DIVERSITY AND ABUNDANCE OF SOIL MACROARTHROPODS IN GREEN OPEN SPACES, INDONESIA
English
DOI:
https://doi.org/10.17161/eurojecol.v11i1.19722Keywords:
Diversity, Formicidae, Green open spaces, Soil macroarthropodAbstract
Information on soil macroarthropods in Kendari City has not been reported so far, even though soil macroarthropods play an important role in supporting the lives of other organisms and in recent years have decreased in number globally. This study aims to identify soil macroarthropod communities and calculate the diversity of soil macroarthropods located in green open spaces in Kendari City. The green open spaces include Baruga forest, Mayor’s park, and Nanga-nanga botanical garden. The data obtained were integrated to calculate the Shannon-Wiener index and Simpson index. Individuals of each taxa were evaluated with Menhinick index and Pielou index. The similarity of soil macroarthropod groups was measured using the similarity index and the ratio of diversity index values at each location will be tested using Duncan's test with a p value of 0.05. The soil macroarthropod community found in green open space was 3505 individuals consisting of 4 Classes, 12 Orders, 27 Families, and 72 Genus. The number of genus in three consecutive research locations, namely Nanga-nanga botanical garden with 26 genus, Baruga forest with 25 genus, and Mayor’s park with 21 genus. Baruga forest had the highest species diversity of soil macroarthropods compared to other locations. The highest abundance of soil macroarthropods was shown by Family Formicidae (Ants), followed by Isoptera (Termites), Aranae (Spiders), and the lowest were Dermaptera (Cocopet), Scolopendromorpha (Centipedes), and Isopoda (Dead woodlice).
References
Alvarez-Garreton, C., Lara, A., Boisier, J. P., & Galleguillos, M. (2019). The impacts of native forests and forest plantations on water supply in Chile. Forests, 10(6), DOI: 10.3390/f10060473.
Ayuke, F. O., Karanja, N. K., Muya, E. M., Musombi, B. K., Mungatu, J., & Nyamasyo, G. H. N. (2009). Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Tropical and Subtropical Agroecosystems, 11(2), 371-384.
Baveye, P. C., Baveye, J., & Gowdy, J. (2016). Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Frontiers in Environmental Science, 4, 41, DOI: 10.3389/fenvs.2016.00041.
Benckiser, G. (2019). Plastics, micro-and nanomaterials, and virus-soil microbe-plant interactions in the environment. Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications, 83-101, DOI: 10.1007/978-3-030-12496-0_4.
Berg, M., Peter de Ruiter, W. Didden, M. Janssen, T. Schouten, and H. Verhoef. 2001. Community Food Web, Decomposition and nitrogen mineralization in stratified scots pine forest soil, Oikos 94: 130-142.
Brussaard, L., 2012. Ecosystem services provided by the soil biota. In: Wall, D.H., BehanPelletier, V., Ritz, K., Jones, T.H., Six, J., Strong, D.R., van der Putten, W.H. (Eds.), Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, pp. 45–58.
Bufebo, B., Elias, E., & Getu, E. (2021). Abundance and diversity of soil invertebrate macro-fauna in different land uses at Shenkolla watershed, South Central Ethiopia. The Journal of Basic and Applied Zoology, 82, 1-12, DOI: 10.1186/s41936-021-00206-1.
Delabie, J. H., Jahyny, B., do Nascimento, I. C., Mariano, C. S., Lacau, S., Campiolo, S., Stacy, M. P., & Leponce, M. (2007). Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodiversity and Conservation, 16, 2359-2384.
Ferreira, M. L., 1 , L. C. de Souza, D. de Melo Conti, C. C. Quaresma, A. R. Tavares, K. G. da Silva, C. T. Kniess, and P. B. de Camargo, 2018, Soil biodiversity in urban forests as a consequence of litterfall management: implications for são paulo’s ecosystem services, Sustainability 10 (684): 1-13.
Foth, H. D. 1994. Dasar-dasar Ilmu Tanah. Erlangga. Jakarta. Pp. 22-32.
Fulong, Li., Lin, B., and Kun, M. (2023). Green Space Settlement Landscape Optimization Strategy Under the Concept of Ecological Environment Restoration. Journal of King Saud University-Science, DOI: 10.1016/j.jksus.2023.102539.
Gullan, P. J. and P. S. Cranston. 2010. The insects. Wiley-Blackwell. UK.
Haaland, C., Konijnendijk van den Bosch, C., 2015. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14 (4), 760–771, DOI: 10.1016/j.ufug.2015.07.009
Jokimäki J., E. Huhta, J. Itämies, and P. Rahko, 1998, Distribution of arthropods in relation to forest patch size, edge, and stand characteristics, Can. J. For. Res. 28: 1068–1072.
Kilowasid, L. M. H., T.S Syamsudin, E. Sulistiawaty, and F.X. Susilo. 2012. Ecological diversity of soil fauna as ecosystem engineers in small-holder cocoa plantation in South Konawe, Southeast Sulawesi, J Trop Soil, 17 (2): 173-180.
Lara, A., Little, C., Urrutia, R., McPhee, J., Álvarez-Garretón, C., Oyarzún, C., Soto, D., & Arismendi, I. (2009). Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. Forest Ecology and Management, 258(4), 415-424.
Lavelle, P. and A. Spain. 2001. Soil Ecology. Kluwer Academics, The Netherlands.
Ozanne, C. M. P., Speight, M. R., Hambler, C., & Evans, H. F. (2000). Isolated trees and forest patches: patterns in canopy arthropod abundance and diversity in Pinus sylvestris (Scots Pine). Forest Ecology and Management, 137(1-3), 53-63.
Pamoengkas, P., Rachmat, H. H., & Khalifa, N. (2020). The growth of shorea leprosula at various planting distances and slopes in gunung dahu research forest, Bogor, Indonesia. Biodiversitas Journal of Biological Diversity, 21(9), DOI: 10.13057/biodiv/d210959.
Ramírez, B. H., Cortés‐B, R., Pinzón, O. P., Gómez, L., Jacquin, S., Hernández, E., Quimbayo, L. A., & Bogotá‐A, R. G. (2023). Cloud forests of the Orinoco River Basin (Colombia): Variation in vegetation and soil macrofauna composition along the hydrometeorological gradient. Biotropica, DOI: 10.1111/btp.13203.
Ring, Z., Damyanovic, D., & Reinwald, F. (2021). Green and open space factor Vienna: A steering and evaluation tool for urban green infrastructure. Urban Forestry & Urban Greening, 62, DOI: 10.1016/j.ufug.2021.127131.
Ruiz, N. and P. Lavelle. 2008 . Soil Macrofauna Field Manual. FAO. Rome.
Santorufo, L., C. A. M. Van Gestel, A. Rocco, G. Maisto. 2012. Soil invertebrates as bioindicator of urban soil quality. Environmental Pollution 161: 57-63.
Santos-Silva, L., Vicente, R. E., & Feitosa, R. M. (2016). Ant species (Hymenoptera, Formicidae) of forest fragments and urban areas in a Meridional Amazonian landscape. Check List, 12(3), 1885-1885.
Swift, M.J., A.M.N. Izac. and M. van Noordwijk. 2004. Biodiversity and Ecosystem Services in Agricultural Landscapes—Are We Asking The Right Questions? Agriculture, Ecosystems and Environment 104: 113–134.
Sánchez-Bayo, F., Wyckhuys, K.A., 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 827, DOI: 10.1016/j.biocon.2019.01.020.
Siqueira, G. M., de França Silva, Ê. F., Moreira, M. M., de Araújo Santos, G. A., & Silva, R. A. (2016). Diversity of soil macrofauna under sugarcane monoculture and two different natural vegetation types. African Journal of Agricultural Research, 11(30), DOI: 10.5897/AJAR2016.11083.
van Klink, R., Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A., Chase, J.M., 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420, DOI: 10.1126/science.aax9931.
Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D., 2021. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl. Acad. Sci. U. S. A. 118 (2), DOI: 10.1073/pnas.2023989118.
Wetterer, J. K. (2016). Geographic range of Pachycondyla harpax (Fabricius)(Hymenoptera, Formicidae). Sociobiology, 63(1), 623-627, DOI: 10.13102/sociobiology.v63i1.764.
Wu, A., Hu, X., Wang, F., Guo, C., Wang, H., & Chen, F. S. (2021). Nitrogen deposition and phosphorus addition alter mobility of trace elements in subtropical forests in China. Science of The Total Environment, 781, 146778, DOI: 10.1016/j.scitotenv.2021.146778.
Yu, S., Yu, B., Song, W., Wu, B., Zhou, J., Huang, Y., Wu, J., Zhao, F., Mao, W., 2016. View-based greenery: a three-dimensional assessment of city buildings’ green visibility using Floor Green View Index. Landsc. Urban Plan. 152, 13–26, DOI: 10.1016/j.landurbplan.2016.04.004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Armadi Chairunnas, Hilda Ayu Melvi Amalia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright in their articles.
Articles in the European Journal of Ecology published 2020 and after are made available under a Creative Commons Attribution 4.0 license.
Articles in the European Journal of Ecology published 2015-2019 are made available under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 license.