historical Demography and Climate Driven Range Shifts in the Blue-spotted Salamander Under the Climate Change Scenarios: BIOGEOGRAPHY OF THE BLUE-SPOTTED SALAMANDER. European Journal of Ecology, 10(1). https://doi.org/10.17161/eurojecol.v10i1.18544