Geospatial Analysis For Determination Of Preferential Soil Conditions For The Desert Locust Oviposition

Authors

  • Dr. Giribabu Dandabathula Indian Space Research Organisation
  • Mr. Rohit Hari Regional Remote Sensing Centre - West, Jodhpur, India
  • Mr. Koushik Ghosh Regional Remote Sensing Centre - West, Jodhpur, India
  • Mr. Rakesh Fararoda Regional Remote Sensing Centre - West, Jodhpur, India
  • Ms. Darshana Kumare Central University of Karnataka, India
  • Ms. Amirthavarshini Sasikumar Central University of Karnataka, India
  • Dr. Apurba Kumar Bera Regional Remote Sensing Centre - West, Jodhpur, India
  • Dr. Sushil Kumar Srivastav Regional Centres, National Remote Sensing Centre, India

DOI:

https://doi.org/10.17161/eurojecol.v9i2.19493

Keywords:

Desert locust, Oviposition, Breeding, Soil texture, Soil moisture, SoilGrids, Soil Moisture Active Passive mission, Earth Observation systems, Geospatial technology

Abstract

Understanding the thresholds of influencing parameters that favor the habitability of dangerous pests like desert locusts (Schistocerca gregaria) can aid in early detection and eradication using control operations. The life cycle of the desert locust and its behavioral changes are associated with the weather patterns and the region’s ecosystem settings. This study attempts to retrieve the preferential soil conditions like texture and moisture at the surface and subsurface levels for egg-laying by desert locusts. Towards this, Locust Hub, a comprehensive database of desert locusts maintained and disseminated by the Food and Agriculture Organisation under the Locust Watch program, was used to identify breeding site locations for 2017-2021. In this research, we extracted sand-silt-clay percentage at these breeding sites using SoilGrids ver. 2.0 from the World Soil Information Service database facilitated by International Soil Reference and Information Centre. Similarly, soil moisture conditions extracted from Level-4 data products of the Soil Moisture Active Passive mission for all these breeding sites aided in essaying the optimal soil conditions for the desert locust’s oviposition. This study’s results confirm the sand percentage in a broad range of 55-70% (for 90% of samples), followed by a narrow range of silt and clay with 19-24% and ~14-20%, respectively. Our study reveals that female desert locusts prefer sandy loam-textured soils for oviposition. The preferred range of soil moisture at the surface and subsurface resulted in 5-10% and 10-20%, respectively. These results confirm that dampness is required at the surface soil for initiating the oviposition by female desert locusts. Results from this research can aid in the early identification of breeding grounds during desert locusts’ invasion period.

References

Bennett, L.V. (1976) The development and termination of the 1968 plague of the desert locust, Schistocerca gregaria (Forskål)(Orthoptera, Acrididae). Bulletin of Entomological Research, 66(3), 511-552.

Cressman, K. (2013) Role of remote sensing in desert locust early warning. Journal of Applied Remote Sensing, 7(1), 075098-075098.

Cressman, K. (2016) Desert Locust. In: J.F. Shroder & R. Sivanpalli (Eds.), Biological and Environmental Hazards, Risks, and Disasters (pp.87-105). London: Elsevier.

Cressman, K. & Stefanski, R. (2016) Weather and desert locusts (Geneva, Switzerland: World Meteorological Organization). Retrieved from https://library.wmo.int/doc_num.php?explnum_id=3213.

Cullen, D.A., Cease, A.J., Latchininsky, A.V., Ayali, A., Berry, K., Buhl, J., De Keyser, R., Foquet, B., Hadrich, J.C., & Rogers, S.M. (2017) From molecules to management: mechanisms and consequences of locust phase polyphenism. In: H. Verlinden (Ed.): Advances in insect physiology, 53 (pp. 167-285). London: Academic Press. doi: 10.1016/bs.aiip.2017.06.002.

Dandabathula, G., Verma, M., Sitiraju, S. R., & Jha, C. S. (2020) Geospatial Opinion on Unusual Locust Swarm Invasions during Amphan Cyclone. Journal of Geoscience and Environment Protection, 8(12), 144-161.

FAO. (2021) Desert Locust Upsurge (2019-2021) Retrieved from https://www.fao.org/ag/locusts/en/info/2094/index.html.

Despland, E., Collett, M. & Simpson, S.J. (2000) Small‐scale processes in desert locust swarm formation: how vegetation patterns influence gregarization. Oikos, 88, 652-62.

DLIS. 2022: Desert locust information service - Food and Agriculture Organization. Retrieved from https://www.fao.org/locusts/en/.

El-Hadi, N.H.A. (1966) Effects of the soil environment on oviposition and egg development of the desert locust, Sohistocerca gregaria (Forsk). PhD thesis, Imperial College in England.

Ellenburg, W.L., Mishra, V., Roberts, J.B., Limaye, A.S., Case, J.L., Blankenship, C.B., & Cressman, K. (2021) Detecting desert locust breeding grounds: a satellite-assisted modeling approach. Remote Sensing, 13(7), 1276.

Entekhabi, D., Yueh, S., O’neill, P.E., Kellogg, K.H., Allen, A., Bindlish, R., Brown, M., Chan, S., Colliander, A., Crow, W.T. & Das, N. (2014) SMAP handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space. Retrieved from https://lirias.kuleuven.be/1741023?limo=0.

Escorihuela, M.J., Merlin, O., Stefan, V., Moyano, G., Eweys, O.A., Zribi, M., Kamara, S., Benahi, A.S., Chihrane, J., Ghaout, S., Cissé, S., Diakité, F., Lazar, M., Pellarin, T., Grippa, M., Cressman, K., & Piou, C. (2018) (2018). SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sensing Applications: Society and Environment, 11, 140-150.

Ferenz, H.J. & Seidelmann, K. (2003) Pheromones in relation to aggregation and reproduction in desert locusts. Physiological Entomology, 28(1), 11-18.

Gaaboub, I. (2008) Physiological and behavioural studies of deterrent and attractant materials on oviposition of the desert locust, (Schistocerca gregaria Forskal). In. Proceedings of 5th International Conference on Biological Sciences (Zoology), Tanta University, Egypt.

Gómez, D., Salvador, P., Sanz, J., Casanova, C., Taratiel, D., & Casanova, J.L. (2018) Machine learning approach to locate desert locust breeding areas based on ESA CCI soil moisture. Journal of Applied Remote Sensing, 12(3), 036011-036011.

Gómez, D., Salvador, P., Sanz, J., Casanova, C., Taratiel, D., & Casanova, J.L. (2019) Desert locust detection using Earth observation satellite data in Mauritania. Journal of Arid Environments, 164, 29-37.

Hengl, T., de Jesus, J.M., Heuvelink, B.M., Gonzalez, M.R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, G.B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748.

Hunter‐Jones, P. (1964) Egg development in the desert locust (Schistocerca gregaria Forsk.) in relation to the availability of water. In: Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 39 (1‐3), 25-33. Oxford, Blackwell Publishing Ltd., UK.

Idris, M. (2009) Eco-biodiversity of rodent fauna of the Thar desert. In: C. Sivaperuman, Q.H. Baqri, G. Ramaswamy & Naseema (Eds.), Faunal Ecology and Conservation of the Great Indian Desert (pp. 157-175). Heidelberg: Springer.

Jones, R. (2016) Hopper bands: locust aggregation. Senior Thesis, Harvey Mudd College University, California. Retrieved from https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1081&context=hmc_theses.

Katiyar, K.N. (1957) Ecology of oviposition and the structure of eggpods and eggs in some Indian Acrididae. Records of the Zoological Survey of India, 55(1-4), 29-68.

Kennedy, J.S. (1951) The migration of the desert locust (Schistocerca gregaria Forsk.). I. The behaviour of swarms. II. A theory of long-range migrations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 31, 163-290.

Kimathi, E., Tonnang, H.E., Subramanian, S., Cressman, K., Abdel-Rahman, E.M., Tesfayohannes, M., Niassy, S., Torto, B., Dubois, T., Tanga, C.M., Kassie, M., Ekesi, S., Mwangi, D., & Kelemu, S. (2020) Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Scientific Reports, 10(1), 11937.

Klein, I., Oppelt, N., & Kuenzer, C. (2021) Application of remote sensing data for locust research and management—a review. Insects, 12(3), 233.

Klein, I., van der Woude, S., Schwarzenbacher, F., Muratova, N., Slagter, B., Malakhov, D., Oppelt, N. & Kuenzer, C. (2022) Predicting suitable breeding areas for different locust species–A multi-scale approach accounting for environmental conditions and current land cover situation. International Journal of Applied Earth Observation and Geoinformation, 107, 102672.

Krall, S. & Herok, C. (1997) Economics of desert locust control. In: S. Krall, R. Peveling & D Ba Diallo (Eds.), New strategies in locust control (pp. 401-413). Birkhäuser: Basel.

Latchininsky, A.V., Sword, G., Sergeev, M., Cigliano, M.M. & Lecoq, M. (2011) Locusts and grasshoppers: behavior, ecology, and biogeography. Psyche, 2011, 578327.

Latchininsky, A.V. (2013) Locusts and remote sensing: a review. Journal of Applied Remote Sensing, 7,075099.

Le Gall, M., Overson, R. & Cease, A. (2019) A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Frontiers in Ecology and Evolution, 7, 263.

Locust-Hub. (2022) Locust Hub - Food and Agriculture Organization. Retrieved from https://locust-hub-hqfao.hub.arcgis.com/.

Mariod, A.A., Saeed Mirghani, M.E. & Hussein, I. (2017) Schistocerca gregaria (Desert Locust) and Locusta migratoria (Migratory Locust). In: A.A.M. Alnadif, M.E.S. Mirghani & I.H. Hussein (Eds.), Unconventional oilseeds and oil sources (pp. 293–297), Cambridge: Academic Press.

Matthews, G.A. (2021) New technology for desert locust control. Agronomy, 11, 1052.

Mohammed, L., Diongue, A., Yang, J.T., Bahia, D.M. & Michel, L. (2015) Location and characterization of breeding sites of solitary desert locust using satellite images Landsat 7 ETM+ and Terra MODIS. Advances in Entomology, 3(1), 6-15.

NSIDC-SMAP. (2022) SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data Version 6. Retrieved from https://nsidc.org/data/SPL4SMGP.

Pedgley, D.E. & Rainey, R.C. (1979) Weather during desert locust plague upsurges. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 287(1022), 387-391.

Piou, C., Gay, P.E., Benahi, A.S., Babah Ebbe, M.A.O., Chihrane, J., Ghaout, S., Cisse, S., Diakite, F., Lazar, M., Cressman, K. & Merlin, O. & & Escorihuela, M.J. (2019) Soil moisture from remote sensing to forecast desert locust presence. Journal of Applied Ecology, 56(4), 966-975.

Poggio, L., De Sousa, L.M., Batjes, N.H., Heuvelink, G., Kempen, B., Ribeiro, E. & Rossiter, D. (2021) SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240.

Popov, G.B. (1958) Ecological studies on oviposition by swarms of the desert locust (Schistocerca gregaria Forskal) in eastern Africa. Anti-Locust Bulletin, 31, 1-70

Prakash, I. & Jain, A.P. (1971) Some observations on Wagner's gerbil, Gerbillus nanus indus (Thomas), in the Indian desert. Mammalia, 35, 614-628.

Prakash, I. (1974) The ecology of vertebrates of the Indian desert. In: M.S. Mani (Ed), Ecology and Biogeography in India (pp. 369-420). The Hague: Dr. W Junk B V Publishers

Prakash, I., Gupta, R.K., Jain, A.P., Rana, B.D. & Dutta, B.K. (1971) Ecological evaluation of rodent populations in the desert biome of Rajasthan. Mammalia, 35, 384-423.

Rao, R.B.Y.R. (1942) Some results of studies on the desert locust (Schistocerca gregaria, Forsk.) in India. Bulletin of Entomological Research, 33(4), 241-265.

Reichle, R.H., De Lannoy, G.J., Koster, R.D., Crow, W.T., Kimball, J.S. & Liu, Q. (2021) SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Ver. 6. (Boulder, Colorado, USA). NASA NSIDC DAAC. Retrieved from https://doi.org/10.5067/KPJNN2GI1DQR.

Reichle, R.H., De Lannoy, G.J., Liu, Q., Koster, R.D., Kimball, J.S., Crow, W.T., Ardizzone, J.V., Chakraborty, P., Collins, D.W., Conaty, A.L., Girotto, M., Lucas, A.J., Kolassa, J., Lievens, H., Lucchesi, R.A. & Smith, E.B. (2017) Global assessment of the SMAP Level-4 surface and root-zone soil moisture product using assimilation diagnostics. Journal of hydrometeorology, 18(12), 3217-3237.

Showler, A.T. (2019) Desert locust control: the effectiveness of proactive interventions and the goal of outbreak prevention. American Entomologist, 65(3), 180-191.

Song, H., Foquet, B., Mariño-Pérez, R. & Woller, D.A. (2017) Phylogeny of locusts and grasshoppers reveals complex evolution of density-dependent phenotypic plasticity. Scientific reports, 7(1), 6606.

Sultana, R., Kumar, S., Samejo, A.A., Soomro, S. & Lecoq, M. (2021) The 2019–2020 upsurge of the desert locust and its impact in Pakistan. Journal of Orthoptera Research, 30(2), 145-154.

Sun, R., Huang, W., Dong, Y., Zhao, L., Zhang, B., Ma, H., Geng, Y., Ruan, C., Xing, N., Chen, X. & Li, X. (2022) Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique. Remote Sensing, 14(3), 747.

Symmons, P.M. & Cressman, K. (2001) Desert locust guidelines: biology and behaviour FAO, Rome. Retrieved from https://www.fao.org/ag/locusts/oldsite/PDFs/DLG7e.pdf.

Tucker, C.J., Hielkema, J.U. & Roffey, J. (1985) The potential of satellite remote sensing of ecological conditions for survey and forecasting desert-locust activity. International Journal of Remote Sensing, 6(1), 127-138.

TUCKER C.J., HIELKEMA J.U. & ROFFEY J. 1985: The potential of satellite remote sensing of ecological conditions for survey and forecasting desert-locust activity. Int. J. Remote Sens. 6:127-38.

USDA-NRCS. (2022) Soil Texture Calculator. Retrieved from https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167.

Uvarov, B.P. (1943) The locust plague. Journal of the Royal Society of Arts, 91(4631), 109-118.

Van Huis, A., Cressman, K. & Magor, J.I. (2007) Preventing desert locust plagues: optimizing management interventions. Entomologia Experimentalis et Applicata, 122(3), 191-214.

Wang, L., Zhuo, W., Pei, Z., Tong, X., Han, W. & Fang, S. (2021) Using long-term earth observation data to reveal the factors contributing to the early 2020 desert locust upsurge and the resulting vegetation loss. Remote Sensing, 13(4), 680.

WANG L., ZHUO W., PEI Z., TONG X., HAN W. & FANG S. 2021: Using long-term earth observation data to reveal the factors contributing to the early 2020 desert locust upsurge and the resulting vegetation loss. Remote Sens. 13:680.

Wilps, H. (1997) Ecology of Schistocerca gregaria (Forskål): observations in West Africa from 1990 to 1994. In: S. Krall, R. Peveling & D Ba Diallo (Eds.) New strategies in locust control (pp.9-17). Birkhäuser:Basel.

Woldewahid, G. (2003) Habitats and spatial patterns of solitarious desert locusts (Schistocerca gregaria Forsk.) on the coastal plain of Sudan. PhD Thesis, Wageningen University, Wageningen.

Worboys, M. (2022) Imperial entomology: Boris P. Uvarov and locusts, c. 1920–c. 1950. The British Journal for the History of Science, 55(1), 27-51.

WOSIS. 2022: ISRIC world soil information. Retrieved from https://files.isric.org/soilgrids/latest/data.

Downloads

Published

2023-11-07

Issue

Section

Articles

How to Cite

Dandabathula, G., Hari, R., Ghosh, K., Fararoda, R., Kumare, D., Sasikumar, A., Bera, A. K., & Srivastav, S. K. (2023). Geospatial Analysis For Determination Of Preferential Soil Conditions For The Desert Locust Oviposition. European Journal of Ecology, 9(2). https://doi.org/10.17161/eurojecol.v9i2.19493